Sum of Skinfold-Corrected Girths Correlates with Resting Energy Expenditure: Development of the NRGCO Equation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Setting
2.3. Participants
2.4. Variables
2.5. Data Sources/Measurement
2.5.1. Anthropometry-Based Analysis of Body Composition
2.5.2. Resting Energy Expenditure
2.5.3. Physical Activity Level
2.6. Study Size
2.7. Statistical Methods
3. Results
3.1. Participants
3.2. External Validation of the REE Equations in the Colombian Population
3.3. Development of the NRGCO Equation
3.4. Validation of the NRGCO Equation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Psota, T.; Chen, K.Y. Measuring energy expenditure in clinical populations: Rewards and challenges. Eur. J. Clin. Nutr. 2013, 67, 436–442. [Google Scholar] [CrossRef] [PubMed]
- Bonilla, D.A.; Peralta-Alzate, J.O.; Bonilla-Henao, J.A.; Cannataro, R.; Cardozo, L.A.; Vargas-Molina, S.; Stout, J.R.; Kreider, R.B.; Petro, J.L. Insights into Non-Exercise Physical Activity on Control of Body Mass: A Review with Practical Recommendations. J. Funct. Morphol. Kinesiol. 2023, 8, 44. [Google Scholar] [CrossRef] [PubMed]
- Westerterp, K.R. Energy Expenditure and Intake Methods. In Nutrition Research Methodologies; Lovegrove, J.A., Hodson, L., Sharma, S., Lanham-New, S.A., Eds.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2015; pp. 186–197. [Google Scholar]
- Calcagno, M.; Kahleova, H.; Alwarith, J.; Burgess, N.N.; Flores, R.A.; Busta, M.L.; Barnard, N.D. The Thermic Effect of Food: A Review. J. Am. Coll. Nutr. 2019, 38, 547–551. [Google Scholar] [CrossRef] [PubMed]
- Caspersen, C.J.; Powell, K.E.; Christenson, G.M. Physical activity, exercise, and physical fitness: Definitions and distinctions for health-related research. Public Health Rep. 1985, 100, 126–131. [Google Scholar]
- Chung, N.; Park, M.Y.; Kim, J.; Park, H.Y.; Hwang, H.; Lee, C.H.; Han, J.S.; So, J.; Park, J.; Lim, K. Non-exercise activity thermogenesis (NEAT): A component of total daily energy expenditure. J. Exerc. Nutr. Biochem. 2018, 22, 23–30. [Google Scholar] [CrossRef]
- Bobba-Alves, N.; Juster, R.P.; Picard, M. The energetic cost of allostasis and allostatic load. Psychoneuroendocrinology 2022, 146, 105951. [Google Scholar] [CrossRef]
- Alfonzo-Gonzalez, G.; Doucet, E.; Almeras, N.; Bouchard, C.; Tremblay, A. Estimation of daily energy needs with the FAO/WHO/UNU 1985 procedures in adults: Comparison to whole-body indirect calorimetry measurements. Eur. J. Clin. Nutr. 2004, 58, 1125–1131. [Google Scholar] [CrossRef]
- Amaro-Gahete, F.J.; Sanchez-Delgado, G.; Alcantara, J.M.A.; Martinez-Tellez, B.; Munoz-Hernandez, V.; Merchan-Ramirez, E.; Lof, M.; Labayen, I.; Ruiz, J.R. Congruent Validity of Resting Energy Expenditure Predictive Equations in Young Adults. Nutrients 2019, 11, 223. [Google Scholar] [CrossRef]
- Fernandez-Verdejo, R.; Galgani, J.E. Predictive equations for energy expenditure in adult humans: From resting to free-living conditions. Obesity 2022, 30, 1537–1548. [Google Scholar] [CrossRef]
- Henry, C.J. Basal metabolic rate studies in humans: Measurement and development of new equations. Public Health Nutr. 2005, 8, 1133–1152. [Google Scholar] [CrossRef]
