Relationship between the Mediterranean Diet and Vascular Function in Subjects with and without Increased Insulin Resistance
Abstract
:1. Introduction
2. Methods
2.1. Study
2.2. Population
2.3. Committee Ethical and Consent to Participate
2.4. Variables and Measuring Instruments
2.4.1. Mediterranean Diet
2.4.2. Insulin Resistance
2.4.3. Arterial Stiffness Measurement
2.4.4. Cardiovascular Risk Factors
2.5. Statistical Analysis
3. Results
3.1. Description of Mediterranean Diet and Other Variables Analyzed Overall and by Gender
3.2. Mediterranean Diet, Risk Factors, and Vascular Function According to Insulin Resistance
3.3. Correlation between Mediterranean Diet and Vascular Function Parameters, Overall and by Sex
3.4. Association between Mediterranean Diet and Vascular Function Overall and by Sex in Subjects with and without IR, Assessed with Multiple Regression Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Estruch, R.; Ros, E. The role of the Mediterranean diet on weight loss and obesity-related diseases. Rev. Endocr. Metab. Disord. 2020, 21, 315–327. [Google Scholar] [CrossRef] [PubMed]
- Guasch-Ferré, M.; Willett, W.C. The Mediterranean diet and health: A comprehensive overview. J. Intern. Med. 2021, 290, 549–566. [Google Scholar] [CrossRef] [PubMed]
- Martínez-González, M.; Hernández, A.H. Effect of the Mediterranean diet in cardiovascular prevention. Rev. Esp. Cardiol. Engl. Ed. 2024, 77, 574–582. [Google Scholar] [CrossRef] [PubMed]
- Martini, D. Health Benefits of Mediterranean Diet. Nutrients 2019, 11, 1802. [Google Scholar] [CrossRef] [PubMed]
- Tosti, V.; Bertozzi, B.; Fontana, L. Health Benefits of the Mediterranean Diet: Metabolic and Molecular Mechanisms. J. Gerontol. A Biol. Sci. Med. Sci. 2018, 73, 318–326. [Google Scholar] [CrossRef] [PubMed]
- Kris-Etherton, P.; Eckel, R.H.; Howard, B.V.; St Jeor, S.; Bazzarre, T.L.; AHA Science Advisory: Lyon Diet Heart Study. Benefits of a Mediterranean-style, National Cholesterol Education Program/American Heart Association Step I Dietary Pattern on Cardiovascular Disease. Circulation 2001, 103, 1823–1825. [Google Scholar] [CrossRef]
- Delgado-Lista, J.; Perez-Martinez, P.; Garcia-Rios, A.; Alcala-Diaz, J.F.; Perez-Caballero, A.I.; Gomez-Delgado, F.; Fuentes, F.; Quintana-Navarro, G.; Lopez-Segura, F.; Ortiz-Morales, A.M.; et al. CORonary Diet Intervention with Olive oil and cardiovascular PREVention study (the CORDIOPREV study): Rationale, methods, and baseline characteristics: A clinical trial comparing the efficacy of a Mediterranean diet rich in olive oil versus a low-fat diet on cardiovascular disease in coronary patients. Am. Heart J. 2016, 177, 42–50. [Google Scholar] [CrossRef]
- Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.I.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Fiol, M.; Lapetra, J.; et al. Primary prevention of cardiovascular disease with a Mediterranean diet. N. Engl. J. Med. 2013, 368, 1279–1290. [Google Scholar] [CrossRef]
- Maroto-Rodriguez, J.; Delgado-Velandia, M.; Ortolá, R.; Perez-Cornago, A.; Kales, S.N.; Rodríguez-Artalejo, F.; Sotos-Prieto, M. Association of a Mediterranean Lifestyle With All-Cause and Cause-Specific Mortality: A Prospective Study from the UK Biobank. Mayo Clin. Proc. 2024, 99, 551–563. [Google Scholar] [CrossRef]
- Maroto-Rodriguez, J.; Ortolá, R.; Carballo-Casla, A.; Iriarte-Campo, V.; Salinero-Fort, M.; Rodríguez-Artalejo, F.; Sotos-Prieto, M. Association between a mediterranean lifestyle and Type 2 diabetes incidence: A prospective UK biobank study. Cardiovasc. Diabetol. 2023, 22, 271. [Google Scholar] [CrossRef]
- Tessier, A.J.; Cortese, M.; Yuan, C.; Bjornevik, K.; Ascherio, A.; Wang, D.D.; Chavarro, J.E.; Stampfer, M.J.; Hu, F.B.; Willett, W.C.; et al. Consumption of Olive Oil and Diet Quality and Risk of Dementia-Related Death. JAMA Netw. Open 2024, 7, e2410021. [Google Scholar] [CrossRef] [PubMed]
- Vega-Cabello, V.; Struijk, E.A.; Caballero, F.F.; Yévenes-Briones, H.; Ortolá, R.; Calderón-Larrañaga, A.; Lana, A.; Rodríguez-Artalejo, F.; Lopez-Garcia, E. Diet Quality and Multimorbidity in Older Adults: A Prospective Cohort Study. J. Gerontol. A Biol. Sci. Med. Sci. 2024, 79, glad285. [Google Scholar] [CrossRef] [PubMed]
- Georgoulis, M.; Damigou, E.; Chrysohoou, C.; Barkas, F.; Anastasiou, G.; Kravvariti, E.; Tsioufis, C.; Liberopoulos, E.; Sfikakis, P.P.; Pitsavos, C.; et al. Mediterranean diet trajectories and 20-year incidence of cardiovascular disease: The ATTICA cohort study (2002–2022). Nutr. Metab. Cardiovasc. Dis. 2024, 34, 153–166. [Google Scholar] [CrossRef] [PubMed]
