The Association between Dietary Inflammatory Patterns and the Incidence of Frailty and Its Reversal in Older Adults: A Community-Based Longitudinal Follow-Up Study in Taiwan
Abstract
:1. Introduction
2. Material and Methods
2.1. The Healthy Aging Longitudinal Study in Taiwan (HALST)
2.2. Description of the Dietary Assessment in the HALST
2.2.1. Description of the EDIP-HALST Score
2.2.2. Description of Energy-Adjusted DII
2.3. Assessment of Physical Performance
2.4. Definition of Physical Frailty
2.5. Ascertainment of Vital Status
2.6. Measurement of Covariates
2.7. Statistical Analysis
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Fougere, B.; Delrieu, J.; Del Campo, N.; Soriano, G.; Sourdet, S.; Vellas, B. Cognitive Frailty: Mechanisms, Tools to Measure, Prevention and Controversy. Clin. Geriatr. Med. 2017, 33, 339–355. [Google Scholar] [CrossRef] [PubMed]
- Fried, L.P.; Ferrucci, L.; Darer, J.; Williamson, J.D.; Anderson, G. Untangling the concepts of disability, frailty, and comorbidity: Implications for improved targeting and care. J. Gerontol. A Biol. Sci. Med. Sci. 2004, 59, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Li, W.; Wang, Y.; Dong, Y.; Greenwood, D.C.; Hardie, L.J.; Cade, J.E. Mediterranean diet associated with lower frailty risk: A large cohort study of 21,643 women admitted to hospitals. J. Nutr. Health Aging 2024, 28, 100001. [Google Scholar] [CrossRef]
- Hanbali, S.; Avgerinou, C. Association between adherence to the Nordic diet and frailty in older adults: A systematic review of observational studies. Maturitas 2024, 182, 107923. [Google Scholar] [CrossRef] [PubMed]
- Maroto-Rodriguez, J.; Delgado-Velandia, M.; Ortola, R.; Carballo-Casla, A.; Garcia-Esquinas, E.; Rodriguez-Artalejo, F.; Sotos-Prieto, M. Plant-based diets and risk of frailty in community-dwelling older adults: The Seniors-ENRICA-1 cohort. Geroscience 2023, 45, 221–232. [Google Scholar] [CrossRef]
- Luong, R.; Ribeiro, R.; Naganathan, V.; Blyth, F.; Waite, L.M.; Handelsman, D.J.; Le Couteur, D.G.; Seibel, M.J.; Hirani, V. Cross-sectional and longitudinal associations between empirically derived dietary patterns and frailty among older men: The Concord Health and Ageing in Men Project. J. Nutr. Health Aging 2024, 28, 100021. [Google Scholar] [CrossRef]
- Lo, Y.L.; Hsieh, Y.T.; Hsu, L.L.; Chuang, S.Y.; Chang, H.Y.; Hsu, C.C.; Chen, C.Y.; Pan, W.H. Dietary Pattern Associated with Frailty: Results from Nutrition and Health Survey in Taiwan. J. Am. Geriatr. Soc. 2017, 65, 2009–2015. [Google Scholar] [CrossRef]
- De Nucci, S.; Zupo, R.; Donghia, R.; Castellana, F.; Lofu, D.; Aresta, S.; Guerra, V.; Bortone, I.; Lampignano, L.; De Pergola, G.; et al. Dietary profiling of physical frailty in older age phenotypes using a machine learning approach: The Salus in Apulia Study. Eur. J. Nutr. 2023, 62, 1217–1229. [Google Scholar] [CrossRef]
- Bektas, A.; Schurman, S.H.; Sen, R.; Ferrucci, L. Aging, inflammation and the environment. Exp. Gerontol. 2018, 105, 10–18. [Google Scholar] [CrossRef]
