Maternal Breast Growth and Body Mass Index Are Associated with Low Milk Production in Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Data Collection
2.3. Statistical Analyses
3. Results
3.1. Descriptive Statistics
3.2. Maternal and Infant Factors Associated with Milk Production
3.3. Maternal and Infant Factors Associated with the Likelihood of Low Milk Production
3.4. Maternal Breast Volume Growth and Body Mass Index
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Breastfeeding Recommendations. Available online: https://www.who.int/health-topics/breastfeeding#tab=tab_2 (accessed on 2 March 2023).
- Weaver, S.R.; Hernandez, L.L. Autocrine-paracrine regulation of the mammary gland. J. Dairy Sci. 2016, 99, 842–853. [Google Scholar] [CrossRef] [PubMed]
- Kent, J.C.; Prime, D.K.; Garbin, C.P. Principles for maintaining or increasing breast milk production. J. Obstet. Gynecol. Neonatal. Nurs. 2012, 41, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Sriraman, N.K. The Nuts and Bolts of Breastfeeding: Anatomy and Physiology of Lactation. Curr. Probl. Pediatr. Adolesc. Health Care 2017, 47, 305–310. [Google Scholar] [CrossRef] [PubMed]
- Kam, R.L.; Amir, L.H.; Cullinane, M. Is there an association between breast hypoplasia and breastfeeding outcomes? A systematic review. Breastfeed. Med. 2021, 16, 594–602. [Google Scholar] [CrossRef]
- Pawłowski, B.; Żelaźniewicz, A. The evolution of perennially enlarged breasts in women: A critical review and a novel hypothesis. Biol. Rev. 2021, 96, 2794–2809. [Google Scholar] [CrossRef]
- Vanky, E.; Nordskar, J.; Leithe, H.; Hjorth-Hansen, A.; Martinussen, M.; Carlsen, S. Breast size increment during pregnancy and breastfeeding in mothers with polycystic ovary syndrome: A follow-up study of a randomised controlled trial on metformin versus placebo. BJOG Int. J. Obstet. Gynaecol. 2012, 119, 1403–1409. [Google Scholar] [CrossRef]
- Neifert, M.; DeMarzo, S.; Seacat, J.; Young, D.; Leff, M.; Orleans, M. The influence of breast surgery, breast appearance, and pregnancy-induced breast changes on lactation sufficiency as measured by infant weight gain. Birth 1990, 17, 31–38. [Google Scholar] [CrossRef]
- Żelaźniewicz, A.; Pawłowski, B. Maternal breast volume in pregnancy and lactation capacity. Am. J. Phys. Anthropol. 2019, 168, 180–189. [Google Scholar]
- Kent, J.C.; Mitoulas, L.; Cox, D.B.; Owens, R.A.; Hartmann, P.E. Breast volume and milk production during extended lactation in women. Exp. Physiol. 1999, 84, 435–447. [Google Scholar] [CrossRef]
- Vandeweyer, E.; Hertens, D. Quantification of glands and fat in breast tissue: An experimental determination. Ann. Anat.-Anat. Anz. 2002, 184, 181–184. [Google Scholar] [CrossRef]
- Coltman, C.E.; Steele, J.R.; McGhee, D.E. Breast volume is affected by body mass index but not age. Ergonomics 2017, 60, 1576–1585. [Google Scholar] [CrossRef] [PubMed]