- Kaddoumi, A.; Denney, T.S., Jr.; Deshpande, G.; Robinson, J.L.; Beyers, R.J.; Redden, D.T.; Praticò, D.; Kyriakides, T.C.; Lu, B.; Kirby, A.N.; et al. Extra-Virgin Olive Oil Enhances the Blood-Brain Barrier Function in Mild Cognitive Impairment: A Randomized Controlled Trial. Nutrients 2022, 14, 5102. [Google Scholar] [CrossRef] [PubMed]
- Rees, K.; Takeda, A.; Martin, N.; Ellis, L.; Wijesekara, D.; Vepa, A.; Das, A.; Hartley, L.; Stranges, S. Mediterranean-Style Diet for the Primary and Secondary Prevention of Cardiovascular Disease: A Cochrane Review. Glob. Heart 2020, 15, 56. [Google Scholar] [CrossRef]
- Mentella, M.C.; Scaldaferri, F.; Ricci, C.; Gasbarrini, A.; Miggiano, G.A.D. Cancer and Mediterranean Diet: A Review. Nutrients 2019, 11, 2059. [Google Scholar] [CrossRef]
- Fekete, M.; Szarvas, Z.; Fazekas-Pongor, V.; Feher, A.; Csipo, T.; Forrai, J.; Dosa, N.; Peterfi, A.; Lehoczki, A.; Tarantini, S.; et al. Nutrition Strategies Promoting Healthy Aging: From Improvement of Cardiovascular and Brain Health to Prevention of Age-Associated Diseases. Nutrients 2022, 15, 47. [Google Scholar] [CrossRef]
- Martín-Peláez, S.; Fito, M.; Castaner, O. Mediterranean Diet Effects on Type 2 Diabetes Prevention, Disease Progression, and Related Mechanisms. A Review. Nutrients 2020, 12, 2236. [Google Scholar] [CrossRef]
- Dominguez, L.J.; Veronese, N.; Di Bella, G.; Cusumano, C.; Parisi, A.; Tagliaferri, F.; Ciriminna, S.; Barbagallo, M. Mediterranean diet in the management and prevention of obesity. Exp. Gerontol. 2023, 174, 112121. [Google Scholar] [CrossRef]
- Wermers, J. Mediterranean-style diet for the primary and secondary prevention of cardiovascular disease: Summary of a Cochrane review. Explore 2020, 16, 201–202. [Google Scholar] [CrossRef]
- Visseren, F.L.J.; Mach, F.; Smulders, Y.M.; Carballo, D.; Koskinas, K.C.; Bäck, M.; Benetos, A.; Biffi, A.; Boavida, J.M.; Capodanno, D.; et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur. Heart J 2021, 42, 3227–3337. [Google Scholar] [CrossRef] [PubMed]
- Munakata, M. Brachial-Ankle Pulse Wave Velocity: Background, Method, and Clinical Evidence. Pulse 2016, 3, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Shirai, K.; Hiruta, N.; Song, M.; Kurosu, T.; Suzuki, J.; Tomaru, T.; Miyashita, Y.; Saiki, A.; Takahashi, M.; Suzuki, K.; et al. Cardio-ankle vascular index (CAVI) as a novel indicator of arterial stiffness: Theory, evidence and perspectives. J. Atheroscler. Thromb. 2011, 18, 924–938. [Google Scholar] [CrossRef] [PubMed]
- Namba, T.; Masaki, N.; Takase, B.; Adachi, T. Arterial Stiffness Assessed by Cardio-Ankle Vascular Index. Int. J. Mol. Sci. 2019, 20, 3664. [Google Scholar] [CrossRef]
- Yasuharu, T.; Setoh, K.; Kawaguchi, T.; Nakayama, T.; Matsuda, F. Brachial-ankle pulse wave velocity and cardio-ankle vascular index are associated with future cardiovascular events in a general population: The Nagahama Study. J. Clin. Hypertens. 2021, 23, 1390–1398. [Google Scholar] [CrossRef]
- Miyoshi, T.; Ito, H.; Shirai, K.; Horinaka, S.; Higaki, J.; Yamamura, S.; Saiki, A.; Takahashi, M.; Masaki, M.; Okura, T.; et al. Predictive Value of the Cardio-Ankle Vascular Index for Cardiovascular Events in Patients at Cardiovascular Risk. J. Am. Heart Assoc. 2021, 10, e020103. [Google Scholar] [CrossRef]
- Matsushita, K.; Ding, N.; Kim, E.D.; Budoff, M.; Chirinos, J.A.; Fernhall, B.; Hamburg, N.M.; Kario, K.; Miyoshi, T.; Tanaka, H.; et al. Cardio-ankle vascular index and cardiovascular disease: Systematic review and meta-analysis of prospective and cross-sectional studies. J. Clin. Hypertens. 2019, 21, 16–24. [Google Scholar] [CrossRef]
- Ohkuma, T.; Ninomiya, T.; Tomiyama, H.; Kario, K.; Hoshide, S.; Kita, Y.; Inoguchi, T.; Maeda, Y.; Kohara, K.; Tabara, Y.; et al. Brachial-Ankle Pulse Wave Velocity and the Risk Prediction of Cardiovascular Disease: An Individual Participant Data Meta-Analysis. Hypertension 2017, 69, 1045–1052. [Google Scholar] [CrossRef]
- Laurent, S.; Boutouyrie, P.; Cunha, P.G.; Lacolley, P.; Nilsson, P.M. Concept of Extremes in Vascular Aging. Hypertension 2019, 74, 218–228. [Google Scholar] [CrossRef]
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.; Coca, A.; De Simone, G.; Dominiczak, A.; et al. 2018 Practice Guidelines for the management of arterial hypertension of the European Society of Hypertension and the European Society of Cardiology: ESH/ESC Task Force for the Management of Arterial Hypertension. J. Hypertens. 2018, 36, 2284–2309. [Google Scholar] [CrossRef]
- Avolio, A. Arterial Stiffness. Pulse 2013, 1, 14–28. [Google Scholar] [CrossRef] [PubMed]