- Mifflin, M.D.; St Jeor, S.T.; Hill, L.A.; Scott, B.J.; Daugherty, S.A.; Koh, Y.O. A new predictive equation for resting energy expenditure in healthy individuals. Am. J. Clin. Nutr. 1990, 51, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Willis, E.A.; Herrmann, S.D.; Ptomey, L.T.; Honas, J.J.; Bessmer, C.T.; Donnelly, J.E.; Washburn, R.A. Predicting resting energy expenditure in young adults. Obes. Res. Clin. Pract. 2016, 10, 304–314. [Google Scholar] [CrossRef] [PubMed]
- De la Cruz Marcos, S.; de Mateo Silleras, B.; Camina Martin, M.A.; Carreno Enciso, L.; Mijan de la Torre, A.; Galgani Fuentes, J.E.; Redondo del Rio, M.P. Proposal for a New Formula for Estimating Resting Energy Expenditure for Healthy Spanish Population. Nutr. Hosp. 2015, 32, 2346–2352. [Google Scholar] [CrossRef] [PubMed]
- Weijs, P.J.; Vansant, G.A. Validity of predictive equations for resting energy expenditure in Belgian normal weight to morbid obese women. Clin. Nutr. 2010, 29, 347–351. [Google Scholar] [CrossRef]
- Wilms, B.; Schmid, S.M.; Ernst, B.; Thurnheer, M.; Mueller, M.J.; Schultes, B. Poor prediction of resting energy expenditure in obese women by established equations. Metabolism 2010, 59, 1181–1189. [Google Scholar] [CrossRef]
- Karachaliou, A.; Anastasiou, C.A.; Bletsa, M.; Mantzaris, G.J.; Archavlis, E.; Karampekos, G.; Tzouvala, M.; Zacharopoulou, E.; Veimou, C.; Bamias, G.; et al. Poor performance of predictive equations to estimate resting energy expenditure in patients with Crohn’s disease. Br. J. Nutr. 2022, 129, 1–31. [Google Scholar] [CrossRef]
- Purcell, S.A.; Elliott, S.A.; Baracos, V.E.; Chu, Q.S.C.; Sawyer, M.B.; Mourtzakis, M.; Easaw, J.C.; Spratlin, J.L.; Siervo, M.; Prado, C.M. Accuracy of Resting Energy Expenditure Predictive Equations in Patients With Cancer. Nutr. Clin. Pract. 2019, 34, 922–934. [Google Scholar] [CrossRef]
- Hornell, A.; Berg, C.; Forsum, E.; Larsson, C.; Sonestedt, E.; Akesson, A.; Lachat, C.; Hawwash, D.; Kolsteren, P.; Byrnes, G.; et al. Perspective: An Extension of the STROBE Statement for Observational Studies in Nutritional Epidemiology (STROBE-nut): Explanation and Elaboration. Adv. Nutr. 2017, 8, 652–678. [Google Scholar] [CrossRef]
- Lachat, C.; Hawwash, D.; Ocke, M.C.; Berg, C.; Forsum, E.; Hornell, A.; Larsson, C.; Sonestedt, E.; Wirfalt, E.; Akesson, A.; et al. Strengthening the Reporting of Observational Studies in Epidemiology-Nutritional Epidemiology (STROBE-nut): An Extension of the STROBE Statement. Nutr. Bull. 2016, 13, e1002036. [Google Scholar] [CrossRef]
- Herrera-Amante, C.A.; Ramos-Garcia, C.O.; Alacid, F.; Quiroga-Morales, L.A.; Martinez-Rubio, A.J.; Bonilla, D.A. Development of alternatives to estimate resting metabolic rate from anthropometric variables in paralympic swimmers. J. Sports Sci. 2021, 39, 2133–2143. [Google Scholar] [CrossRef]
- Bonilla, D.A.; Duque-Zuluaga, L.T.; Munoz-Urrego, L.P.; Franco-Hoyos, K.; Agudelo-Martinez, A.; Kammerer-Lopez, M.; Petro, J.L.; Kreider, R.B. Development and Validation of a Novel Waist Girth-Based Equation to Estimate Fat Mass in Young Colombian Elite Athletes (F20(CA) Equation): A STROSA-Based Study. Nutrients 2022, 14, 4059. [Google Scholar] [CrossRef] [PubMed]
- Esparza-Ros, F.; Vaquero-Cristóbal, R.; Marfell-Jones, M. International Standards for Anthropometric Assessment; International Society for the Advancement of Kinanthropometry (ISAK): Glasgow, Scotland, 2019. [Google Scholar]
