Global Incidence of Diarrheal Diseases—An Update Using an Interpretable Predictive Model Based on XGBoost and SHAP: A Systematic Analysis
Abstract
:1. Introduction
2. Methods
2.1. Data Sources, Definitions
2.2. Demographic, Meteorological, and Health Condition Data
2.3. Statistical Analysis
2.4. Ethical Considerations
3. Results
3.1. Sensitivity Analysis, Modeling Fitting, and Validation
3.2. Diarrheal Disease Profiles
3.3. Feature Analysis
4. Discussion
4.1. Global Trends in Diarrheal Disease Incidence: 1990–2040
4.2. The Role of SHAP Analysis in Identifying Key Drivers of Diarrhea Incidence
4.3. The Impact of Climate Factors and Access to Safely Managed Drinking Water and Sanitation Services on Diarrhea Incidence
4.4. Trends in Diarrheal Disease Incidence among Children and the Elderly
4.5. The Impact of Population Aging on Future Diarrheal Disease Burden
4.6. Accounting for Variations in Disease Registration and the Role of Sanitation and Health Interventions in Predicting Future Diarrheal Disease Trends
4.7. The Influence of SDI on Diarrheal Disease Burden and the Challenges of Data Accuracy
4.8. Forecasting Diarrheal Disease: Data Challenges and Modeling Strategies
4.9. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. The Treatment of Diarrhoea: A Manual for Physicians and Other Senior Health Workers, 4th ed.; World Health Organization: Geneva, Switzerland, 2005; Available online: https://apps.who.int/iris/handle/10665/43209 (accessed on 8 January 2023).
- American Academy of Pediatrics; Provisional Committee on Quality Improvement; Subcommittee on Acute Gastroenteritis. Practice parameter: The management of acute gastroenteritis in young children. Pediatrics 1996, 97, 424–435. [Google Scholar] [CrossRef]
- Guerrant, R.L.; Van Gilder, T.; Steiner, T.S.; Thielman, N.M.; Slutsker, L.; Tauxe, R.V.; Hennessy, T.; Griffin, P.M.; DuPont, H.; Sack, R.B.; et al. Practice guidelines for the management of infectious diarrhea. Clin. Infect. Dis. 2001, 32, 331–351. [Google Scholar] [CrossRef]
- Schiller, L.R.; Pardi, D.S.; Sellin, J.H. Chronic Diarrhea: Diagnosis and Management. Clin. Gastroenterol. Hepatol. 2017, 15, 182–193.e183. [Google Scholar] [CrossRef] [PubMed]
- Steffen, R.; Hill, D.R.; DuPont, H.L. Traveler’s diarrhea: A clinical review. JAMA 2015, 313, 71–80. [Google Scholar] [CrossRef]
- World Health Organization. Diarrhoea|Symptoms. Available online: https://www.who.int/health-topics/diarrhoea#tab=tab_2 (accessed on 9 January 2023).
- Al-Worafi, Y.M. Infectious Disease Causes and Risk Factors in Developing Countries: Pediatrics. In Handbook of Medical and Health Sciences in Developing Countries: Education, Practice, and Research; Springer: Cham, Switzerland, 2023; pp. 1–18. [Google Scholar]
- World Health Organization. Diarrhoea|Overview. 2019. Available online: https://www.who.int/health-topics/diarrhoea#tab=tab_1 (accessed on 8 January 2023).
- World Health Organization. Diarrhoeal|Disease. 2017. Available online: https://www.who.int/news-room/fact-sheets/detail/diarrhoeal-disease (accessed on 8 January 2023).