- Tsai, J.P.; Hsu, B.G. Arterial stiffness: A brief review. Tzu Chi Med. J. 2021, 33, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Navarro Cáceres, A.; Navarro-Matías, E.; Gómez-Sánchez, M.; Tamayo-Morales, O.; Lugones-Sánchez, C.; González-Sánchez, S.; Rodríguez-Sánchez, E.; García-Ortiz, L.; Gómez-Sánchez, L.; Gómez-Marcos, M.A.; et al. Increase in Vascular Function Parameters According to Lifestyles in a Spanish Population without Previous Cardiovascular Disease-EVA Follow-Up Study. Nutrients 2023, 15, 4614. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Sánchez, L.; Gómez-Sánchez, M.; Lugones-Sánchez, C.; Rodríguez-Sánchez, E.; Tamayo-Morales, O.; Gonzalez-Sánchez, S.; Magallón-Botaya, R.; Ramirez-Manent, J.I.; Recio-Rodriguez, J.I.; Agudo-Conde, C.; et al. Long-Term Effectiveness of a Smartphone App and a Smart Band on Arterial Stiffness and Central Hemodynamic Parameters in a Population with Overweight and Obesity (Evident 3 Study): Randomised Controlled Trial. Nutrients 2022, 14, 4758. [Google Scholar] [CrossRef] [PubMed]
- Jennings, A.; Berendsen, A.M.; de Groot, L.; Feskens, E.J.M.; Brzozowska, A.; Sicinska, E.; Pietruszka, B.; Meunier, N.; Caumon, E.; Malpuech-Brugère, C.; et al. Mediterranean-Style Diet Improves Systolic Blood Pressure and Arterial Stiffness in Older Adults. Hypertension 2019, 73, 578–586. [Google Scholar] [CrossRef] [PubMed]
- Stanek, A.; Grygiel-Górniak, B.; Brożyna-Tkaczyk, K.; Myśliński, W.; Cholewka, A.; Zolghadri, S. The Influence of Dietary Interventions on Arterial Stiffness in Overweight and Obese Subjects. Nutrients 2023, 15, 1440. [Google Scholar] [CrossRef]
- Otero-Luis, I.; Saz-Lara, A.; Moreno-Herráiz, N.; Lever-Megina, C.G.; Bizzozero-Peroni, B.; Martínez-Ortega, I.A.; Varga-Cirila, R.; Cavero-Redondo, I. Exploring the Association between Mediterranean Diet Adherence and Arterial Stiffness in Healthy Adults: Findings from the EvasCu Study. Nutrients 2024, 16, 2158. [Google Scholar] [CrossRef]
- van de Laar, R.J.; Stehouwer, C.D.; van Bussel, B.C.; Prins, M.H.; Twisk, J.W.; Ferreira, I. Adherence to a Mediterranean dietary pattern in early life is associated with lower arterial stiffness in adulthood: The Amsterdam Growth and Health Longitudinal Study. J. Intern. Med. 2013, 273, 79–93. [Google Scholar] [CrossRef]
- Liu, G. Association between the metabolic score for insulin resistance (METS-IR) and arterial stiffness among health check-up population in Japan: A retrospective cross-sectional study. Front. Endocrinol. 2023, 14, 1308719. [Google Scholar] [CrossRef]
- Wu, S.; Xu, L.; Wu, M.; Chen, S.; Wang, Y.; Tian, Y. Association between triglyceride-glucose index and risk of arterial stiffness: A cohort study. Cardiovasc. Diabetol. 2021, 20, 146. [Google Scholar] [CrossRef]
- Fan, Y.; Yan, Z.; Li, T.; Li, A.; Fan, X.; Qi, Z.; Zhang, J. Primordial Drivers of Diabetes Heart Disease: Comprehensive Insights into Insulin Resistance. Diabetes Metab. J. 2024, 48, 19–36. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.M.Y.; Wellberg, E.A.; Kopp, J.L.; Johnson, J.D. Hyperinsulinemia in Obesity, Inflammation, and Cancer. Diabetes Metab. J. 2021, 45, 285–311. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, N.; Maeda, R.; Ozono, R.; Yoshimura, K.; Nakano, Y.; Higashi, Y. Adipose tissue insulin resistance predicts the incidence of hypertension: The Hiroshima Study on Glucose Metabolism and Cardiovascular Diseases. Hypertens. Res. 2022, 45, 1763–1771. [Google Scholar] [CrossRef] [PubMed]
- Xiao, D.; Sun, H.; Chen, L.; Li, X.; Huo, H.; Zhou, G.; Zhang, M.; He, B. Assessment of six surrogate insulin resistance indexes for predicting cardiometabolic multimorbidity incidence in Chinese middle-aged and older populations: Insights from the China health and retirement longitudinal study. Diabetes Metab. Res. Rev. 2024, 40, e3764. [Google Scholar] [CrossRef]
- Szablewski, L. Insulin Resistance: The Increased Risk of Cancers. Curr. Oncol. 2024, 31, 998–1027. [Google Scholar] [CrossRef]
- Giovannini, S.; Onder, G.; van der Roest, H.G.; Topinkova, E.; Gindin, J.; Cipriani, M.C.; Denkinger, M.D.; Bernabei, R.; Liperoti, R. Use of antidepressant medications among older adults in European long-term care facilities: A cross-sectional analysis from the SHELTER study. BMC Geriatr. 2020, 20, 310. [Google Scholar] [CrossRef]
- Krupa, A.J.; Chrobak, A.A.; Sołtys, Z.; Dudek, D.; Szewczyk, B.; Siwek, M. Insulin resistance, clinical presentation and resistance to selective serotonin and noradrenaline reuptake inhibitors in major depressive disorder. Pharmacol. Rep. 2024, 76, 1100–1113. [Google Scholar] [CrossRef]