- Flint, D.J.; Travers, M.T.; Barber, M.C.; Binart, N.; Kelly, P.A. Diet-induced obesity impairs mammary development and lactogenesis in murine mammary gland. Am. J. Physiol.-Endocrinol. Metab. 2005, 288, E1179–E1187. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, L.L.; Grayson, B.E.; Yadav, E.; Seeley, R.J.; Horseman, N.D. High fat diet alters lactation outcomes: Possible involvement of inflammatory and serotonergic pathways. PLoS ONE 2012, 7, e32598. [Google Scholar] [CrossRef]
- Chang, Y.S.; Glaria, A.A.; Davie, P.; Beake, S.; Bick, D. Breastfeeding experiences and support for women who are overweight or obese: A mixed-methods systematic review. Matern. Child Nutr. 2020, 16, e12865. [Google Scholar] [CrossRef]
- Turcksin, R.; Bel, S.; Galjaard, S.; Devlieger, R. Maternal obesity and breastfeeding intention, initiation, intensity and duration: A systematic review. Matern. Child Nutr. 2014, 10, 166–183. [Google Scholar] [CrossRef]
- Jin, X.; Perrella, S.L.; Lai, C.T.; Taylor, N.L.; Geddes, D.T. Causes of Low Milk Supply: The Roles of Estrogens, Progesterone, and Related External Factors. Adv. Nutr. 2023, 15, 100129. [Google Scholar] [CrossRef]
- Kent, J.C.; Hepworth, A.R.; Sherriff, J.L.; Cox, D.B.; Mitoulas, L.R.; Hartmann, P.E. Longitudinal Changes in Breastfeeding Patterns from 1 to 6 Months of Lactation. Breastfeed. Med. 2013, 8, 401–407. [Google Scholar] [CrossRef]
- Kent, J.C.; Hepworth, A.R.; Langton, D.B.; Hartmann, P.E. Impact of measuring milk production by test weighing on breastfeeding confidence in mothers of term infants. Breastfeed. Med. 2015, 10, 318–325. [Google Scholar] [CrossRef]
- Neville, M.C.; Keller, R.; Seacat, J.; Lutes, V.; Neifert, M.; Casey, C.; Allen, J.; Archer, P. Studies in human lactation: Milk volumes in lactating women during the onset of lactation and full lactation. Am. J. Clin. Nutr. 1988, 48, 1375–1386. [Google Scholar] [CrossRef]
- Calculating Cup Volume and Breast Weight. Available online: https://en.wikipedia.org/wiki/Bra_size#cite_note-Plussize_Chart-103 (accessed on 30 November 2023).
- Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Lubke, G.H.; Campbell, I.; McArtor, D.; Miller, P.; Luningham, J.; van den Berg, S.M. Assessing Model Selection Uncertainty Using a Bootstrap Approach: An update. Struct. Equ. Model. A Multidiscip. J. 2017, 24, 230–245. [Google Scholar] [CrossRef] [PubMed]
- Lush, J.L.; Shrode, R.R. Changes in Milk Production with Age and Milking Frequency. J. Dairy Sci. 1950, 33, 338–357. [Google Scholar] [CrossRef]
- Kitano, N.; Nomura, K.; Kido, M.; Murakami, K.; Ohkubo, T.; Ueno, M.; Sugimoto, M. Combined effects of maternal age and parity on successful initiation of exclusive breastfeeding. Prev. Med. Rep. 2016, 3, 121–126. [Google Scholar] [CrossRef]
- Colombo, L.; Crippa, B.L.; Consonni, D.; Bettinelli, M.E.; Agosti, V.; Mangino, G.; Bezze, E.N.; Mauri, P.A.; Zanotta, L.; Roggero, P.; et al. Breastfeeding Determinants in Healthy Term Newborns. Nutrients 2018, 10, 48. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, Y.; Wang, W.; Wang, F.; Jiang, H.; Wang, L. Factors associated with exclusive breastfeeding during postpartum in Lanzhou city, China: A cross-sectional study. Front. Public Health 2023, 11, 1089764. [Google Scholar] [CrossRef] [PubMed]