- Bonilla, D.A.; De Leon, L.G.; Alexander-Cortez, P.; Odriozola-Martinez, A.; Herrera-Amante, C.A.; Vargas-Molina, S.; Petro, J.L. Simple anthropometry-based calculations to monitor body composition in athletes: Scoping review and reference values. Nutr. Health 2022, 28, 95–109. [Google Scholar] [CrossRef] [PubMed]
- Martin, A.D.; Spenst, L.F.; Drinkwater, D.T.; Clarys, J.P. Anthropometric estimation of muscle mass in men. Med. Sci. Sports Exerc. 1990, 22, 729–733. [Google Scholar] [CrossRef] [PubMed]
- Crouter, S.E.; LaMunion, S.R.; Hibbing, P.R.; Kaplan, A.S.; Bassett, D.R., Jr. Accuracy of the Cosmed K5 portable calorimeter. PLoS ONE 2019, 14, e0226290. [Google Scholar] [CrossRef] [PubMed]
- Guidetti, L.; Meucci, M.; Bolletta, F.; Emerenziani, G.P.; Gallotta, M.C.; Baldari, C. Validity, reliability and minimum detectable change of COSMED K5 portable gas exchange system in breath-by-breath mode. PLoS ONE 2018, 13, e0209925. [Google Scholar] [CrossRef]
- McLaughlin, J.E.; King, G.A.; Howley, E.T.; Bassett, D.R., Jr.; Ainsworth, B.E. Validation of the COSMED K4 b2 portable metabolic system. Int. J. Sports Med. 2001, 22, 280–284. [Google Scholar] [CrossRef]
- DeBlois, J.P.; White, L.E.; Barreira, T.V. Reliability and validity of the COSMED K5 portable metabolic system during walking. Eur. J. Appl. Physiol. 2021, 121, 209–217. [Google Scholar] [CrossRef]
- Compher, C.; Frankenfield, D.; Keim, N.; Roth-Yousey, L.; Evidence Analysis Working Group. Best practice methods to apply to measurement of resting metabolic rate in adults: A systematic review. J. Am. Diet. Assoc. 2006, 106, 881–903. [Google Scholar] [CrossRef]
- Harris, J.A.; Benedict, F.G. A Biometric Study of Human Basal Metabolism. Proc. Natl. Acad. Sci. USA 1918, 4, 370–373. [Google Scholar] [CrossRef]
- World Health Organization. Energy and Protein Requirements: Report of A Joint FAO/WHO/UNU Expert Consultation. In Energy and Protein Requirements: Report of A Joint FAO/WHO/UNU Expert Consultation; World Health Organization: Geneva, Switzerland, 1985; p. 206. [Google Scholar]
- Craig, C.; Marshall, A.; Sjostrom, M.; Bauman, A.; Lee, P.; Macfarlane, D.; Lam, T.; Stewart, S. International physical activity questionnaire-short form. J. Am. Coll. Health 2017, 65, 492–501. [Google Scholar]
- Lee, P.H.; Macfarlane, D.J.; Lam, T.H.; Stewart, S.M. Validity of the international physical activity questionnaire short form (IPAQ-SF): A systematic review. Int. J. Behav. Nutr. Phys. Act. 2011, 8, 115. [Google Scholar] [CrossRef] [PubMed]
- Knofczynski, G.T.; Mundfrom, D. Sample sizes when using multiple linear regression for prediction. J. Educ. Psychol. Meas. 2008, 68, 431–442. [Google Scholar] [CrossRef]
- Vaccaro, M.G.; Innocenti, B.; Cione, E.; Gallelli, L.; De Sarro, G.; Bonilla, D.A.; Cannataro, R. Acute effects of a chewable beetroot-based supplement on cognitive performance: A double-blind randomized placebo-controlled crossover clinical trial. Eur. J. Nutr. 2024, 63, 303–321. [Google Scholar] [CrossRef] [PubMed]
- Algina, J.; Keselman, H.J.; Penfield, R.D. An alternative to Cohen’s standardized mean difference effect size: A robust parameter and confidence interval in the two independent groups case. Psychol. Methods 2005, 10, 317–328. [Google Scholar] [CrossRef] [PubMed]
- Mair, P.; Wilcox, R. Robust statistical methods in R using the WRS2 package. Behav. Res. Methods 2020, 52, 464–488. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing [Computer Software]. Available online: https://www.R-project.org/ (accessed on 15 May 2024).