- Soysal, P.; Stubbs, B.; Lucato, P.; Luchini, C.; Solmi, M.; Peluso, R.; Sergi, G.; Isik, A.T.; Manzato, E.; Maggi, S.; et al. Inflammation and frailty in the elderly: A systematic review and meta-analysis. Ageing Res. Rev. 2016, 31, 1–8. [Google Scholar] [CrossRef]
- Perez-Baos, S.; Prieto-Potin, I.; Roman-Blas, J.A.; Sanchez-Pernaute, O.; Largo, R.; Herrero-Beaumont, G. Mediators and Patterns of Muscle Loss in Chronic Systemic Inflammation. Front. Physiol. 2018, 9, 409. [Google Scholar] [CrossRef]
- Lopez-Otin, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. The hallmarks of aging. Cell 2013, 153, 1194–1217. [Google Scholar] [CrossRef]
- Franceschi, C.; Garagnani, P.; Parini, P.; Giuliani, C.; Santoro, A. Inflammaging: A new immune-metabolic viewpoint for age-related diseases. Nat. Rev. Endocrinol. 2018, 14, 576–590. [Google Scholar] [CrossRef]
- Bahr, L.S.; Franz, K.; Mahler, A. Assessing the (anti)-inflammatory potential of diets. Curr. Opin. Clin. Nutr. Metab. Care 2021, 24, 402–410. [Google Scholar] [CrossRef] [PubMed]
- Shivappa, N.; Steck, S.E.; Hurley, T.G.; Hussey, J.R.; Hebert, J.R. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014, 17, 1689–1696. [Google Scholar] [CrossRef]
- Tabung, F.K.; Smith-Warner, S.A.; Chavarro, J.E.; Wu, K.; Fuchs, C.S.; Hu, F.B.; Chan, A.T.; Willett, W.C.; Giovannucci, E.L. Development and Validation of an Empirical Dietary Inflammatory Index. J. Nutr. 2016, 146, 1560–1570. [Google Scholar] [CrossRef] [PubMed]
- Cervo, M.M.; Shivappa, N.; Hebert, J.R.; Oddy, W.H.; Winzenberg, T.; Balogun, S.; Wu, F.; Ebeling, P.; Aitken, D.; Jones, G.; et al. Longitudinal associations between dietary inflammatory index and musculoskeletal health in community-dwelling older adults. Clin. Nutr. 2020, 39, 516–523. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, A.; Soltani, S.; Hashemi, R.; Heshmat, R.; Motlagh, A.D.; Esmaillzadeh, A. Inflammatory potential of the diet and risk of sarcopenia and its components. Nutr. J. 2020, 19, 129. [Google Scholar] [CrossRef]
- Son, B.K.; Akishita, M.; Yamanaka, T.; Toyoshima, K.; Tanaka, T.; Suthutvoravut, U.; Iijima, K. Association between inflammatory potential of the diet and sarcopenia/its components in community-dwelling older Japanese men. Arch. Gerontol. Geriatr. 2021, 97, 104481. [Google Scholar] [CrossRef]
- Laclaustra, M.; Rodriguez-Artalejo, F.; Guallar-Castillon, P.; Banegas, J.R.; Graciani, A.; Garcia-Esquinas, E.; Lopez-Garcia, E. The inflammatory potential of diet is related to incident frailty and slow walking in older adults. Clin. Nutr. 2020, 39, 185–191. [Google Scholar] [CrossRef]
- Millar, C.L.; Dufour, A.B.; Shivappa, N.; Habtemariam, D.; Murabito, J.M.; Benjamin, E.J.; Hebert, J.R.; Kiel, D.P.; Hannan, M.T.; Sahni, S. A proinflammatory diet is associated with increased odds of frailty after 12-year follow-up in a cohort of adults. Am. J. Clin. Nutr. 2022, 115, 334–343. [Google Scholar] [CrossRef] [PubMed]