- Kent, J.C.; Mitoulas, L.R.; Cregan, M.D.; Ramsay, D.T.; Doherty, D.A.; Hartmann, P.E. Volume and frequency of breastfeedings and fat content of breast milk throughout the day. Pediatrics 2006, 117, e387–e395. [Google Scholar] [CrossRef]
- Nommsen-Rivers, L.A.; Wagner, E.A.; Roznowski, D.M.; Riddle, S.W.; Ward, L.P.; Thompson, A. Measures of maternal metabolic health as predictors of severely low milk production. Breastfeed. Med. 2022, 17, 566–576. [Google Scholar] [CrossRef]
- St-Onge, M.-P.; Gallagher, D. Body composition changes with aging: The cause or the result of alterations in metabolic rate and macronutrient oxidation? Nutrition 2010, 26, 152–155. [Google Scholar] [CrossRef]
- Basu, R.; Breda, E.; Oberg, A.L.; Powell, C.C.; Dalla Man, C.; Basu, A.; Vittone, J.L.; Klee, G.G.; Arora, P.; Jensen, M.D. Mechanisms of the age-associated deterioration in glucose tolerance: Contribution of alterations in insulin secretion, action, and clearance. Diabetes 2003, 52, 1738–1748. [Google Scholar] [CrossRef]
- Nommsen-Rivers, L.A. Does insulin explain the relation between maternal obesity and poor lactation outcomes? An overview of the literature. Adv. Nutr. 2016, 7, 407–414. [Google Scholar] [CrossRef]
- Luke, B.; Brown, M.B. Elevated risks of pregnancy complications and adverse outcomes with increasing maternal age. Hum. Reprod. 2007, 22, 1264–1272. [Google Scholar] [CrossRef]
- Farah, E.; Barger, M.K.; Klima, C.; Rossman, B.; Hershberger, P. Impaired lactation: Review of delayed lactogenesis and insufficient lactation. J. Midwifery Women’s Health 2021, 66, 631–640. [Google Scholar] [CrossRef]
- Perrella, S.L.; Abelha, S.G.; Vlaskovsky, P.; McEachran, J.L.; Prosser, S.A.; Geddes, D.T. Australian Women’s Experiences of Establishing Breastfeeding after Caesarean Birth. Int. J. Environ. Res. Public Health 2024, 21, 296. [Google Scholar] [CrossRef]
- Li, L.; Wan, W.; Zhu, C. Breastfeeding after a cesarean section: A literature review. Midwifery 2021, 103, 103117. [Google Scholar] [CrossRef]
- Mallick, L.M.; Shenassa, E.D. Variation in Breastfeeding Initiation and Duration by Mode of Childbirth: A Prospective, Population-Based Study. Breastfeed. Med. 2024, 19, 262–274. [Google Scholar] [CrossRef]
- Wen, J.; Yu, G.; Kong, Y.; Wei, H.; Zhao, S.; Liu, F. Effects of a theory of planned behavior-based intervention on breastfeeding behaviors after cesarean section: A randomized controlled trial. Int. J. Nurs. Sci. 2021, 8, 152–160. [Google Scholar] [CrossRef]
- Sarki, M.; Parlesak, A.; Robertson, A. Comparison of national cross-sectional breast-feeding surveys by maternal education in Europe (2006–2016). Public Health Nutr. 2019, 22, 848–861. [Google Scholar] [CrossRef]