- Frankenfield, D.; Roth-Yousey, L.; Compher, C. Comparison of predictive equations for resting metabolic rate in healthy nonobese and obese adults: A systematic review. J. Am. Diet. Assoc. 2005, 105, 775–789. [Google Scholar] [CrossRef]
- Ten Haaf, T.; Weijs, P.J. Resting energy expenditure prediction in recreational athletes of 18–35 years: Confirmation of Cunningham equation and an improved weight-based alternative. PLoS ONE 2014, 9, e108460. [Google Scholar] [CrossRef]
- Londoño-Londoño, L.M.; Montoya-Bernal, Á.P.; Arango, F.; Escobar-Serna, J.F.; Florián Pérez, M.C.; Trejos-Gallego, D. Concordancia entre la calorimetría indirecta y las ecuaciones predictivas para estimar gasto energético en reposo. Rev. De Nutr. Clínica Y Metab. 2024, 7, 23–32. [Google Scholar] [CrossRef]
- Ocagli, H.; Lanera, C.; Azzolina, D.; Piras, G.; Soltanmohammadi, R.; Gallipoli, S.; Gafare, C.E.; Cavion, M.; Roccon, D.; Vedovelli, L.; et al. Resting Energy Expenditure in the Elderly: Systematic Review and Comparison of Equations in an Experimental Population. Nutrients 2021, 13, 458. [Google Scholar] [CrossRef]
- Orozco-Ruiz, X.; Pichardo-Ontiveros, E.; Tovar, A.R.; Torres, N.; Medina-Vera, I.; Prinelli, F.; Lafortuna, C.L.; Guevara-Cruz, M. Development and validation of new predictive equation for resting energy expenditure in adults with overweight and obesity. Clin. Nutr. 2018, 37, 2198–2205. [Google Scholar] [CrossRef]
- Spurr, G.B.; Dufour, D.L.; Reina, J.C.; Hoffmann, R.G.; Waslien, C.I.; Staten, L.K. Variation of the basal metabolic rate and dietary energy intake of Colombian women during 1 y. Am. J. Clin. Nutr. 1994, 59, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Gómez Maquet, S.; Restrepo Betancur, L.F.; Velásquez Vargas, J.E.; Rodríguez Vargas, D.; Deossa Restrepo, G.C. Comparación entre ecuaciones para estimar el requerimiento energético en mujeres antioqueñas con exceso de peso (Colombia). Rev. Nutr. Clínica Dietética Hosp. 2018, 38, 25–33. [Google Scholar] [CrossRef]
- Mondragón-Cardona, Á.; Bonilla-Escobar, F.J.; Álzate-Carvajal, V.; Rojas-Mirquez, J.C.; Jiménez-Canizales, C.E.; Tobón-García, D.; Vásquez, F.; Jaramillo-Sánchez, J.D. Physical activity in a rural community in Colombia. Rev. Salud Pública 2016, 18, 794–807. [Google Scholar] [CrossRef] [PubMed]
- Heymsfield, S.B.; Gallagher, D.; Kotler, D.P.; Wang, Z.; Allison, D.B.; Heshka, S. Body-size dependence of resting energy expenditure can be attributed to nonenergetic homogeneity of fat-free mass. Am. J. Physiol.-Endocrinol. Metab. 2002, 282, E132–E138. [Google Scholar] [CrossRef]
- Perez-Suarez, I.; Martin-Rincon, M.; Gonzalez-Henriquez, J.J.; Fezzardi, C.; Perez-Regalado, S.; Galvan-Alvarez, V.; Juan-Habib, J.W.; Morales-Alamo, D.; Calbet, J.A.L. Accuracy and precision of the COSMED K5 portable analyser. Front. Physiol. 2018, 9, 1764. [Google Scholar] [CrossRef]