- Shivappa, N.; Stubbs, B.; Hebert, J.R.; Cesari, M.; Schofield, P.; Soysal, P.; Maggi, S.; Veronese, N. The Relationship Between the Dietary Inflammatory Index and Incident Frailty: A Longitudinal Cohort Study. J. Am. Med. Dir. Assoc. 2018, 19, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Son, B.K.; Lyu, W.; Tanaka, T.; Yoshizawa, Y.; Akishita, M.; Iijima, K. Impact of the anti-inflammatory diet on serum high-sensitivity C-Reactive protein and new-onset frailty in community-dwelling older adults: A 7-year follow-up of the Kashiwa cohort study. Geriatr. Gerontol. Int. 2024, 24 (Suppl. S1), 189–195. [Google Scholar] [CrossRef] [PubMed]
- Vicente, B.M.; Lucio Dos Santos Quaresma, M.V.; Maria de Melo, C.; Lima Ribeiro, S.M. The dietary inflammatory index (DII(R)) and its association with cognition, frailty, and risk of disabilities in older adults: A systematic review. Clin. Nutr. ESPEN 2020, 40, 7–16. [Google Scholar] [CrossRef]
- Norde, M.M.; Tabung, F.K.; Giovannucci, E.L.; Fisberg, R.M.; Rogero, M.M. Validation and adaptation of the empirical dietary inflammatory pattern across nations: A test case. Nutrition 2020, 79–80, 110843. [Google Scholar] [CrossRef]
- Weikert, C.; Schulze, M.B. Evaluating dietary patterns: The role of reduced rank regression. Curr. Opin. Clin. Nutr. Metab. Care 2016, 19, 341–346. [Google Scholar] [CrossRef]
- Imamura, F.; Lichtenstein, A.H.; Dallal, G.E.; Meigs, J.B.; Jacques, P.F. Generalizability of dietary patterns associated with incidence of type 2 diabetes mellitus. Am. J. Clin. Nutr. 2009, 90, 1075–1083. [Google Scholar] [CrossRef] [PubMed]
- Chuang, S.C.; Wu, I.C.; Hsiung, C.A.; Chan, H.T.; Cheng, C.W.; Chen, H.L.; Chiu, Y.F.; Lee, M.M.; Chang, H.Y.; Hsu, C.C. Dietary Inflammatory Patterns Are Associated with Serum TGs and Insulin in Adults: A Community-Based Study in Taiwan. J. Nutr. 2023, 153, 1783–1792. [Google Scholar] [CrossRef]
- Chuang, S.C.; Vermeulen, R.; Sharabiani, M.T.; Sacerdote, C.; Fatemeh, S.H.; Berrino, F.; Krogh, V.; Palli, D.; Panico, S.; Tumino, R.; et al. The intake of grain fibers modulates cytokine levels in blood. Biomarkers 2011, 16, 504–510. [Google Scholar] [CrossRef]
- Hsu, C.C.; Chang, H.Y.; Wu, I.C.; Chen, C.C.; Tsai, H.J.; Chiu, Y.F.; Chuang, S.C.; Hsiung, W.C.; Tsai, T.L.; Liaw, W.J.; et al. Cohort Profile: The Healthy Aging Longitudinal Study in Taiwan (HALST). Int. J. Epidemiol. 2017, 46, 1106–1106j. [Google Scholar] [CrossRef]
- Lee, M.M.; Lee, F.; Ladenla, S.W.; Miike, R. A semiquantitative dietary history questionnaire for Chinese Americans. Ann. Epidemiol. 1994, 4, 188–197. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.M.; Chang, I.Y.; Horng, C.F.; Chang, J.S.; Cheng, S.H.; Huang, A. Breast cancer and dietary factors in Taiwanese women. Cancer Causes Control 2005, 16, 929–937. [Google Scholar] [CrossRef]
- Ge, I.; Rudolph, A.; Shivappa, N.; Flesch-Janys, D.; Hebert, J.R.; Chang-Claude, J. Dietary inflammation potential and postmenopausal breast cancer risk in a German case-control study. Breast 2015, 24, 491–496. [Google Scholar] [CrossRef] [PubMed]