- Medina-Poeliniz, C.; Hoban, R.; Signorile, M.; Janes, J.; Fan, S.; Meier, P.P. Early Pumping Behaviors Predict Pumped Milk Volume, Achievement of Secretory Activation and Coming to Volume in Breast Pump-Dependent Mothers of Preterm Infants. Preprint 2024. [Google Scholar] [CrossRef]
- Walker, R.E.; Harvatine, K.J.; Ross, A.C.; Wagner, E.A.; Riddle, S.W.; Gernand, A.D.; Nommsen-Rivers, L.A. Fatty Acid Transfer from Blood to Milk Is Disrupted in Mothers with Low Milk Production, Obesity, and Inflammation. J. Nutr. 2022, 152, 2716–2726. [Google Scholar] [CrossRef]
- Kamikawa, A.; Ichii, O.; Yamaji, D.; Imao, T.; Suzuki, C.; Okamatsu-Ogura, Y.; Terao, A.; Kon, Y.; Kimura, K. Diet-induced obesity disrupts ductal development in the mammary glands of nonpregnant mice. Dev. Dyn. 2009, 238, 1092–1099. [Google Scholar] [CrossRef]
- Rassie, K.; Mousa, A.; Joham, A.; Teede, H.J. Metabolic conditions including obesity, diabetes, and polycystic ovary syndrome: Implications for breastfeeding and breastmilk composition. In Seminars in Reproductive Medicine; Thieme Medical Publishers, Inc.: New York, NY, USA, 2021. [Google Scholar]
- Suwaydi, M.A.; Wlodek, M.E.; Lai, C.T.; Prosser, S.A.; Geddes, D.T.; Perrella, S.L. Delayed secretory activation and low milk production in women with gestational diabetes: A case series. BMC Pregnancy Childbirth 2022, 22, 350. [Google Scholar] [CrossRef]
- Lemay, D.G.; Ballard, O.A.; Hughes, M.A.; Morrow, A.L.; Horseman, N.D.; Nommsen-Rivers, L.A. RNA sequencing of the human milk fat layer transcriptome reveals distinct gene expression profiles at three stages of lactation. PLoS ONE 2013, 8, e67531. [Google Scholar] [CrossRef]
- Watt, A.P.; Lefevre, C.; Wong, C.S.; Nicholas, K.R.; Sharp, J.A. Insulin regulates human mammosphere development and function. Cell Tissue Res. 2021, 384, 333–352. [Google Scholar] [CrossRef]
- Neville, M.C.; Webb, P.; Ramanathan, P.; Mannino, M.P.; Pecorini, C.; Monks, J.; Anderson, S.M.; MacLean, P. The insulin receptor plays an important role in secretory differentiation in the mammary gland. Am. J. Physiol.-Endocrinol. Metab. 2013, 305, E1103–E1114. [Google Scholar] [CrossRef]
- Luzardo-Ocampo, I.; Dena-Beltrán, J.L.; Ruiz-Herrera, X.; Ocampo-Ruiz, A.L.; Martínez de la Escalera, G.; Clapp, C.; Macotela, Y. Obesity-derived alterations in the lactating mammary gland: Focus on prolactin. Mol. Cell. Endocrinol. 2023, 559, 111810. [Google Scholar] [CrossRef]
- Rasmussen, K.M.; Kjolhede, C.L. Prepregnant overweight and obesity diminish the prolactin response to suckling in the first week postpartum. Pediatrics 2004, 113, e465–e471. [Google Scholar] [CrossRef]
- Hauff, L.E.; Demerath, E.W. Body image concerns and reduced breastfeeding duration in primiparous overweight and obese women. Am. J. Hum. Biol. 2012, 24, 339–349. [Google Scholar] [CrossRef]
- Swanson, V.; Keely, A.; Denison, F.C. Does body image influence the relationship between body weight and breastfeeding maintenance in new mothers? Br. J. Health Psychol. 2017, 22, 557–576. [Google Scholar] [CrossRef]