- Sasaki, N.; Ueno, Y.; Higashi, Y. Indicators of insulin resistance in clinical practice. Hypertens. Res. 2024, 47, 978–980. [Google Scholar] [CrossRef]
- Agius, R.; Pace, N.P.; Fava, S. Anthropometric and Biochemical Correlations of Insulin Resistance in a Middle-Aged Maltese Caucasian Population. J. Nutr. Metab. 2024, 2024, 5528250. [Google Scholar] [CrossRef]
- Gado, M.; Tsaousidou, E.; Bornstein, S.R.; Perakakis, N. Sex-based differences in insulin resistance. J. Endocrinol. 2024, 261, e230245. [Google Scholar] [CrossRef]
- Khan, K.; Wanjari, A.; Acharya, S.; Quazi, S. Anthropometric Indices With Insulin Resistance in Obese Patients: A Literature Review. Cureus 2023, 15, e41881. [Google Scholar] [CrossRef]
- Liu, F.; Ling, Q.; Xie, S.; Xu, Y.; Liu, M.; Hu, Q.; Ma, J.; Yan, Z.; Gao, Y.; Zhao, Y.; et al. Association between triglyceride glucose index and arterial stiffness and coronary artery calcification: A systematic review and exposure-effect meta-analysis. Cardiovasc. Diabetol. 2023, 22, 111. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Shi, J.; Peng, Y.; Fang, Q.; Mu, Q.; Gu, W.; Hong, J.; Zhang, Y.; Wang, W. Stronger association of triglyceride glucose index than the HOMA-IR with arterial stiffness in patients with type 2 diabetes: A real-world single-centre study. Cardiovasc. Diabetol. 2021, 20, 82. [Google Scholar] [CrossRef] [PubMed]
- Huo, R.R.; Liao, Q.; Zhai, L.; You, X.M.; Zuo, Y.L. Interacting and joint effects of triglyceride-glucose index (TyG) and body mass index on stroke risk and the mediating role of TyG in middle-aged and older Chinese adults: A nationwide prospective cohort study. Cardiovasc. Diabetol. 2024, 23, 30. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Qian, Y.; Deng, X. Triglyceride glucose index is a significant predictor of severe disturbance of consciousness and all-cause mortality in critical cerebrovascular disease patients. Cardiovasc. Diabetol. 2023, 22, 156. [Google Scholar] [CrossRef] [PubMed]
- Tao, L.C.; Xu, J.N.; Wang, T.T.; Hua, F.; Li, J.J. Triglyceride-glucose index as a marker in cardiovascular diseases: Landscape and limitations. Cardiovasc. Diabetol. 2022, 21, 68. [Google Scholar] [CrossRef]
- Tan, L.; Liu, Y.; Liu, J.; Zhang, G.; Liu, Z.; Shi, R. Association between insulin resistance and uncontrolled hypertension and arterial stiffness among US adults: A population-based study. Cardiovasc. Diabetol. 2023, 22, 311. [Google Scholar] [CrossRef]
- Pascual-Morena, C.; Cavero-Redondo, I.; Martínez-García, I.; Rodríguez-Gutiérrez, E.; Lucerón-Lucas-Torres, M.; Moreno-Herráiz, N.; Díaz-Goñi, V.; Saz-Lara, A. Exploring the Influence of Insulin Resistance on Arterial Stiffness in Healthy Adults: From the Metabolic and Cardiovascular Health Insights of the EVasCu Study. Nutrients 2024, 16, 791. [Google Scholar] [CrossRef]
- Gomez-Marcos, M.A.; Martinez-Salgado, C.; Gonzalez-Sarmiento, R.; Hernandez-Rivas, J.M.; Sanchez-Fernandez, P.L.; Recio-Rodriguez, J.I.; Rodriguez-Sanchez, E.; García-Ortiz, L. Association between different risk factors and vascular accelerated ageing (EVA study): Study protocol for a cross-sectional, descriptive observational study. BMJ Open 2016, 6, e011031. [Google Scholar] [CrossRef]
- Martí, R.; Parramon, D.; García-Ortiz, L.; Rigo, F.; Gómez-Marcos, M.A.; Sempere, I.; García-Regalado, N.; Recio-Rodriguez, J.I.; Agudo-Conde, C.; Feuerbach, N.; et al. Improving interMediAte risk management. MARK study. BMC Cardiovasc. Disord. 2011, 11, 61. [Google Scholar] [CrossRef]
- Recio-Rodríguez, J.I.; Martín-Cantera, C.; González-Viejo, N.; Gómez-Arranz, A.; Arietaleanizbeascoa, M.S.; Schmolling-Guinovart, Y.; Maderuelo-Fernandez, J.A.; Pérez-Arechaederra, D.; Rodriguez-Sanchez, E.; Gómez-Marcos, M.A.; et al. Effectiveness of a smartphone application for improving healthy lifestyles, a randomized clinical trial (EVIDENT II): Study protocol. BMC Public Health 2014, 14, 254. [Google Scholar] [CrossRef] [PubMed]
- World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [CrossRef] [PubMed]
- Schröder, H.; Fitó, M.; Estruch, R.; Martínez-González, M.A.; Corella, D.; Salas-Salvadó, J.; Lamuela-Raventós, R.; Ros, E.; Salaverría, I.; Fiol, M.; et al. A short screener is valid for assessing Mediterranean diet adherence among older Spanish men and women. J. Nutr. 2011, 141, 1140–1145. [Google Scholar] [CrossRef] [PubMed]
- Guerrero-Romero, F.; Simental-Mendía, L.E.; González-Ortiz, M.; Martínez-Abundis, E.; Ramos-Zavala, M.G.; Hernández-González, S.O.; Jacques-Camarena, O.; Rodríguez-Morán, M. The product of triglycerides and glucose, a simple measure of insulin sensitivity. Comparison with the euglycemic-hyperinsulinemic clamp. J. Clin. Endocrinol. Metab. 2010, 95, 3347–3351. [Google Scholar] [CrossRef] [PubMed]