- Guralnik, J.M.; Ferrucci, L.; Simonsick, E.M.; Salive, M.E.; Wallace, R.B. Lower-extremity function in persons over the age of 70 years as a predictor of subsequent disability. N. Engl. J. Med. 1995, 332, 556–561. [Google Scholar] [CrossRef] [PubMed]
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Frailty in older adults: Evidence for a phenotype. J. Gerontol. A Biol. Sci. Med. Sci. 2001, 56, M146–M156. [Google Scholar] [CrossRef]
- Ain, Q.U.; Sarfraz, M.; Prasesti, G.K.; Dewi, T.I.; Kurniati, N.F. Confounders in Identification and Analysis of Inflammatory Biomarkers in Cardiovascular Diseases. Biomolecules 2021, 11, 1464. [Google Scholar] [CrossRef]
- Navarro, S.L.; Kantor, E.D.; Song, X.; Milne, G.L.; Lampe, J.W.; Kratz, M.; White, E. Factors Associated with Multiple Biomarkers of Systemic Inflammation. Cancer Epidemiol. Biomark. Prev. 2016, 25, 521–531. [Google Scholar] [CrossRef]
- Zou, G. A modified poisson regression approach to prospective studies with binary data. Am. J. Epidemiol. 2004, 159, 702–706. [Google Scholar] [CrossRef]
- Schaap, L.A.; Pluijm, S.M.; Deeg, D.J.; Harris, T.B.; Kritchevsky, S.B.; Newman, A.B.; Colbert, L.H.; Pahor, M.; Rubin, S.M.; Tylavsky, F.A.; et al. Higher inflammatory marker levels in older persons: Associations with 5-year change in muscle mass and muscle strength. J. Gerontol. A Biol. Sci. Med. Sci. 2009, 64, 1183–1189. [Google Scholar] [CrossRef]
- Schaap, L.A.; Pluijm, S.M.; Deeg, D.J.; Visser, M. Inflammatory markers and loss of muscle mass (sarcopenia) and strength. Am. J. Med. 2006, 119, 526.e529–517. [Google Scholar] [CrossRef]
- Tay, J.; Goss, A.M.; Locher, J.L.; Ard, J.D.; Gower, B.A. Physical Function and Strength in Relation to Inflammation in Older Adults with Obesity and Increased Cardiometabolic Risk. J. Nutr. Health Aging 2019, 23, 949–957. [Google Scholar] [CrossRef] [PubMed]
- Schrenk, D. Dietary fiber, low-molecular-weight food constituents and colo-rectal inflammation in animal models—A review. Mol. Nutr. Food Res. 2009, 53, 1281–1288. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.E.; Tucker, K.L. Health benefits of cereal fibre: A review of clinical trials. Nutr. Res. Rev. 2011, 24, 118–131. [Google Scholar] [CrossRef]
- Zheng, J.; Hoffman, K.L.; Chen, J.S.; Shivappa, N.; Sood, A.; Browman, G.J.; Dirba, D.D.; Hanash, S.; Wei, P.; Hebert, J.R.; et al. Dietary inflammatory potential in relation to the gut microbiome: Results from a cross-sectional study. Br. J. Nutr. 2020, 124, 931–942. [Google Scholar] [CrossRef]
- Ruiz-Saavedra, S.; Salazar, N.; Suarez, A.; de Los Reyes-Gavilan, C.G.; Gueimonde, M.; Gonzalez, S. Comparison of Different Dietary Indices as Predictors of Inflammation, Oxidative Stress and Intestinal Microbiota in Middle-Aged and Elderly Subjects. Nutrients 2020, 12, 3828. [Google Scholar] [CrossRef]