- Brown, A.; Rance, J.; Warren, L. Body image concerns during pregnancy are associated with a shorter breast feeding duration. Midwifery 2015, 31, 80–89. [Google Scholar] [CrossRef]
- Jarlenski, M.; McManus, J.; Diener-West, M.; Schwarz, E.B.; Yeung, E.; Bennett, W.L. Association between support from a health professional and breastfeeding knowledge and practices among obese women: Evidence from the Infant Practices Study II. Women’s Health Issues 2014, 24, 641–648. [Google Scholar] [CrossRef]
- Massov, L. Clinically overweight and obese mothers and low rates of breastfeeding: Exploring women’s perspectives. New Zealand Coll. Midwives J. 2015, 51, 23–29. [Google Scholar] [CrossRef]
- Katz, K.A.; Nilsson, I.; Rasmussen, K.M. Danish health care providers’ perception of breastfeeding difficulty experienced by women who are obese, have large breasts, or both. J. Hum. Lact. 2010, 26, 138–147. [Google Scholar] [CrossRef]
- Russo, J.; Russo, I.H. Development of the human breast. Maturitas 2004, 49, 2–15. [Google Scholar] [CrossRef]
- Feng, Y.; Manka, D.; Wagner, K.-U.; Khan, S.A. Estrogen receptor-α expression in the mammary epithelium is required for ductal and alveolar morphogenesis in mice. Proc. Natl. Acad. Sci. USA 2007, 104, 14718–14723. [Google Scholar] [CrossRef]
- Beleut, M.; Rajaram, R.D.; Caikovski, M.; Ayyanan, A.; Germano, D.; Choi, Y.; Schneider, P.; Brisken, C. Two distinct mechanisms underlie progesterone-induced proliferation in the mammary gland. Proc. Natl. Acad. Sci. USA 2010, 107, 2989–2994. [Google Scholar] [CrossRef]
- Lain, A.R.; Creighton, C.J.; Conneely, O.M. Research resource: Progesterone receptor targetome underlying mammary gland branching morphogenesis. Mol. Endocrinol. 2013, 27, 1743–1761. [Google Scholar] [CrossRef]
- Tong, J.; Zhang, H.; Wu, Y.; Wang, Y.; Li, Q.; Liu, Y. Oestrogens and prolactin regulate mammary gland epithelial cell growth by modulation of the Wnt signal pathway. Slov. Vet. Res. 2016, 53, 141. [Google Scholar]
- Gridneva, Z.; Rea, A.; Weight, D.; McEachran, J.L.; Lai, C.T.; Perrella, S.L.; Geddes, D.T. Maternal Factors and Breast Anatomy and Milk Production during Established Lactation. Proceedings 2023, 93, 11. [Google Scholar] [CrossRef]
- Cox, D.B.; Kent, J.C.; Casey, T.M.; Owens, R.A.; Hartmann, P.E. Breast growth and the urinary excretion of lactose during human pregnancy and early lactation: Endocrine relationships. Exp. Physiol. 1999, 84, 421–434. [Google Scholar] [CrossRef] [PubMed]
- Thorley, V. Breast hypoplasia and breastfeeding: A case history. Breastfeed. Rev. 2005, 13, 13–16. [Google Scholar]
- Arbour, M.W.; Kessler, J.L. Mammary hypoplasia: Not every breast can produce sufficient milk. J. Midwifery Women’s Health 2013, 58, 457–461. [Google Scholar] [CrossRef]
- Alipour, S. Physical Breast Examination in Pregnancy and Lactation. In Diseases of the Breast during Pregnancy and Lactation; Springer: Cham, Switzerland, 2020; pp. 9–16. [Google Scholar]