- Troeger, C.; Blacker, B.F.; Khalil, I.A.; Rao, P.C.; Cao, S.; Zimsen, S.R.; Albertson, S.B.; Stanaway, J.D.; Deshpande, A.; Abebe, Z. Estimates of the global, regional, and national morbidity, mortality, and aetiologies of diarrhoea in 195 countries: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Infect. Dis. 2018, 18, 1211–1228. [Google Scholar] [CrossRef]
- GBD 2017 Diarrhoeal Disease Collaborators. Quantifying risks and interventions that have affected the burden of diarrhoea among children younger than 5 years: An analysis of the Global Burden of Disease Study 2017. Lancet Infect. Dis. 2020, 20, 37–59. [Google Scholar] [CrossRef]
- GBD Diarrhoeal Diseases Collaborators. Estimates of global, regional, and national morbidity, mortality, and aetiologies of diarrhoeal diseases: A systematic analysis for the Global Burden of Disease Study 2015. Lancet Infect. Dis. 2017, 17, 909–948. [Google Scholar] [CrossRef]
- Fosse, E.; Winship, C. Analyzing age-period-cohort data: A review and critique. Annu. Rev. Sociol. 2019, 45, 467–492. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- LANL Earthquake Prediction. 2019. Available online: https://www.kaggle.com/competitions/LANL-Earthquake-Prediction/data (accessed on 30 January 2024).
- Yan, K. Student Performance Prediction Using XGBoost Method from A Macro Perspective. In Proceedings of the 2nd International Conference on Computing and Data Science (CDS), Stanford, CA, USA, 28–29 January 2021; pp. 453–459. [Google Scholar]
- Zhang, P.; Jia, Y.; Shang, Y. Research and application of XGBoost in imbalanced data. Int. J. Distrib. Sens. Netw. 2022, 18, 15501329221106935. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, S. Particle swarm optimization-XGBoost-based modeling of radio-frequency power amplifier under different temperatures. Int. J. Numer. Model. Electron. Netw. Devices Fields 2024, 37, e3168. [Google Scholar] [CrossRef]
- GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1204–1222. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, S.M.; Lee, S.-I. A unified approach to interpreting model predictions. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 4768–4777. [Google Scholar]
- GBD 2019 Risk Factors Collaborators. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1223–1249. [Google Scholar] [CrossRef]
- The Global Health Data. Available online: https://vizhub.healthdata.org/gbd-results/ (accessed on 8 January 2023).
- Du, Y.; Chen, C.; Zhang, X.; Yan, D.; Jiang, D.; Liu, X.; Yang, M.; Ding, C.; Lan, L.; Hecht, R.; et al. Global burden and trends of rotavirus infection-associated deaths from 1990 to 2019: An observational trend study. Virol. J. 2022, 19, 166. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Xue, L.; Guo, Y.; Du, J.; Nan, K.; Li, M. Global, regional and national burden of non-Hodgkin lymphoma from 1990 to 2017: Estimates from global burden of disease study in 2017. Ann. Med. 2022, 54, 633–645. [Google Scholar] [CrossRef] [PubMed]
- Global Health Data Exchange. Global Burden of Disease Study 2019 (GBD 2019) Socio-Demographic Index (SDI) 1950–2019. 2022. Available online: https://ghdx.healthdata.org/record/ihme-data/gbd-2019-socio-demographic-index-sdi-1950-2019 (accessed on 7 February 2023).
- Institute for Heath Metrics and Evaluation. Global Fertility, Mortality, Migration, and Population Forecasts 2017–2100. 2020. Available online: https://ghdx.healthdata.org/record/ihme-data/global-population-forecasts-2017-2100 (accessed on 14 February 2023).
- World Health Organization. SDG Goal 6 Ensure Availability and Sustainable Management of Water and Sanitation for All. 2015. Available online: https://www.who.int/data/gho/data/themes/topics/sdg-target-6-ensure-availability-and-sustainable-management-of-water-and-sanitation-for-all (accessed on 15 May 2024).
- Hankey, B.F.; Ries, L.A.; Kosary, C.L.; Feuer, E.J.; Merrill, R.M.; Clegg, L.X.; Edwards, B.K. Partitioning linear trends in age-adjusted rates. Cancer Causes Control 2000, 11, 31–35. [Google Scholar] [CrossRef]
- Liu, X.; Jiang, J.; Yu, C.; Wang, Y.; Sun, Y.; Tang, J.; Chen, T.; Bi, Y.; Liu, Y.; Zhang, Z.J. Secular trends in incidence and mortality of bladder cancer in China, 1990-2017: A joinpoint and age-period-cohort analysis. Cancer Epidemiol. 2019, 61, 95–103. [Google Scholar] [CrossRef]
- Chen, T.; He, T.; Benesty, M.; Khotilovich, V.; Tang, Y.; Cho, H.; Chen, K.; Mitchell, R.; Cano, I.; Zhou, T.; et al. Extreme Gradient Boosting, R package xgboost version 1.2.0.1; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Yang, L.; Allan, J. SHAPforxgboost: SHAP Plots for ‘XGBoost’. 2023. Available online: https://github.com/liuyanguu/SHAPforxgboost/ (accessed on 2 February 2023).