- Cervo, M.M.C.; Scott, D.; Seibel, M.J.; Cumming, R.G.; Naganathan, V.; Blyth, F.M.; Le Couteur, D.G.; Handelsman, D.J.; Ribeiro, R.V.; Waite, L.M.; et al. Proinflammatory Diet Increases Circulating Inflammatory Biomarkers and Falls Risk in Community-Dwelling Older Men. J. Nutr. 2020, 150, 373–381. [Google Scholar] [CrossRef] [PubMed]
- Gojanovic, M.; Holloway-Kew, K.L.; Hyde, N.K.; Mohebbi, M.; Shivappa, N.; Hebert, J.R.; O’Neil, A.; Pasco, J.A. The Dietary Inflammatory Index Is Associated with Low Muscle Mass and Low Muscle Function in Older Australians. Nutrients 2021, 13, 1166. [Google Scholar] [CrossRef]
- Orchard, T.; Yildiz, V.; Steck, S.E.; Hebert, J.R.; Ma, Y.; Cauley, J.A.; Li, W.; Mossavar-Rahmani, Y.; Johnson, K.C.; Sattari, M.; et al. Dietary Inflammatory Index, Bone Mineral Density, and Risk of Fracture in Postmenopausal Women: Results from the Women’s Health Initiative. J. Bone Miner. Res. 2017, 32, 1136–1146. [Google Scholar] [CrossRef]
- Moradi, S.; Hadi, A.; Mohammadi, H.; Asbaghi, O.; Zobeiri, M.; Marx, W.; Entezari, M.H. Dietary Inflammatory Index and the Risk of Frailty Among Older Adults: A Systematic Review and Meta-Analysis. Res. Aging 2021, 43, 323–331. [Google Scholar] [CrossRef]
- Smith, L.; Yang, L.; Hamer, M. Handgrip strength, inflammatory markers, and mortality. Scand. J. Med. Sci. Sports 2019, 29, 1190–1196. [Google Scholar] [CrossRef]
- Dupont, J.; Vercauteren, L.; Amini, N.; Lapauw, L.; De Schaepdryver, M.; Poesen, K.; Dedeyne, L.; Verschueren, S.; Tournoy, J.; Koppo, K.; et al. Are inflammatory markers associated with sarcopenia-related traits in older adults with sarcopenia?—A cross-sectional analysis of the ENHANce study. Exp. Gerontol. 2023, 178, 112196. [Google Scholar] [CrossRef] [PubMed]
- Marzetti, E.; Picca, A.; Marini, F.; Biancolillo, A.; Coelho-Junior, H.J.; Gervasoni, J.; Bossola, M.; Cesari, M.; Onder, G.; Landi, F.; et al. Inflammatory signatures in older persons with physical frailty and sarcopenia: The frailty “cytokinome” at its core. Exp. Gerontol. 2019, 122, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Carson, J.A.; Manolagas, S.C. Effects of sex steroids on bones and muscles: Similarities, parallels, and putative interactions in health and disease. Bone 2015, 80, 67–78. [Google Scholar] [CrossRef] [PubMed]
- Tabung, F.K.; Giovannucci, E.L.; Giulianini, F.; Liang, L.; Chandler, P.D.; Balasubramanian, R.; Manson, J.E.; Cespedes Feliciano, E.M.; Hayden, K.M.; Van Horn, L.; et al. An Empirical Dietary Inflammatory Pattern Score Is Associated with Circulating Inflammatory Biomarkers in a Multi-Ethnic Population of Postmenopausal Women in the United States. J. Nutr. 2018, 148, 771–780. [Google Scholar] [CrossRef]
- Tabung, F.K.; Smith-Warner, S.A.; Chavarro, J.E.; Fung, T.T.; Hu, F.B.; Willett, W.C.; Giovannucci, E.L. An Empirical Dietary Inflammatory Pattern Score Enhances Prediction of Circulating Inflammatory Biomarkers in Adults. J. Nutr. 2017, 147, 1567–1577. [Google Scholar] [CrossRef]