- Leal-Martín, J.; Mañas, A.; Alfaro-Acha, A.; García-García, F.J.; Ara, I. Optimization of VO2 and VCO2 outputs for the calculation of resting metabolic rate using a portable indirect calorimeter. J. Med. Sci. Sports 2023, 33, 1648–1660. [Google Scholar] [CrossRef]
- Pinnington, H.C.; Wong, P.; Tay, J.; Green, D.; Dawson, B. The level of accuracy and agreement in measures of FEO2, FECO2 and VE between the Cosmed K4b2 portable, respiratory gas analysis system and a metabolic cart. J. Sci. Med. Sport 2001, 4, 324–335. [Google Scholar] [CrossRef]
- Brehm, M.-A.; Harlaar, J.; Groepenhof, H. Validation of the portable VmaxST system for oxygen-uptake measurement. Gait Posture 2004, 20, 67–73. [Google Scholar] [CrossRef]
- Schrack, J.A.; Simonsick, E.M.; Ferrucci, L. Comparison of the Cosmed K4b2 portable metabolic system in measuring steady-state walking energy expenditure. PLoS ONE 2010, 5, e9292. [Google Scholar] [CrossRef]
- Littlewood, R.; White, M.; Bell, K.; Davies, P.; Cleghorn, G.J.; Grote, R. Comparison of the Cosmed K4 b2 and the Deltatrac IITM metabolic cart in measuring resting energy expenditure in adults. Clin. Nutr. 2002, 21, 491–497. [Google Scholar] [CrossRef]
Variable | All (n = 86) (SD) [95% CI] | EDG (n = 71) (SD) [95% CI] | VG (n = 15) (SD) [95% CI] | ξ | p Value | |
---|---|---|---|---|---|---|
Sex | Women | 43 (50.00%) | 35 (49.29%) | 8 (53.33%) | ||
Men | 43 (50.00%) | 36 (50.70%) | 7 (46.66%) | |||
Region | Medellín | 44 (51.16%) | 38 (53.52%) | 6 (40.0%) | ||
Bogotá | 42 (48.83%) | 33 (46.47%) | 9 (60.0%) | |||
PAL | Moderate | 14 (16.27%) | 12 (16.90%) | 2 (13.33%) | ||
High | 72 (83.72%) | 59 (83.09%) | 13 (86.66%) | |||
Age (years) | 27.5 (7.72) [25.8, 29.1] | 27.4 (7.53) [25.6, 29.1] | 28.1 (8.84) [23.2, 33.0] | 0.137 | 0.738 | |
Body mass (kg) | 67.0 (13.8) [64.0, 69.9] | 67.5 (13.9) [64.2, 70.9] | 64.3 (13.1) [57.0, 71.5] | 0.140 | 0.535 | |
Stature (cm) | 167.0 (8.65) [165, 169] | 168.0 (8.52) [166, 170] | 165.0 (9.13) [160, 170] | 0.261 | 0.309 | |
BMI (kg/m2) | 23.8 (3.65) [23.0, 24.5] | 23.8 (3.68) [22.9, 24.7] | 23.5 (3.61) [21.5, 25.5] | 0.127 | 0.985 | |
Waist (cm) | 76.1 (9.36) [74.1, 78.1] | 76.0 (9.54) [73.8, 78.3] | 76.2 (8.75) [71.4, 81.0] | 0.133 | 0.976 | |
BM/W (m/m) | 87.3 (9.49) [85.3, 89.3] | 88.1 (9.41) [85.8, 90.3] | 83.6 (9.31) [78.5, 88.8] | 0.429 | 0.091 | |
W/Stature (cm/cm) | 0.45 (0.04) [0.44, 0.46] | 0.45 (0.04) [0.44, 0.46] | 0.46 (0.04) [0.43, 0.48] | 0.164 | 0.455 | |
∑6S (mm) | 84.5 (30.9) [77.9, 91.1] | 84.3 (30.5) [77.1, 91.5] | 85.2 (34.0) [66.4, 104] | 0.149 | 0.758 | |
∑8S (mm) | 108.0 (39.4) [99.4, 116] | 108.0 (38.6) [98.9, 117] | 107.0 (44.2) [82.4, 131] | 0.122 | 0.600 | |