- Liu, X.; Cao, Y.; Wang, W. Burden of and Trends in Urticaria Globally, Regionally, and Nationally from 1990 to 2019: Systematic Analysis. JMIR Public Health Surveill. 2023, 9, e50114. [Google Scholar] [CrossRef]
- Oloruntoba, E.O.; Folarin, T.B.; Ayede, A.I. Hygiene and sanitation risk factors of diarrhoeal disease among under-five children in Ibadan, Nigeria. Afr. Health Sci. 2015, 14, 1001–1011. [Google Scholar] [CrossRef]
- Mertens, A.N.; Balakrishnan, K.; Ramaswamy, P.; Rajkumar, P.; Ramaprabha, P.; Durairaj, N.; Hubbard, A.E.; Khush, R.; Colford, J.M.; Arnold, B.F. Associations between High Temperature, Heavy Rainfall, and Diarrhea among Young Children in Rural Tamil Nadu, India: A Prospective Cohort Study. Environ. Health Perspect. 2019, 127, 047004. [Google Scholar] [CrossRef]
- Ikeda, T.; Kapwata, T.; Behera, S.K.; Minakawa, N.; Hashizume, M.; Sweijd, N.; Mathee, A.; Wright, C.Y. Climatic Factors in Relation to Diarrhoea Hospital Admissions in Rural Limpopo, South Africa. Atmosphere 2019, 10, 522. [Google Scholar] [CrossRef]
- Ma, S.L.; Tang, Q.L.; Liu, H.W.; He, J.; Gao, S.H. Correlation analysis for the attack of bacillary dysentery and meteorological factors based on the Chinese medicine theory of Yunqi and the medical-meteorological forecast model. Chin. J. Integr. Med. 2013, 19, 182–186. [Google Scholar] [CrossRef]
- Masinaei, M. Estimating the seasonally varying effect of meteorological factors on the district-level incidence of acute watery diarrhea among under-five children of Iran, 2014-2018: A Bayesian hierarchical spatiotemporal model. Int. J. Biometeorol. 2022, 66, 1125–1144. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Di, B.; Zhang, T.; Lu, Y.; Chen, C.; Wang, D.; Li, T.; Zhang, Z.; Yang, Z. Association of meteorological factors with infectious diarrhea incidence in Guangzhou, southern China: A time-series study (2006–2017). Sci. Total Environ. 2019, 672, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.; Xun, H.; Zhou, M.; Jiang, B.; Wang, S.; Guo, Q.; Wang, W.; Kang, R.; Wang, X.; Marley, G.; et al. Impacts of tropical cyclones and accompanying precipitation on infectious diarrhea in cyclone landing areas of Zhejiang Province, China. Int. J. Environ. Res. Public Health 2015, 12, 1054–1068. [Google Scholar] [CrossRef]
- Dhimal, M.; Bhandari, D.; Karki, K.B.; Shrestha, S.L.; Khanal, M.; Shrestha, R.R.P.; Dahal, S.; Bista, B.; Ebi, K.L.; Cissé, G.; et al. Effects of Climatic Factors on Diarrheal Diseases among Children below 5 Years of Age at National and Subnational Levels in Nepal: An Ecological Study. Int. J. Environ. Res. Public Health 2022, 19, 6138. [Google Scholar] [CrossRef]
- Aik, J.; Ong, J.; Ng, L.C. The effects of climate variability and seasonal influence on diarrhoeal disease in the tropical city-state of Singapore—A time-series analysis. Int. J. Hyg. Environ. Health 2020, 227, 113517. [Google Scholar] [CrossRef] [PubMed]