- Coelho-Junior, H.J.; Marzetti, E.; Picca, A.; Cesari, M.; Uchida, M.C.; Calvani, R. Protein Intake and Frailty: A Matter of Quantity, Quality, and Timing. Nutrients 2020, 12, 2915. [Google Scholar] [CrossRef]
- Kipnis, V.; Midthune, D.; Freedman, L.; Bingham, S.; Day, N.E.; Riboli, E.; Ferrari, P.; Carroll, R.J. Bias in dietary-report instruments and its implications for nutritional epidemiology. Public Health Nutr. 2002, 5, 915–923. [Google Scholar] [CrossRef]
- McNeill, G.; Winter, J.; Jia, X. Diet and cognitive function in later life: A challenge for nutrition epidemiology. Eur. J. Clin. Nutr. 2009, 63 (Suppl. S1), S33–S37. [Google Scholar] [CrossRef]
- Tabung, F.K.; Steck, S.E.; Liese, A.D.; Zhang, J.; Ma, Y.; Caan, B.; Chlebowski, R.T.; Freudenheim, J.L.; Hou, L.; Mossavar-Rahmani, Y.; et al. Association between dietary inflammatory potential and breast cancer incidence and death: Results from the Women’s Health Initiative. Br. J. Cancer 2016, 114, 1277–1285. [Google Scholar] [CrossRef]
- Shivappa, N.; Steck, S.E.; Hurley, T.G.; Hussey, J.R.; Ma, Y.; Ockene, I.S.; Tabung, F.; Hebert, J.R. A population-based dietary inflammatory index predicts levels of C-reactive protein in the Seasonal Variation of Blood Cholesterol Study (SEASONS). Public Health Nutr. 2014, 17, 1825–1833. [Google Scholar] [CrossRef]
Men | Women | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T1 | T2 | T3 | T1 | T2 | T3 | |||||||||
Mean | SD | Mean | SD | Mean | SD | p | Mean | SD | Mean | SD | Mean | SD | p | |
Age | 67.65 | 7.66 | 70.51 | 8.50 | 71.79 | 8.76 | <0.01 | 68.17 | 7.86 | 69.49 | 7.94 | 70.42 | 3.06 | <0.01 |
Body mass index | 24.64 | 3.16 | 24.52 | 3.27 | 24.33 | 3.48 | 0.07 | 24.27 | 3.57 | 24.76 | 3.69 | 24.70 | 3.72 | <0.01 |
Abdominal circumference | 87.12 | 9.09 | 87.29 | 8.94 | 87.30 | 9.83 | 0.92 | 84.49 | 10.93 | 86.22 | 11.04 | 86.16 | 11.01 | <0.01 |
Energy intake | 2435.66 | 788.94 | 2150.27 | 717.54 | 2427.47 | 870.59 | <0.01 | 1892.46 | 665.70 | 1673.67 | 602.84 | 1979.11 | 640.39 | <0.01 |
N | % | N | % | N | % | N | % | N | % | N | % | |||
Education levels | ||||||||||||||
Illiteracy | 15 | 1.7 | 32 | 3.7 | 41 | 4.7 | <0.01 | 68 | 6.9 | 181 | 18.4 | 275 | 27.9 | <0.01 |
Primary school | 276 | 31.6 | 381 | 43.6 | 385 | 44.0 | 414 | 42.2 | 516 | 52.3 | 508 | 51.5 | ||
More than primary school | 582 | 66.7 | 461 | 52.7 | 449 | 51.3 | 501 | 50.9 | 289 | 29.3 | 203 | 20.6 | ||
Missing | 1 | 1 | 0 | 2 | 0 | 0 | ||||||||
Smoking | ||||||||||||||
Never | 396 | 45.3 | 356 | 40.7 | 366 | 41.8 | 0.02 | 972 | 98.7 | 960 | 97.4 | 957 | 97.1 | 0.06 |
Former | 246 | 28.1 | 309 | 35.3 | 300 | 34.3 | 4 | 0.4 | 11 | 1.1 | 7 | 0.7 | ||
Current | 232 | 26.5 | 210 | 24.0 | 209 | 23.9 | 9 | 0.9 | 15 | 1.5 | 22 | 2.2 | ||
Physical activity in leisure time (sex-specific tertile) | ||||||||||||||
Low | 233 | 26.7 | 307 | 35.1 | 330 | 38.0 | <0.01 | 207 | 21.1 | 346 | 35.4 | 427 | 43.4 | <0.01 |
Median | 289 | 33.1 | 290 | 33.2 | 294 | 33.8 | 338 | 34.5 | 329 | 33.7 | 313 | 31.8 | ||
High | 350 | 40.1 | 277 | 31.7 | 245 | 28.2 | 435 | 44.4 | 302 | 30.9 | 243 | 24.7 | ||