- Barrea, L.; Annunziata, G.; Muscogiuri, G.; Laudisio, D.; Di Somma, C.; Maisto, M.; Tenore, G.C.; Colao, A.; Savastano, S. Trimethylamine N-oxide, Mediterranean diet, and nutrition in healthy, normal-weight adults: Also a matter of sex? Nutrition 2019, 62, 7–17. [Google Scholar] [CrossRef]
- Gómez Sánchez, M.; Gómez Sánchez, L.; Patino-Alonso, M.C.; Alonso-Domínguez, R.; Sánchez-Aguadero, N.; Lugones-Sánchez, C.; Rodríguez Sánchez, E.; García Ortiz, L.; Gómez-Marcos, M.A. Adherence to the Mediterranean Diet in Spanish Population and Its Relationship with Early Vascular Aging according to Sex and Age: EVA Study. Nutrients 2020, 12, 1025. [Google Scholar] [CrossRef]
- Caparello, G.; Galluccio, A.; Giordano, C.; Lofaro, D.; Barone, I.; Morelli, C.; Sisci, D.; Catalano, S.; Andò, S.; Bonofiglio, D. Adherence to the Mediterranean diet pattern among university staff: A cross-sectional web-based epidemiological study in Southern Italy. Int. J. Food Sci. Nutr. 2020, 71, 581–592. [Google Scholar] [CrossRef]
- González-Sosa, S.; Ruiz-Hernández, J.J.; Puente-Fernández, A.; Robaina-Bordón, J.M.; Conde-Martel, A. Adherence to the Mediterranean Diet in medical students. Public Health Nutr. 2023, 26, 1798–1806. [Google Scholar] [CrossRef]
- Kyriacou, A.; Evans, J.M.; Economides, N.; Kyriacou, A. Adherence to the Mediterranean diet by the Greek and Cypriot population: A systematic review. Eur. J. Public Health 2015, 25, 1012–1018. [Google Scholar] [CrossRef]
- González-Sosa, S.; Ruiz-Hernández, J.J.; Domínguez-Rivero, S.; Águila-Fernández, E.; Godoy-Díaz, D.; Santana-Báez, S.; Puente-Fernández, A.; Conde-Martel, A. Adherence to the Mediterranean diet in health personnel from the province of Las Palmas. Rev. Clin. Esp. Barc. 2021, 221, 569–575. [Google Scholar] [CrossRef]
- Álvarez-Fernández, C.; Romero-Saldaña, M.; Álvarez-López, Á.; Molina-Luque, R.; Molina-Recio, G.; Vaquero-Abellán, M. Adherence to the Mediterranean diet according to occupation-based social classifications and gender. Arch. Environ. Occup. Health 2021, 76, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Grosso, G.; Marventano, S.; Yang, J.; Micek, A.; Pajak, A.; Scalfi, L.; Galvano, F.; Kales, S.N. A comprehensive meta-analysis on evidence of Mediterranean diet and cardiovascular disease: Are individual components equal? Crit. Rev. Food Sci. Nutr. 2017, 57, 3218–3232. [Google Scholar] [CrossRef] [PubMed]
- Tektonidis, T.G.; Åkesson, A.; Gigante, B.; Wolk, A.; Larsson, S.C. A Mediterranean diet and risk of myocardial infarction, heart failure and stroke: A population-based cohort study. Atherosclerosis 2015, 243, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Colantoni, A.; Bucci, T.; Cocomello, N.; Angelico, F.; Ettorre, E.; Pastori, D.; Lip, G.Y.H.; Del Ben, M.; Baratta, F. Lipid-based insulin-resistance markers predict cardiovascular events in metabolic dysfunction associated steatotic liver disease. Cardiovasc. Diabetol. 2024, 23, 175. [Google Scholar] [CrossRef] [PubMed]
- Sotos-Prieto, M.; Mattei, J. Mediterranean Diet and Cardiometabolic Diseases in Racial/Ethnic Minority Populations in the United States. Nutrients 2018, 10, 352. [Google Scholar] [CrossRef] [PubMed]
- Cano-Ibáñez, N.; Gea, A.; Ruiz-Canela, M.; Corella, D.; Salas-Salvadó, J.; Schröder, H.; Navarrete-Muñoz, E.M.; Romaguera, D.; Martínez, J.A.; Barón-López, F.J.; et al. Diet quality and nutrient density in subjects with metabolic syndrome: Influence of socioeconomic status and lifestyle factors. A cross-sectional assessment in the PREDIMED-Plus study. Clin. Nutr. 2020, 39, 1161–1173. [Google Scholar] [CrossRef]
- Tsaban, G.; Shalev, A.; Katz, A.; Yaskolka Meir, A.; Rinott, E.; Zelicha, H.; Kaplan, A.; Wolak, A.; Bluher, M.; Stampfer, M.J.; et al. Effect of Lifestyle Modification and Green Mediterranean Diet on Proximal Aortic Stiffness. J. Am. Coll. Cardiol. 2023, 81, 1659–1661. [Google Scholar] [CrossRef]
- Palombo, C.; Kozakova, M. Arterial stiffness, atherosclerosis and cardiovascular risk: Pathophysiologic mechanisms and emerging clinical indications. Vasc. Pharmacol. 2016, 77, 1–7. [Google Scholar] [CrossRef]
- Mozos, I.; Jianu, D.; Stoian, D.; Mozos, C.; Gug, C.; Pricop, M.; Marginean, O.; Luca, C.T. The Relationship Between Dietary Choices and Health and Premature Vascular Ageing. Heart Lung Circ. 2021, 30, 1647–1657. [Google Scholar] [CrossRef]