- Wangdi, K.; Clements, A.C. Spatial and temporal patterns of diarrhoea in Bhutan 2003–2013. BMC Infect. Dis. 2017, 17, 507. [Google Scholar] [CrossRef]
- Horn, L.M.; Hajat, A.; Sheppard, L.; Quinn, C.; Colborn, J.; Zermoglio, M.F.; Gudo, E.S.; Marrufo, T.; Ebi, K.L. Association between Precipitation and Diarrheal Disease in Mozambique. Int. J. Environ. Res. Public Health 2018, 15, 709. [Google Scholar] [CrossRef]
- Behera, D.K.; Mishra, S. The burden of diarrhea, etiologies, and risk factors in India from 1990 to 2019: Evidence from the global burden of disease study. BMC Public Health 2022, 22, 92. [Google Scholar] [CrossRef]
- GBD 2015 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388, 1545–1602. [Google Scholar] [CrossRef]
- Trinh, C.; Prabhakar, K. Diarrheal diseases in the elderly. Clin. Geriatr. Med. 2007, 23, 833–856. [Google Scholar] [CrossRef] [PubMed]
- Pera, A.; Campos, C.; López, N.; Hassouneh, F.; Alonso, C.; Tarazona, R.; Solana, R. Immunosenescence: Implications for response to infection and vaccination in older people. Maturitas 2015, 82, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Barbé-Tuana, F.; Funchal, G.; Schmitz, C.R.R.; Maurmann, R.M.; Bauer, M.E. The interplay between immunosenescence and age-related diseases. Semin. Immunopathol. 2020, 42, 545–557. [Google Scholar] [CrossRef] [PubMed]
- Pae, M.; Wu, D. Nutritional modulation of age-related changes in the immune system and risk of infection. Nutr. Res. 2017, 41, 14–35. [Google Scholar] [CrossRef] [PubMed]
- Mabbott, N.A.; Kobayashi, A.; Sehgal, A.; Bradford, B.M.; Pattison, M.; Donaldson, D.S. Aging and the mucosal immune system in the intestine. Biogerontology 2015, 16, 133–145. [Google Scholar] [CrossRef]
- Williams, J.J.; Beck, P.L.; Andrews, C.N.; Hogan, D.B.; Storr, M.A. Microscopic colitis—A common cause of diarrhoea in older adults. Age Ageing 2010, 39, 162–168. [Google Scholar] [CrossRef]
- Sellami, M.; Gasmi, M.; Denham, J.; Hayes, L.D.; Stratton, D.; Padulo, J.; Bragazzi, N. Effects of Acute and Chronic Exercise on Immunological Parameters in the Elderly Aged: Can Physical Activity Counteract the Effects of Aging? Front. Immunol. 2018, 9, 2187. [Google Scholar] [CrossRef]
- Barnett, J.B.; Dao, M.C.; Hamer, D.H.; Kandel, R.; Brandeis, G.; Wu, D.; Dallal, G.E.; Jacques, P.F.; Schreiber, R.; Kong, E.; et al. Effect of zinc supplementation on serum zinc concentration and T cell proliferation in nursing home elderly: A randomized, double-blind, placebo-controlled trial. Am. J. Clin. Nutr. 2016, 103, 942–951. [Google Scholar] [CrossRef]
- Goncalves-Mendes, N.; Talvas, J.; Dualé, C.; Guttmann, A.; Corbin, V.; Marceau, G.; Sapin, V.; Brachet, P.; Evrard, B.; Laurichesse, H.; et al. Impact of Vitamin D Supplementation on Influenza Vaccine Response and Immune Functions in Deficient Elderly Persons: A Randomized Placebo-Controlled Trial. Front. Immunol. 2019, 10, 65. [Google Scholar] [CrossRef]