Missing | 2 | 1 | 6 | 5 | 9 | 3 | ||||||||
Physical activity at work (sex-specific median) | ||||||||||||||
No | 670 | 76.7 | 633 | 72.5 | 653 | 74.6 | 0.08 | 802 | 81.4 | 729 | 74.5 | 687 | 70.1 | <0.01 |
Low | 116 | 13.3 | 123 | 14.1 | 104 | 11.9 | 115 | 11.7 | 126 | 12.9 | 145 | 14.8 | ||
High | 87 | 10.0 | 117 | 13.4 | 118 | 13.5 | 68 | 6.9 | 124 | 12.7 | 148 | 15.1 | ||
Missing | 1 | 2 | 0 | 0 | 7 | 6 | ||||||||
Number of chronic diseases | ||||||||||||||
0–2 | 397 | 45.4 | 396 | 45.3 | 371 | 42.4 | 0.02 | 380 | 38.6 | 383 | 38.8 | 366 | 37.1 | 0.19 |
3–5 | 381 | 43.6 | 369 | 42.2 | 361 | 41.3 | 446 | 45.3 | 435 | 44.1 | 482 | 48.9 | ||
≥6 | 96 | 11.0 | 110 | 12.6 | 143 | 16.3 | 159 | 16.1 | 168 | 17.0 | 138 | 14.0 | ||
Social network | ||||||||||||||
≥8 | 435 | 49.8 | 443 | 50.6 | 383 | 43.8 | 0.04 | 504 | 51.2 | 520 | 52.7 | 421 | 42.7 | <0.01 |
6–7 | 234 | 26.8 | 230 | 26.3 | 259 | 29.6 | 267 | 27.1 | 240 | 24.3 | 319 | 32.4 | ||
0–5 | 205 | 23.5 | 202 | 23.1 | 233 | 26.6 | 214 | 21.7 | 226 | 22.9 | 246 | 24.9 | ||
CESD | ||||||||||||||
<16 | 853 | 97.6 | 836 | 95.7 | 834 | 95.4 | 0.03 | 935 | 94.9 | 913 | 92.6 | 896 | 90.9 | <0.01 |
≥16 | 21 | 2.4 | 38 | 4.3 | 40 | 4.6 | 50 | 5.1 | 73 | 7.4 | 90 | 9.1 | ||
Missing | 0 | 1 | 1 | 0 | 0 | 0 |
Men | Women | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
T1 | T2 | T3 | T1 | T2 | T3 | |||||||
RR | RR2 | 95% CI | RR 2 | 95% CI | p-trend 3 | RR | RR 2 | 95% CI | RR 2 | 95% CI | p-trend 3 | |
Grip strength < 20% (M = 1645/F = 1796) | ||||||||||||
DII | 1.00 | 0.96 | (0.74, 1.24) | 0.95 | (0.73, 1.23) | 0.61 | 1.00 | 1.59 | (1.19, 2.13) | 1.57 | (1.16, 2.13) | 0.06 |
EDIP-HALST | 1.00 | 1.04 | (0.80, 1.35) | 1.08 | (0.83, 1.40) | 0.48 | 1.00 | 1.58 | (1.20, 2.08) | 1.46 | (1.10, 1.96) | <0.01 |
Succeed in full tandem stands (M = 1717/F = 1824) | ||||||||||||
eDII | 1.00 | 1.05 | (0.82, 1.35) | 1.07 | (0.83, 1.39) | 0.66 | 1.00 | 1.12 | (0.92, 1.37) | 1.11 | (0.91, 1.36) | 0.64 |
EDIP-HALST | 1.00 | 1.05 | (0.82, 1.36) | 1.03 | (0.80, 1.34) | 1.00 | 1.00 | 1.03 | (0.85, 1.26) | 1.01 | (0.82, 1.23) | 0.75 |
Gait speed ≤ 0.6 m/s (M = 1723/F = 1824) | ||||||||||||
DII | 1.00 | 1.13 | (0.74, 1.71) | 1.36 | (0.92, 2.01) | 0.13 | 1.00 | 0.82 | (0.57, 1.18) | 0.99 | (0.71, 1.39) | 0.84 |
EDIP-HALST | 1.00 | 0.94 | (0.62, 1.45) | 1.45 | (0.98, 2.15) | 0.07 | 1.00 | 1.06 | (0.75, 1.49) | 0.85 | (0.60, 1.19) | 0.86 |
5-timed chair stands >13.6 s (M = 1674/F = 1721) | ||||||||||||
DII | 1.00 | 1.22 | (0.73, 2.06) | 1.31 | (0.77, 2.21) | 0.51 | 1.00 | 1.24 | (0.84, 1.84) | 1.31 | (0.90. 1.92) | 0.11 |
EDIP-HALST | 1.00 | 0.84 | (0.48, 1.45) | 1.70 | (1.03, 2.80) | 0.04 | 1.00 | 1.32 | (0.90, 1.93) | 1.23 | (0.83, 1.83) | 0.47 |
SPPB < 10 (M = 1615/F = 1626) | ||||||||||||
DII | 1.00 | 1.21 | (0.83, 1.75) | 1.21 | (0.84, 1.75) | 0.48 | 1.00 | 1.01 | (0.73, 1.39) | 1.24 | (0.94, 1.66) | 0.16 |
EDIP-HALST | 1.00 | 1.08 | (0.75, 1.56) | 1.47 | (1.03, 2.10) | 0.05 | 1.00 | 1.19 | (0.88, 1.59) | 1.03 | (0.76, 1.39) | 0.54 |