- Lasalvia, P.; Gianfagna, F.; Veronesi, G.; Franchin, M.; Tozzi, M.; Castelli, P.; Grandi, A.M.; Zambon, A.; Iacoviello, L.; Ferrario, M.M. Identification of dietary patterns in a general population of North Italian adults and their association with arterial stiffness. The RoCAV study. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 44–51. [Google Scholar] [CrossRef]
- Gómez-Sánchez, L.; Rodríguez-Sánchez, E.; Ramos, R.; Marti-Lluch, R.; Gómez-Sánchez, M.; Lugones-Sánchez, C.; Tamayo-Morales, O.; Llamas-Ramos, I.; Rigo, F.; García-Ortiz, L.; et al. The Association of Dietary Intake with Arterial Stiffness and Vascular Ageing in a Population with Intermediate Cardiovascular Risk-A MARK Study. Nutrients 2022, 14, 244. [Google Scholar] [CrossRef] [PubMed]
- Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.I.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Fiol, M.; Lapetra, J.; et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts. N. Engl. J. Med. 2018, 378, e34. [Google Scholar] [CrossRef] [PubMed]
- Sajdeya, O.; Beran, A.; Mhanna, M.; Alharbi, A.; Burmeister, C.; Abuhelwa, Z.; Malhas, S.E.; Khader, Y.; Sayeh, W.; Assaly, R.; et al. Triglyceride Glucose Index for the Prediction of Subclinical Atherosclerosis and Arterial Stiffness: A Meta-analysis of 37,780 Individuals. Curr. Probl. Cardiol. 2022, 47, 101390. [Google Scholar] [CrossRef] [PubMed]
- Zhong, H.; Shao, Y.; Guo, G.; Zhan, Y.; Liu, B.; Shao, M.; Li, L. Association between the triglyceride-glucose index and arterial stiffness: A meta-analysis. Medicine 2023, 102, e33194. [Google Scholar] [CrossRef]
- Bédard, A.; Corneau, L.; Lamarche, B.; Dodin, S.; Lemieux, S. Sex-related differences in the effects of the mediterranean diet on glucose and insulin homeostasis. J. Nutr. Metab. 2014, 2014, 424130. [Google Scholar] [CrossRef]
Overall (n = 3401) | Women (n = 1458) | Men (n = 1943) | p Value | |
---|---|---|---|---|
Mediterranean diet | ||||
MD, total score | 5.82 ± 2.03 | 6.04 ± 1.98 | 5.66 ± 2.06 | <0.001 |
MD adherence, n (%) | 1251 (36.8) | 587 (40.3) | 664 (34.2) | <0.001 |
Conventional risk factors | ||||
Age, years | 60.14 ± 9.77 | 60.03 ± 10.21 | 60.23 ± 9.58 | 0.559 |
SBP, mmHg | 133.34 ± 19.37 | 128.71 ± 20.69 | 136.82 ± 17.55 | <0.001 |
DBP, mmHg | 81.95 ± 10.94 | 79.58 ± 10.82 | 83.74 ± 10.69 | <0.001 |
Hypertension, n (%) | 2180 (64.1) | 844 (57.9) | 1336 (68.8) | <0.001 |
Antihypertensive drugs, n (%) | 1557 (45.8) | 649 (44.5) | 908 (46.7) | 0.199 |
Total cholesterol, mg/dL | 216.15 ± 41.25 | 220.08 ± 42.79 | 213.20 ± 39.81 | <0.001 |
LDL cholesterol, mg/dL | 132.91 ± 35.19 | 132.17 ± 35.95 | 133.47 ± 34.61 | 0.286 |
HDL cholesterol, mg/dL | 52.57 ± 14.47 | 57.28 ± 15.73 | 49.03 ± 12.31 | <0.001 |
Triglycerides, mg/dL | 131.98 ± 75.29 | 121.59 ± 63.52 | 139.79 ± 82.19 | <0.001 |
Dyslipidemia, n (%) | 2453 (72.1) | 1064 (73.0) | 1389 (71.5) | 0.338 |
Lipid–lowering drugs, n (%) | 965 (28.4) | 426 (29.2) | 539 (27.7) | 0.344 |
FPG, mg/dL | 101.55 ± 31.42 | 100.18 ± 32.34 | 102.57 ± 30.68 | 0.028 |
HbA1c, % | 5.94 ± 1.05 | 5.93 ± 1.07 | 5.94 ± 1.03 | 0.787 |
Diabetes mellitus, n (%) | 751 (22.1) | 305 ± 20.9 | 446 (23.0) | 0.157 |
Hypoglycemic drugs, n (%) | 570 (16.8) | 234 (16.0) | 334 (17.3) | 0.337 |
Weight, kg | 77.45 ± 14.62 | 70.18 ± 13.33 | 82.91 ± 13.10 | <0.001 |
Height, cm | 164.56 ± 9.46 | 157.10 ± 6.69 | 170.15 ± 7.07 | <0.001 |
BMI, kg/m2 | 28.54 ± 4.53 | 28.47 ± 5.30 | 28.60 ± 3.86 | 0.407 |
WC, cm | 98.60 ± 12.09 | 94.31 ± 12.91 | 101.82 ± 10.33 | <0.001 |
Obesity, n (%) | 1072 (31.5) | 492 (33.7) | 580 (29.9) | 0.016 |
TyG Index | 10.93 ± 1.39 | 10.73 ± 1.13 | 11.08 ± 1.33 | <0.001 |
TyG Index, n (%) | 1698 (49.9) | 728 (49.9) | 970 (49.9) | 0.996 |
Vascular function | ||||
CAVI | 8.59 ± 1.29 | 8.37 ± 1.26 | 8.75 ± 1.28 | <0.001 |
CAVI ≥ 9 | 1325 (39.0) | 462 (31.7) | 863 (44.4) | <0.001 |
baPWV, m/s | 14.39 ± 2.78 | 14.25 ± 2.93 | 14.50 ± 2.65 | 0.010 |
baPWV ≥ 14.5, m/s | 1475 (43.4) | 627 (43.0) | 848 (43.6) | 0.709 |
Insulin Resistance (n = 1698) | No Insulin Resistance (n = 1703) | p Value | |
---|---|---|---|
Mediterranean diet | |||
MD, total score | 5.49 ± 1.96 | 6.16 ± 2.06 | <0.001 |
MD adherence, n (%) | 515 (30.3) | 736 (43.2) | <0.001 |
Conventional risk factors | |||
Sex (women), n (%) | |||
Age, years | 60.92 ± 8.35 | 59.37 ± 10.95 | <0.001 |
SBP, mmHg | 136.45 ± 17.55 | 130.25 ± 20.58 | <0.001 |
DBP, mmHg | 83.99 ± 10.53 | 79.93 ± 10.97 | <0.001 |
Hypertension, n (%) | 1254 (73.9) | 926 (54.4) | <0.001 |
Antihypertensive drugs, n (%) | 921 (54.2) | 636 (37.3) | <0.001 |
Total cholesterol, mg/dL | 223.29 ± 42.21 | 209.02 ± 39.00 | <0.001 |