- Pérez Martínez, G.; Bäuerl, C.; Collado, M.C. Understanding gut microbiota in elderly’s health will enable intervention through probiotics. Benef. Microbes 2014, 5, 235–246. [Google Scholar] [CrossRef]
- Rampatige, R.; Mikkelsen, L.; Hernandez, B.; Riley, I.; Lopez, A.D. Systematic review of statistics on causes of deaths in hospitals: Strengthening the evidence for policy-makers. Bull. World Health Organ. 2014, 92, 807–816. [Google Scholar] [CrossRef] [PubMed]
- Mahapatra, P.; Shibuya, K.; Lopez, A.D.; Coullare, F.; Notzon, F.C.; Rao, C.; Szreter, S. Civil registration systems and vital statistics: Successes and missed opportunities. Lancet 2007, 370, 1653–1663. [Google Scholar] [CrossRef] [PubMed]
- Koumamba, A.P.; Bisvigou, U.J.; Ngoungou, E.B.; Diallo, G. Health information systems in developing countries: Case of African countries. BMC Med. Inform. Decis. Mak. 2021, 21, 232. [Google Scholar] [CrossRef] [PubMed]
- Vieira, S.C.; Gurgel, R.Q.; Kirby, A.; Barreto, I.P.; Souza, L.D.; Oliveira, O.C.; de Barros Correia, J.; Dove, W.; Cunliffe, N.A.; Cuevas, L.E. Acute diarrhoea in a community cohort of children who received an oral rotavirus vaccine in Northeast Brazil. Mem. Inst. Oswaldo Cruz 2011, 106, 330–334. [Google Scholar] [CrossRef] [PubMed]
- Troeger, C.; Khalil, I.A.; Rao, P.C.; Cao, S.; Blacker, B.F.; Ahmed, T.; Armah, G.; Bines, J.E.; Brewer, T.G.; Colombara, D.V.; et al. Rotavirus Vaccination and the Global Burden of Rotavirus Diarrhea among Children Younger Than 5 Years. JAMA Pediatr. 2018, 172, 958–965. [Google Scholar] [CrossRef] [PubMed]
- GBD 2017 Causes of Death Collaborators. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1736–1788. [Google Scholar] [CrossRef]
- Meadows, A.J.; Oppenheim, B.; Guerrero, J.; Ash, B.; Badker, R.; Lam, C.K.; Pardee, C.; Ngoon, C.; Savage, P.T.; Sridharan, V.; et al. Infectious Disease Underreporting Is Predicted by Country-Level Preparedness, Politics, and Pathogen Severity. Health Secur. 2022, 20, 331–338. [Google Scholar] [CrossRef]
- Zaslavsky, A.M. Statistical issues in reporting quality data: Small samples and casemix variation. Int. J. Qual. Health Care 2001, 13, 481–488. [Google Scholar] [CrossRef]
- Dalziel, B.D.; Lau, M.S.Y.; Tiffany, A.; McClelland, A.; Zelner, J.; Bliss, J.; Grenfell, B.T. Unreported cases in the 2014–2016 Ebola epidemic: Spatiotemporal variation, and implications for estimating transmission. PLoS Neglected Trop. Dis. 2018, 12, e0006161. [Google Scholar] [CrossRef]
Region | Number × 100,000 (ASIRs per 100,000) | EAPC (95% UI) | Number × 100,000 (ASIRs per 100,000) | EAPC (95% UI) | ||
---|---|---|---|---|---|---|
1990 | 2019 | 1990–2019 | 2020 | 2040 | 2020–2040 | |
Global | 46,049.51 (85,833.63) | 65,816.83 (86,061.73) | −0.16 (−0.28, −0.05) | 67,262.79 (86,161.16) | 78,730.72 (83,349.25) | −0.07 (−0.14, 0.01) |
Andean Latin America | 311.34 (76,457.94) | 650.59 (105,214.12) | 1.08 (0.99, 1.16) | 651.98 (102,243.70) | 787.79 (93,164.18) | −0.31 (−0.41, −0.20) |