Frailty at Baseline | Robust | Pre-Frail | ||||||
---|---|---|---|---|---|---|---|---|
Frailty at Follow-Up | Prefrail vs. Robust | Frail/Death vs. Robust | Robust vs. Prefrail | Frail/Death vs. Prefrail | ||||
Men | OR | 95% CI | OR | 95% CI | OR | 95% CI | OR | 95% CI |
DII | ||||||||
T1 | 1.00 | 1.00 | 1.00 | 1.00 | ||||
T2 | 1.30 | (0.93, 1.82) | 2.21 | (1.33, 3.69) | 0.95 | (0.56, 1.62) | 1.50 | (0.95, 2.38) |
T3 | 1.14 | (0.79, 1.63) | 1.35 | (0.77, 2.34) | 0.73 | (0.42, 1.25) | 1.23 | (0.78, 1.95) |
p-trend | 0.28 | 0.59 | 0.14 | 0.75 | ||||
EDIP-HALST | ||||||||
T1 | 1.00 | 1.00 | 1.00 | 1.00 | ||||
T2 | 0.94 | (0.67, 1.31) | 2.00 | (1.18, 3.37) | 0.68 | (0.40, 1.15) | 0.79 | (0.50, 1.23) |
T3 | 1.33 | (0.94, 1.88) | 2.44 | (1.42, 4.21) | 1.19 | (0.72, 1.99) | 1.10 | (0.70, 1.72) |
p-trend | 0.04 | <0.01 | 0.29 | 0.47 | ||||
Women | ||||||||
DII | ||||||||
T1 | 1.00 | 1.00 | 1.00 | 1.00 | ||||
T2 | 1.46 | (1.03, 2.05) | 2.03 | (0.97, 4.26) | 0.39 | (0.24, 0.64) | 0.82 | (0.47, 1.42) |
T3 | 1.79 | (1.25, 2.56) | 3.46 | (1.69, 7.09) | 0.51 | (0.31, 0.84) | 0.96 | (0.55, 1.68) |
p-trend | 0.01 | <0.01 | 0.07 | 0.67 | ||||
EDIP-HALST | ||||||||
T1 | 1.00 | 1.00 | 1.00 | 1.00 | ||||
T2 | 1.14 | (0.81, 1.62) | 1.64 | (0.81, 3.31) | 0.40 | (0.25, 0.65) | 0.77 | (0.45, 1.33) |
T3 | 1.23 | (0.85, 1.77) | 1.96 | (0.96, 3.98) | 0.66 | (0.40, 1.07) | 1.12 | (0.65, 1.96) |
p-trend | 0.24 | 0.05 | 0.01 | 0.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chuang, S.-C.; Hsiung, C.A.; Tao, M.-H.; Wu, I.-C.; Cheng, C.-W.; Tseng, W.-T.; Lee, M.M.; Chang, H.-Y.; Hsu, C.-C. The Association between Dietary Inflammatory Patterns and the Incidence of Frailty and Its Reversal in Older Adults: A Community-Based Longitudinal Follow-Up Study in Taiwan. Nutrients 2024, 16, 2862. https://doi.org/10.3390/nu16172862
Chuang S-C, Hsiung CA, Tao M-H, Wu I-C, Cheng C-W, Tseng W-T, Lee MM, Chang H-Y, Hsu C-C. The Association between Dietary Inflammatory Patterns and the Incidence of Frailty and Its Reversal in Older Adults: A Community-Based Longitudinal Follow-Up Study in Taiwan. Nutrients. 2024; 16(17):2862. https://doi.org/10.3390/nu16172862
Chicago/Turabian StyleChuang, Shu-Chun, Chao A. Hsiung, Meng-Hua Tao, I-Chien Wu, Chiu-Wen Cheng, Wei-Ting Tseng, Marion M. Lee, Hsing-Yi Chang, and Chih-Cheng Hsu. 2024. "The Association between Dietary Inflammatory Patterns and the Incidence of Frailty and Its Reversal in Older Adults: A Community-Based Longitudinal Follow-Up Study in Taiwan" Nutrients 16, no. 17: 2862. https://doi.org/10.3390/nu16172862
APA StyleChuang, S. -C., Hsiung, C. A., Tao, M. -H., Wu, I. -C., Cheng, C. -W., Tseng, W. -T., Lee, M. M., Chang, H. -Y., & Hsu, C. -C. (2024). The Association between Dietary Inflammatory Patterns and the Incidence of Frailty and Its Reversal in Older Adults: A Community-Based Longitudinal Follow-Up Study in Taiwan. Nutrients, 16(17), 2862. https://doi.org/10.3390/nu16172862