- Abramson, L.; Massaro, L.; Alberty-Oller, J.J.; Melsaether, A. Breast Imaging During Pregnancy and Lactation. J. Breast Imaging 2019, 1, 342–351. [Google Scholar] [CrossRef]
- Scanlon, K.S.; Alexander, M.P.; Serdula, M.K.; Davis, M.K.; Bowman, B.A. Assessment of infant feeding: The validity of measuring milk intake. Nutr. Rev. 2002, 60, 235–251. [Google Scholar] [CrossRef]
- Ng, C.D. Biases in self-reported height and weight measurements and their effects on modeling health outcomes. SSM Popul. Health 2019, 7, 100405. [Google Scholar] [CrossRef]
- Greenbaum, A.R.; Heslop, T.; Morris, J.; Dunn, K.W. An investigation of the suitability of bra fit in women referred for reduction mammaplasty. Br. J. Plast. Surg. 2003, 56, 230–236. [Google Scholar] [CrossRef] [PubMed]
Breast Volume of One Breast (cm3) | Australian Bra Size | US Bra Size |
---|---|---|
180 | 8A, 10AA | 30A, 32AA |
240 | 8B, 10A, 12AA | 30B, 32A, 34AA |
310 | 8C, 10B, 12A | 30C, 32B, 34A |
390 | 8D, 10C, 12B, 14A | 30D, 32C, 34B, 36A |
480 | 8DD/E, 10D, 12C, 14B, 16A | 30E, 32D, 34C, 36B, 38A |
590 | 8F, 10DD/E, 12D, 14C, 16B, 18A | 30F, 32E, 34D, 36C, 38B, 40A |
710 | 10F, 12DD/E, 14D, 16C, 18B | 32F, 34E, 36D, 38C, 40B |
850 | 10G, 12F, 14DD/E, 16D, 18C, 20B | 32G, 34F, 36E, 38D, 40C, 42B |
1000 | 10H, 12G, 14F, 16DD/E, 18D, 20C | 32H, 34G, 36F, 38E, 40D, 42C |
1180 | 12H, 14G, 16F, 18DD/E, 20D | 34H, 36G, 38F, 40E, 42D |
1370 | 12I, 14H, 16G, 18F, 20DD/E | 34I, 36H, 38G, 40F, 42E |
1580 | 14I, 16H, 18G, 20F, 22DD/E | 36I, 38H, 40G, 42F, 44E |
1810 | 14J, 16I, 18H, 20G, 22F | 36J, 38I, 40H, 42G, 44F |
2060 | 16J, 18I, 20H, 22G | 38J, 40I, 42H, 44G |
Characteristics | Mean ± SD (Range, n) or Number (%) |
---|---|
Birth gestation (weeks) | 39.0 ± 1.1 (37–43, 609) |
Infant age at MP measurement (months) | 2.9 ± 1.2 (1–6, 609) |
MP (mL/24 h) | 718 ± 237 (48–1682, 609) |
Milk removal frequency (times/24 h) | 13.4 ± 4.9 (2–40, 609) |
Breastfeeding frequency (times/24 h) | 11.1 ± 4.6 (0–32, 609) |
Milk expression frequency (times/24 h) | 2.3 ± 3.8 (0–20, 609) |
Maternal age (years) | 33.3 ± 4.4 (20.6–48.2, 605) |
Maternal BMI (kg/m2) | 27.1 ± 5.6 (16.9–64.5, 487) |
Pre-pregnancy BV (cm3) | 554 ± 244 (180–2060, 609) |
Postpartum BV (cm3) | 745 ± 274 (240–2060, 609) |
ΔBV (cm3) | 192 ± 136 (−230–730, 609) |
Parity: primiparous | 373 (61.3%) |
Birth mode: vaginal | 380 (63.8%) |
Infant sex: male | 312 (51.4%) |
Infant birth weight (g) | 3443 ± 449 (2510–5045, 598) |
Characteristics | Univariable Analysis | Multivariable Analysis | ||||
---|---|---|---|---|---|---|
Coefficient | 95% CI | p-Value † | Coefficient | 95% CI | p-Value † | |
Maternal age (years) | −6.977 | −11.221, −2.734 | 0.001 | −7.770 | −12.519, −3.020 | 0.001 |
Maternal BMI (kg/m2) | −5.321 | −9.042, −1.601 | 0.005 | −8.416 | −13.613, −3.218 | 0.002 |
Pre-pregnancy BV (cm3) | −0.064 | −0.141, 0.014 | 0.107 | 0.100 | −0.015, 0.216 | 0.088 |