Australasia | 61.82 (30,908.51) | 100.88 (33,454.63) | 0.27 (0.18, 0.35) | 102.43 (33,366.34) | 129.63 (33,082.95) | −0.05 (−0.07, −0.04) |
Caribbean | 290.44 (86,224.07) | 520.04 (110,389.48) | 0.77 (0.70, 0.85) | 498.33 (105,357.46) | 561.57 (10,2690.05) | −0.06 (−0.12, −0.01) |
Central Asia | 518.76 (69,752.54) | 823.34 (87,143.83) | 1.05 (0.92, 1.17) | 824.36 (86,636.41) | 965.33 (86,903.44) | 0.01 (−0.01, 0.03) |
Central Europe | 1223.92 (102,329.91) | 886.37 (84,878.28) | −0.61 (−0.67, −0.56) | 917.62 (88,310.32) | 806.41 (86,796.12) | −0.09 (−0.13, −0.05) |
Central Latin America | 1525.59 (96,676.23) | 1592.78 (66,667.20) | −1.41 (−1.50, −1.32) | 1824.32 (70,943.54) | 2380.60 (74,147.92) | 0.15 (0.10, 0.20) |
Central Sub-Saharan Africa | 499.40 (92,683.24) | 1433.85 (123,486.14) | 1.08 (1.00, 1.16) | 1421.56 (120,794.10) | 2216.29 (118,582.53) | −0.07 (−0.11, −0.03) |
East Asia | 5594.63 (49,294.30) | 7549.93 (51,250.62) | −0.10 (−0.30, 0.11) | 7771.27 (51,690.12) | 9615.70 (54,882.91) | 0.37 (0.34, 0.40) |
Eastern Europe | 2125.40 (95,911.86) | 2100.59 (102,804.21) | 0.45 (0.34, 0.55) | 2093.80 (103,064.15) | 1925.23 (100,582.75) | −0.12 (−0.18, −0.05) |
Eastern Sub-Saharan Africa | 2349.59 (128,815.87) | 4569.49 (125,169.19) | −0.25 (−0.33, −0.18) | 4687.10 (123,574.19) | 8600.17 (135,790.04) | 0.52 (0.49, 0.56) |
High-income Asia Pacific | 284.77 (14,699.08) | 339.33 (13,288.22) | −0.60 (−0.74, −0.45) | 325.22 (12,515.23) | 425.83 (14,726.71) | 0.74 (0.18, 1.31) |
High-income North America | 1229.12 (45,072.30) | 1735.83 (48,527.18) | 0.32 (0.08, 0.57) | 1751.29 (48,163.31) | 1982.84 (48,792.68) | 0.04 (−0.03, 0.12) |
North Africa and the Middle East | 2972.22 (77,896.63) | 6316.09 (111,112.47) | 1.25 (1.17, 1.34) | 6610.99 (110,852.18) | 8937.29 (109,711.19) | −0.04 (−0.06, −0.03) |
Oceania | 66.19 (117,094.96) | 180.68 (152,728.21) | 0.74 (0.66, 0.82) | 179.89 (150,115.21) | 251.29 (140,770.67) | −0.31 (−0.35, −0.28) |
South Asia | 18,166.46 (172,743.41) | 22,321.03 (129,771.79) | −1.39 (−1.65, −1.13) | 22,325.77 (126,803.24) | 25,889.20 (121,319.17) | −0.15 (−0.18, −0.11) |
Southeast Asia | 2904.47 (68,651.48) | 4320.58 (70,616.16) | −0.08 (−0.20, 0.05) | 4223.32 (67,756.42) | 6027.77 (70,846.70) | 0.15 (0.10, 0.20) |
Southern Latin America | 219.62 (44,253.74) | 325.77 (49,554.97) | 0.36 (0.25, 0.48) | 346.48 (52,163.96) | 394.17 (52,268.30) | 0.01 (−0.01, 0.03) |
Southern Sub-Saharan Africa | 532.36 (113,000.81) | 771.71 (10,6561.41) | −0.24 (−0.28, −0.20) | 781.38 (104,052.10) | 1077.08 (105,448.05) | 0.09 (0.04, 0.14) |
Tropical Latin America | 1390.42 (96,865.99) | 1849.39 (86,128.97) | −0.39 (−0.43, −0.35) | 1986.36 (91,553.99) | 2213.17 (874,90.00) | −0.23 (−0.28, −0.17) |
Western Europe | 1328.04 (35,912.50) | 1740.81 (36,345.48) | 0.16 (0.11, 0.20) | 1733.50 (36,073.38) | 2037.70 (36,776.92) | 0.12 (0.07, 0.16) |
Western Sub-Saharan Africa | 2454.94 (131,604.05) | 5687.75 (139,732.85) | 0.11 (0.04, 0.17) | 5852.38 (137,852.18) | 10,066.69 (136,396.13) | 0.00 (−0.05, 0.05) |