LDL cholesterol, mg/dL | 137.16 ± 36.65 | 128.72 ± 33.17 | <0.001 |
HDL cholesterol, mg/dL | 47.11 ± 10.96 | 58.01 ± 15.46 | <0.001 |
Triglycerides, mg/dL | 178.91 ± 98 | 85.19 ± 23.62 | <0.001 |
Dyslipidemia, n (%) | 1533 (90.3) | 920 (54.0) | <0.001 |
Lipid-lowering drugs, n (%) | 586 (34.5) | 379 (22.3) | <0.001 |
FPG, mg/dL | 114.40 ± 37.94 | 88.73 ± 14.39 | <0.001 |
HbA1c, % | 6.30 ± 1.26 | 5.57 ± 0.59 | <0.001 |
Diabetes mellitus, n (%) | 592 (34.9) | 159 (9.3) | <0.001 |
Hypoglycemic drugs, n (%) | 442 (26.0) | 128 (7.5) | <0.001 |
Weight, kg | 80.78 ± 14.87 | 74.13 ± 13.59 | <0.001 |
Height, cm | 164.31 ± 9.64 | 164.81 ± 9.27 | 0.122 |
BMI, kg/m2 | 29.87 ± 4.54 | 27.23 ± 4.13 | <0.001 |
WC, cm | 102.15 ± 11.27 | 95.06 ± 11.83 | <0.001 |
Obesity, n (%) | 705 (41.5) | 367 (21.6) | <0.001 |
TyG Index | 12.01 ± 1.03 | 9.85 ± 0.69 | <0.001 |
Vascular function | |||
CAVI | 8.73 ± 1.25 | 8.45 ± 1.31 | <0.001 |
CAVI ≥ 9 | 738 (43.5) | 587 (34.5) | <0.001 |
baPWV, m/s | 14.91 ± 2.70 | 13.87 ± 2.75 | <0.001 |
baPWV ≥ 14.5, m/s | 860 (50.6) | 615 (36.1) | <0.001 |
Insulin Resistance (n = 970) | No Insulin Resistance (n = 973) | p Value | |
---|---|---|---|
Mediterranean diet | |||
MD, total score | 5.32 ± 2.01 | 6.00 ± 2.05 | <0.001 |
MD adherence, n (%) | 274 (28.2) | 390 (40.1) | <0.001 |
Conventional risk factors | |||
Age, years | 59.76 ± 8.67 | 60.70 ± 10.38 | 0.031 |
SBP, mmHg | 138.38 ± 16.92 | 135.26 ± 18.02 | <0.001 |
DBP, mmHg | 85.53 ± 10.46 | 81.95 ± 10.63 | <0.001 |
Hypertension, n (%) | 722 (74.4) | 614 (63.1) | <0.001 |
Antihypertensive drugs, n (%) | 499 (51.4) | 409 (42.0) | <0.001 |
Total cholesterol, mg/dL | 219.13 ± 40.77 | 207.28 ± 37.93 | <0.001 |
LDL cholesterol, mg/dL | 135.21 ± 35.73 | 131.76 ± 33.41 | 0.029 |
HDL cholesterol, mg/dL | 44.70 ± 10.32 | 53.35 ± 12.63 | <0.001 |
Triglycerides, mg/dL | 190.08 ± 89.03 | 89.65 ± 23.56 | <0.001 |
Dyslipidemia, n (%) | 869 (89.6) | 520 (53.4) | <0.001 |
Lipid-lowering drugs, n (%) | 310 (32.0) | 229 (23.5) | <0.001 |
FPG, mg/dL | 113.86 ± 37.19 | 91.32 ± 15.72 | <0.001 |
HbA1c, % | 6.24 ± 1.23 | 5.64 ± 0.65 | <0.001 |
Diabetes mellitus, n (%) | 324 (33.4) | 122 (12.5) | <0.001 |
Hypoglycemic drugs, n (%) | 239 (24.6) | 97 (10.0) | <0.001 |
Weight, kg | 85.74 ± 13.87 | 80.09 ± 11.62 | <0.001 |
Height, cm | 170.26 ± 6.86 | 170.05 ± 7.28 | 0.520 |
BMI, kg/m2 | 29.52 ± 3.95 | 27.68 ± 3.53 | <0.001 |
WC, cm | 104.10 ± 10.44 | 99.55 ± 9.70 | <0.001 |
Obesity, n (%) | 361 (37.2) | 219 (22.5) | <0.001 |
TyG Index | 12.12 ± 0.99 | 10.03 ± 0.63 | <0.001 |
Vascular function | |||
CAVI | 8.79 ± 1.28 | 8.72 ± 1.29 | 0.290 |
CAVI ≥ 9 | 443 (45.7) | 420 (43.2) | 0.267 |
baPWV, m/s | 14.71 ± 2.62 | 14.29 ± 2.67 | <0.001 |
baPWV ≥ 14.5, m/s | 459 (47.3) | 389 (40.0) | 0.001 |
Insulin Resistance (n = 728) | No Insulin Resistance (n = 730) | p Value | |
---|---|---|---|
Mediterranean diet | |||
MD, total score | 5.72 ± 1.86 | 6.36 ± 2.05 | <0.001 |
MD adherence, n (%) | 241 (33.1) | 346 (47.4) | <0.001 |
Conventional risk factors | |||
Age, years | 62.47 ± 7.64 | 57.60 ± 11.43 | <0.001 |
SBP, mmHg | 133.87 ± 18.06 | 123.56 ± 21.84 | <0.001 |
DBP, mmHg | 81.93 ± 10.26 | 77.24 ± 10.85 | <0.001 |
Hypertension, n (%) | 532 (73.1) | 312 (42.7) | <0.001 |
Antihypertensive drugs, n (%) | 422 (58.0) | 227 (31.1) | <0.001 |
Total cholesterol, mg/dL | 228.83 ± 43.46 | 211.34 ± 40.29 | <0.001 |
LDL cholesterol, mg/dL | 139.73 ± 37.72 | 124.66 ± 32.45 | <0.001 |
HDL cholesterol, mg/dL | 50.33 ± 10.98 | 64.22 ± 16.67 | <0.001 |
Triglycerides, mg/dL | 164.04 ± 63.08 | 79.25 ± 22.39 | <0.001 |
Dyslipidemia, n (%) | 664 (91.2) | 400 (54.8) | <0.001 |
Lipid–lowering drugs, n (%) | 276 (37.9) | 150 (20.5) | <0.001 |
FPG, mg/dL | 115.13 ± 38.94 | 85.27 ± 11.53 | <0.001 |
HbA1c, % | 6.38 ± 1.29 | 5.48 ± 0.47 | <0.001 |
Diabetes mellitus, n (%) | 268 (36.8) | 37 (5.1) | <0.001 |
Hypoglycemic drugs, n (%) | 203 (27.9) | 31 (4.2) | <0.001 |
Weight, kg | 74.18 ± 13.54 | 66.19 ± 11.85 | <0.001 |
Height, cm | 156.38 ± 6.64 | 157.82 ± 6.66 | <0.001 |
BMI, kg/m2 | 30.33 ± 5.18 | 26.62 ± 4.74 | <0.001 |
WC, cm | 99.56 ± 11.81 | 89.07 ± 11.79 | <0.001 |
Obesity, n (%) | 344 (47.3) | 148 (20.3) | <0.001 |
TyG Index | 11.85 ± 1.05 | 9.61 ± 0.70 | <0.001 |
Vascular function | |||
CAVI | 8.65 ± 1.20 | 8.09 ± 1.25 | <0.001 |
CAVI ≥ 9 | 295 (40.5) | 1667 (22.9) | <0.001 |
baPWV, m/s | 15.18 ± 2.79 | 13.32 ± 2.77 | <0.001 |
baPWV ≥ 14.5, m/s | 401 (55.1) | 226 (31.0) | <0.001 |
MD (Total Score) | Overall (n =) | Women (n =) | Men (n =) |
---|---|---|---|
Overall | |||
Age, years | 0.005 | −0.025 | 0.029 |