Postpartum BV (cm3) | −0.022 | −0.091, 0.047 | 0.531 | - | - | - |
ΔBV (cm3) | 0.115 | −0.023, 0.253 | 0.104 | 0.168 | 0.019, 0.316 | 0.027 |
Breastfeeding frequency (times/24 h) | −1.702 | −5.827, 2.423 | 0.418 | - | - | - |
Milk expression frequency (times/24 h) | 5.508 | 0.525, 10.490 | 0.030 | - | - | - |
Milk removal frequency (times/24 h) | 1.803 | −2.067, 5.673 | 0.361 | - | - | - |
Infant birth weight (g) | 0.014 | −0.027, 0.056 | 0.497 | - | - | - |
Infant sex (Female vs. Male) | −50.490 | −88.066, −12.918 | 0.009 | −35.067 | −76.048, 5.914 | 0.093 |
Birth mode (Vaginal vs. C-section) | −22.420 | −61.645, 16.801 | 0.262 | −45.108 | −88.499, −1.717 | 0.042 |
Parity (Primiparous vs. Multiparous) | 19.960 | −18.788, 58.703 | 0.312 | - | - | - |
Characteristics | Univariable Analysis | Multivariable Analysis | ||||
---|---|---|---|---|---|---|
OR | 95% CI | p-Value † | OR | 95% CI | p-Value † | |
Maternal age (years) | 1.054 | 1.013, 1.097 | 0.010 | 1.056 | 1.007, 1.107 | 0.024 |
Maternal BMI (kg/m2) | 1.073 | 1.035, 1.111 | <0.001 | 1.117 | 1.060, 1.177 | <0.001 |
Pre-pregnancy BV (cm3) | 1.001 | 1.000, 1.001 | 0.145 | 0.999 | 0.997, 1.000 | 0.014 |
Postpartum BV (cm3) | 1.000 | 1.000, 1.001 | 0.733 | - | - | - |
ΔBV (cm3) | 0.999 | 0.997, 1.000 | 0.054 | 0.998 | 0.997, 1.000 | 0.036 |
Breastfeeding frequency (times/24 h) | 0.955 | 0.918, 0.994 | 0.023 | 0.958 | 0.917, 1.001 | 0.058 |
Milk expression frequency (times/24 h) | 1.042 | 0.995, 1.088 | 0.081 | - | - | - |
Milk removal frequency (times/24 h) | 0.985 | 0.949, 1.023 | 0.435 | - | - | - |
Infant birth weight (g) | 1.000 | 1.000, 1.000 | 0.975 | - | - | - |
Infant sex (Female vs. male) | 1.063 | 0.745, 1.516 | 0.735 | - | - | - |
Birth mode (Vaginal vs. C-section) | 0.895 | 0.619, 1.294 | 0.555 | - | - | - |
Parity (Primiparous vs. Multiparous) | 0.682 | 0.476, 0.976 | 0.037 | 0.731 | 0.479, 1.117 | 0.147 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, X.; Lai, C.T.; Perrella, S.L.; McEachran, J.L.; Gridneva, Z.; Geddes, D.T. Maternal Breast Growth and Body Mass Index Are Associated with Low Milk Production in Women. Nutrients 2024, 16, 2854. https://doi.org/10.3390/nu16172854
Jin X, Lai CT, Perrella SL, McEachran JL, Gridneva Z, Geddes DT. Maternal Breast Growth and Body Mass Index Are Associated with Low Milk Production in Women. Nutrients. 2024; 16(17):2854. https://doi.org/10.3390/nu16172854
Chicago/Turabian StyleJin, Xuehua, Ching Tat Lai, Sharon L. Perrella, Jacki L. McEachran, Zoya Gridneva, and Donna T. Geddes. 2024. "Maternal Breast Growth and Body Mass Index Are Associated with Low Milk Production in Women" Nutrients 16, no. 17: 2854. https://doi.org/10.3390/nu16172854
APA StyleJin, X., Lai, C. T., Perrella, S. L., McEachran, J. L., Gridneva, Z., & Geddes, D. T. (2024). Maternal Breast Growth and Body Mass Index Are Associated with Low Milk Production in Women. Nutrients, 16(17), 2854. https://doi.org/10.3390/nu16172854