High SDI | 3134.81 (39,253.13) | 4449.84 (43,109.82) | 0.38 (0.27, 0.48) | 4263.94 (40,892.55) | 4884.31 (40,619.42) | −0.03 (−0.05, −0.02) |
High-middle SDI | 7481.21 (66,216.14) | 9525.91 (67,807.72) | 0.01 (−0.09, 0.11) | 9589.73 (67,525.18) | 10,170.77 (62,828.53) | −0.45 (−0.56, −0.34) |
Middle SDI | 12,251.76 (75,085.66) | 17,859.52 (77,220.15) | −0.09 (−0.21, 0.03) | 17,843.60 (76,257.39) | 21,367.44 (75,532.80) | 0.11 (0.04, 0.18) |
Low-middle SDI | 15,573.24 (142,032.31) | 19,743.17 (117,600.90) | −0.95 (−1.13, −0.77) | 20,124.59 (117,767.81) | 25,244.54 (112,988.00) | 0.02 (−0.05, 0.10) |
Low SDI | 7586.34 (147,493.70) | 14,194.88 (137,592.10) | −0.41 (−0.51, −0.32) | 14,486.46 (136,297.78) | 24,922.63 (140,288.48) | 0.15 (0.13, 0.16) |
Gender | EAPCs (95% UIs) of ASIRs per 100,000 for Diarrheal Diseases | |||
---|---|---|---|---|
1990–2019 | 2020–2040 | |||
Ascend | Descend | Ascend | Descend | |
Male | Turkey 1.64 (1.53, 1.75) | Mexico −2.36 (−2.50, −2.22) | Japan 2.02 (1.35, 2.69) | Bulgaria −4.13 (−5.19, −3.06) |
Democratic Republic of the Congo 1.52 (1.41, 1.62) | Guatemala −2.30 (−2.37, −2.23) | Mexico 1.93 (1.60, 2.26) | United Arab Emirates −0.93 (−1.82, −0.04) | |
Azerbaijan 1.49 (1.34, 1.63) | Japan −1.90 (−2.24, −1.56) | Republic of Korea 1.64 (1.00, 2.27) | Gabon −0.69 (−0.73, −0.65) | |
Afghanistan 1.48 (1.36, 1.60) | India −1.46 (−1.78, −1.14) | Malta 1.20 (0.83, 1.58) | Hungary −0.60 (−0.83, −0.36) | |
Northern Mariana Islands 1.47 (1.39, 1.55) | El Salvador −1.38 (−1.51, −1.25) | Austria 1.12 (0.72, 1.52) | Latvia −0.59 (−1.09, −0.09) | |
Female | Turkey 1.68 (1.59, 1.78) | Guatemala −2.36 (−2.43, −2.29) | Mexico 1.94 (1.58, 2.32) | Bulgaria −3.93 (−4.89, −2.95) |
Afghanistan 1.68 (1.56, 1.79) | Mexico −1.88 (−2.09, −1.68) | Republic of Korea 1.90 (1.42, 2.39) | United Arab Emirates −1.18 (−2.23, −0.11) | |
Libya 1.66 (1.55, 1.78) | India −1.78 (−2.12, −1.45) | Japan 1.57 (1.07, 2.07) | Hungary −1.03 (−1.37, −0.68) | |
Iran (Islamic Republic of) 1.58 (1.43, 1.73) | Honduras −1.18 (−1.27, −1.08) | Austria 1.10 (0.61, 1.60) | Bangladesh −0.66 (−0.76, −0.56) | |
Oman 1.53 (1.38, 1.68) | Ethiopia −1.15 (−1.23, −1.08) | Malta 0.99 (0.70, 1.27) | Latvia −0.61 (−1.01, −0.20) | |
Both genders combined | Turkey 1.66 (1.56, 1.76) | Guatemala −2.33 (−2.40, −2.26) | Mexico 1.93 (1.59, 2.28) | Bulgaria −4.02 (−5.03, −3.00) |
Afghanistan 1.57 (1.45, 1.68) | Mexico −2.12 (−2.29, −1.96) | Japan 1.79 (1.21, 2.38) | United Arab Emirates −1.02 (−1.95, −0.07) | |
Libya 1.55 (1.43, 1.66) | India −1.62 (−1.94, −1.30) | Republic of Korea 1.78 (1.28, 2.29) | Hungary −0.81 (−1.09, −0.53) | |
Iran (Islamic Republic of) 1.51 (1.37, 1.65) | Japan −1.42 (−1.68, −1.17) | Austria 1.11 (0.67, 1.55) | Gabon −0.62 (−0.65, −0.58) | |
Oman 1.50 (1.37, 1.63) | Honduras −1.21 (−1.31, −1.10) | Malta 1.09 (0.76, 1.42) | Latvia −0.60 (−1.05, −0.16) |
Gender | ASIR per 100,000 of Diarrheal Disease | |||