Arm CG (cm) | 26.6 (5.10) [25.5, 27.7] | 26.8 (5.25) [25.5, 28.0] | 25.5 (4.28) [23.2, 28.0] | 0.143 | 0.679 | |
Thigh CG (cm) | 48.2 (6.67) [46.8, 49.6] | 48.5 (6.86) [46.9, 50.1] | 46.7 (5.62) [43.6, 49.8] | 0.199 | 0.365 | |
Leg CG (cm) | 32.5 (3.32) [31.8, 33.3] | 32.8 (3.39) [32.0, 33.6] | 31.4 (2.75) [29.9, 32.9] | 0.282 | 0.281 | |
∑3CG (mm) | 107.0 (14.4) [104, 110] | 108.0 (14.8) [105, 112] | 104.0 (12.1) [97, 110] | 0.185 | 0.463 | |
∑3D (mm) | 20.7 (1.51) [20.3, 21.0] | 20.7 (1.45) [20.4, 21.1] | 20.3 (1.78) [19.3, 21.3] | 0.205 | 0.356 | |
REE (kcal) | 1796 (415) [1707, 1885] | 1797 (412) [1700, 1895] | 1791 (443) [1545, 2036] | 0.112 | 0.821 |
Predictor | b [95% CI] | beta [95% CI] | r |
---|---|---|---|
(Intercept) | 386.26 [−567.02, 1339.54] | ||
Age | −7.42 [−17.04, 2.21] | −0.14 [−0.31, 0.04] | 0.12 |
BM | 24.31 [11.74, 36.88] ** | 0.82 [0.40, 1.25] | 0.68 ** |
Corrected Calf | 38.63 [−1.11, 78.37] | 0.32 [−0.01, 0.64] | 0.67 ** |
Corrected Thigh | −21.35 [−44.71, 2.01] | −0.36 [−0.74, 0.03] | 0.60 ** |
∑8S | −2.40 [−4.54, −0.26] * | −0.22 [−0.43, −0.02] | −0.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Restrepo-Botero, D.A.; Rincón-Yepes, C.A.; Franco-Hoyos, K.; Agudelo-Martínez, A.; Cardozo, L.A.; Duque-Zuluaga, L.T.; Vélez-Gutiérrez, J.M.; Rojas-Jaramillo, A.; Petro, J.L.; Kreider, R.B.; et al. Sum of Skinfold-Corrected Girths Correlates with Resting Energy Expenditure: Development of the NRGCO Equation. Nutrients 2024, 16, 3121. https://doi.org/10.3390/nu16183121
Restrepo-Botero DA, Rincón-Yepes CA, Franco-Hoyos K, Agudelo-Martínez A, Cardozo LA, Duque-Zuluaga LT, Vélez-Gutiérrez JM, Rojas-Jaramillo A, Petro JL, Kreider RB, et al. Sum of Skinfold-Corrected Girths Correlates with Resting Energy Expenditure: Development of the NRGCO Equation. Nutrients. 2024; 16(18):3121. https://doi.org/10.3390/nu16183121
Chicago/Turabian StyleRestrepo-Botero, Diego A., Camilo A. Rincón-Yepes, Katherine Franco-Hoyos, Alejandra Agudelo-Martínez, Luis A. Cardozo, Leidy T. Duque-Zuluaga, Jorge M. Vélez-Gutiérrez, Andrés Rojas-Jaramillo, Jorge L. Petro, Richard B. Kreider, and et al. 2024. "Sum of Skinfold-Corrected Girths Correlates with Resting Energy Expenditure: Development of the NRGCO Equation" Nutrients 16, no. 18: 3121. https://doi.org/10.3390/nu16183121
APA StyleRestrepo-Botero, D. A., Rincón-Yepes, C. A., Franco-Hoyos, K., Agudelo-Martínez, A., Cardozo, L. A., Duque-Zuluaga, L. T., Vélez-Gutiérrez, J. M., Rojas-Jaramillo, A., Petro, J. L., Kreider, R. B., Cannataro, R., & Bonilla, D. A. (2024). Sum of Skinfold-Corrected Girths Correlates with Resting Energy Expenditure: Development of the NRGCO Equation. Nutrients, 16(18), 3121. https://doi.org/10.3390/nu16183121