SBP, mmHg | −0.123 ** | −0.106 ** | −0.108 ** |
DBP, mmHg | −0.172 ** | −0.122 ** | −0.185 ** |
Total cholesterol, mg/dL | −0.164 ** | −0.174 ** | −0.173 ** |
LDL cholesterol, mg/dL | −0.155 ** | −0.161 ** | −0.150 ** |
HDL cholesterol, mg/dL | 0.170 ** | 0.174 ** | 0.132 ** |
Triglycerides, mg/dL | −0.165 ** | −0.143 ** | −0.164 ** |
FPG, mg/dL | −0.118 ** | −0.139 ** | −0.098 ** |
HbA1c, % | −0.118 ** | −0.171 ** | −0.077 ** |
BMI | −0.133 ** | −0.153 ** | −0.115 ** |
WC, cm | −0.173 ** | −0.195 ** | −0.116 ** |
CAVI | −0.082 ** | −0.093 ** | −0.053 * |
baPWV, m/s | −0.102 ** | −0.097 ** | −0.100 ** |
With insulin resistance | |||
Age, years | 0.120 | 0.111 * | 0.103 ** |
SBP, mmHg | −0.053 * | −0.010 | −0.063 * |
DBP, mmHg | −0.149 | −0.082 * | −0.171 ** |
Total cholesterol, mg/dL | −0.128 ** | −0.134 ** | −0.147 ** |
LDL cholesterol, mg/dL | −0.116 ** | −0.112 ** | −0.131 |
HDL cholesterol, mg/dL | 0.096 ** | 0.081 * | 0.067 * |
Triglycerides, mg/dL | −0.100 ** | −0.036 | −0.110 ** |
FPG, mg/dL | −0.037 | −0.071 | −0.016 |
HbA1c, % | −0.052 * | −0.114 * | −0.017 |
BMI | −0.071 ** | −0.133 ** | −0.036 |
WC, cm | −0.113 ** | −0.144 ** | −0.057 |
CAVI | −0.000 | 0.007 | 0.004 |
baPWV, m/s | −0.004 | 0.015 | −0.034 |
Without insulin resistance | |||
Age, years | −0.056 * | −0.043 | −0.046 |
SBP, mmHg | −0.137 ** | −0.114 ** | −0.124 ** |
DBP, mmHg | −0.143 ** | −0.097 ** | −0.152 ** |
Total cholesterol, mg/dL | −0.153 ** | −0.158 ** | −0.158 ** |
LDL cholesterol, mg/dL | −0.164 ** | −0.155 ** | −0.157 ** |
HDL cholesterol, mg/dL | 0.136 ** | 0.139 ** | 0.091 ** |
Triglycerides, mg/dL | −0.080 ** | −0.105 ** | −0.032 |
FPG, mg/dL | −0.130 ** | −0.134 ** | −0.107 ** |
HbA1c, % | −0.108 ** | −0.168 ** | −0.061 |
BMI | −0.111 ** | −0.077 * | −0.126 ** |
WC, cm | −0.150 ** | −0.144 ** | −0.110 ** |
CAVI | −0.125 ** | −0.118 ** | −0.101 ** |
baPWV, m/s | −0.140 ** | −0.108 ** | −0.142 ** |
All Subjects Included | ||||
---|---|---|---|---|
Overall | β | (95% CI) | p | |
BaPWV, m/s | −0.126 | (−0.164 to −0.089) | <0.001 | |
CAVI | −0.045 | (−0.062 to −0.028) | <0.001 | |
Men | ||||
BaPWV, m/s | −0.147 | (−0.196 to −0.098) | <0.001 | |
CAVI | −0.046 | (−0.067 to −0.024) | <0.001 | |
Women | ||||
BaPWV, m/s | −0.087 | (−0.145 to −0.029) | 0.004 | |
CAVI | −0.044 | (−0.070 to −0.018) | 0.001 | |
Without insulin resistance | ||||
Overall | ||||
BaPWV, m/s | −0.128 | (−0.177 to −0.079) | <0.001 | |
CAVI | −0.050 | (−0.072 to −0.028) | <0.001 | |
Men | ||||
BaPWV, m/s | −0.154 | (−0.222 to −0.086) | <0.001 | |
CAVI | −0.046 | (−0.076 to −0.016) | 0.002 | |
Women | ||||
BaPWV, m/s | −0.093 | (−0.163 to −0.023) | 0.009 | |
CAVI | −0.053 | (−0.086 to −0.020) | 0.002 | |
With insulin resistance | ||||
Overall | ||||
BaPWV, m/s | −0.080 | (−0.139 to −0.022) | 0.007 | |
CAVI | −0.035 | (−0.061 to −0.009) | 0.007 | |
Men | ||||
BaPWV, m/s | −0.111 | (−0.185 to −0.038) | 0.003 | |
CAVI | −0.042 | (−0.074 to −0.009) | 0.012 | |
Women | ||||
BaPWV, m/s | −0.030 | (−0.126 to 0.067) | 0.549 | |
CAVI | −0.024 | (−0.066 to 0.018) | 0.265 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez-Sánchez, M.; Gómez-Sánchez, L.; Llamas-Ramos, R.; Rodríguez-Sánchez, E.; García-Ortiz, L.; Martí-Lluch, R.; Rodríguez, M.C.; Llamas-Ramos, I.; Gómez-Marcos, M.A. Relationship between the Mediterranean Diet and Vascular Function in Subjects with and without Increased Insulin Resistance. Nutrients 2024, 16, 3106. https://doi.org/10.3390/nu16183106
Gómez-Sánchez M, Gómez-Sánchez L, Llamas-Ramos R, Rodríguez-Sánchez E, García-Ortiz L, Martí-Lluch R, Rodríguez MC, Llamas-Ramos I, Gómez-Marcos MA. Relationship between the Mediterranean Diet and Vascular Function in Subjects with and without Increased Insulin Resistance. Nutrients. 2024; 16(18):3106. https://doi.org/10.3390/nu16183106
Chicago/Turabian StyleGómez-Sánchez, Marta, Leticia Gómez-Sánchez, Rocío Llamas-Ramos, Emiliano Rodríguez-Sánchez, Luis García-Ortiz, Ruth Martí-Lluch, María Cortés Rodríguez, Inés Llamas-Ramos, and Manuel A. Gómez-Marcos. 2024. "Relationship between the Mediterranean Diet and Vascular Function in Subjects with and without Increased Insulin Resistance" Nutrients 16, no. 18: 3106. https://doi.org/10.3390/nu16183106
APA StyleGómez-Sánchez, M., Gómez-Sánchez, L., Llamas-Ramos, R., Rodríguez-Sánchez, E., García-Ortiz, L., Martí-Lluch, R., Rodríguez, M. C., Llamas-Ramos, I., & Gómez-Marcos, M. A. (2024). Relationship between the Mediterranean Diet and Vascular Function in Subjects with and without Increased Insulin Resistance. Nutrients, 16(18), 3106. https://doi.org/10.3390/nu16183106