---|---|---|---|---|
1990 | 2019 | 2020 | 2040 | |
Male | Guatemala (191,029.37) | Solomon Islands (200,143.18) | Solomon Islands (192,186.30) | Solomon Islands (182,279.79) |
Solomon Islands (167,816.50) | Chad (184,939.18) | Chad (180,427.73) | Guam (168,949.17) | |
Nepal (163,098.45) | Niger (180,635.73) | Niger (173,912.10) | Papua New Guinea (166,186.84) | |
Pakistan (162,519.87) | Mauritania (178,521.18) | Senegal (171,802.96) | Central African Republic (165,239.04) | |
India (160,386.47) | Senegal (178,435.84) | Papua New Guinea (171,241.37) | Northern Mariana Islands (163,803.43) | |
Female | Nepal (194,934.35) | Chad (172,063.21) | Chad (167,186.18) | Niger (153,971.12) |
Bhutan (190,632.57) | Solomon Islands (168,025.96) | Niger (160,744.76) | Chad (150,486.16) | |
India (189,589.35) | Niger (166,598.35) | Solomon Islands (158,247.09) | Solomon Islands (149,062.77) | |
Pakistan (181,280.34) | Bhutan (160,338.60) | Nepal (152,776.67) | Central African Republic (145,490.04) | |
Bangladesh (168,351.79) | Mauritania (156,813.06) | Senegal (150,551.41) | Senegal (145,430.73) | |
Both genders combined | Nepal (178,920.30) | Solomon Islands (184,367.97) | Solomon Islands (175,488.75) | Solomon Islands (165,746.22) |
Guatemala (178,383.02) | Chad (178,640.63) | Chad (173,790.15) | Niger (158,136.46) | |
India (174,335.39) | Niger (173,308.38) | Niger (167,044.40) | Chad (156,172.25) | |
Pakistan (171,377.87) | Mauritania (167,343.87) | Senegal (160,743.59) | Central African Republic (154,726.34) | |
Bhutan (166,862.97) | Senegal (164,117.71) | Mauritania (156,323.05) | Senegal (152,935.00) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, D.; Wang, L.; Liu, S.; Li, S.; Zhou, X.; Xiao, Y.; Zhong, P.; Chen, Y.; Wang, C.; Xu, S.; et al. Global Incidence of Diarrheal Diseases—An Update Using an Interpretable Predictive Model Based on XGBoost and SHAP: A Systematic Analysis. Nutrients 2024, 16, 3217. https://doi.org/10.3390/nu16183217
Liang D, Wang L, Liu S, Li S, Zhou X, Xiao Y, Zhong P, Chen Y, Wang C, Xu S, et al. Global Incidence of Diarrheal Diseases—An Update Using an Interpretable Predictive Model Based on XGBoost and SHAP: A Systematic Analysis. Nutrients. 2024; 16(18):3217. https://doi.org/10.3390/nu16183217
Chicago/Turabian StyleLiang, Dan, Li Wang, Shuang Liu, Shanglin Li, Xing Zhou, Yun Xiao, Panpan Zhong, Yanxi Chen, Changyi Wang, Shan Xu, and et al. 2024. "Global Incidence of Diarrheal Diseases—An Update Using an Interpretable Predictive Model Based on XGBoost and SHAP: A Systematic Analysis" Nutrients 16, no. 18: 3217. https://doi.org/10.3390/nu16183217
APA StyleLiang, D., Wang, L., Liu, S., Li, S., Zhou, X., Xiao, Y., Zhong, P., Chen, Y., Wang, C., Xu, S., Su, J., Luo, Z., Ke, C., & Lai, Y. (2024). Global Incidence of Diarrheal Diseases—An Update Using an Interpretable Predictive Model Based on XGBoost and SHAP: A Systematic Analysis. Nutrients, 16(18), 3217. https://doi.org/10.3390/nu16183217