Risk Factors for a Higher Dietary Acid Load (Potential Renal Acid Load) in Free-Living Elderly in Poland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Data Collection
- (1)
- The sociodemographic questions regarded gender, data on age, spousal status, education level, and place of living.
- (2)
- The health and lifestyle questions provided data on self-reported health status, occurrence of chronic diseases, hospitalization within the previous year, cigarette smoking, alcohol drinking, self-reported physical activity levels, weight, and height. To help respondents choose the appropriate physical activity category, each category gave examples of types of exercise and the number of hours spent weekly on these activities. The body mass index (BMI) was calculated according to a specific formula based on height (m) and weight (kg) and interpreted according to the World Health Organization classification [21].
- (3)
- The simplified Nutritional Appetite Questionnaire (SNAQ) was used to identify nutritional risk, developed as a self-assessment screening tool which is easy to administer without laboratory measurements [22].
- (4)
- Participants were asked about all DSs taken six months before the study. Information was collected on the name and brand, the form used (i.e., capsules, tablets, powder, etc.), the duration of use, and the reason for usage.
2.3. Dietary Assessment
2.4. Dietary Acid Load
2.5. Frailty Syndrome
2.6. Statistical Analysis
3. Results
3.1. The Characteristic of PRAL Groups
3.2. The Relationship between Covariates and the PRAL Score
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kibaroglu, E.; Kurt, A.; Demirel Özbek, Y.; Saral, O.; Hatipoglu, O. Potential Renal Acid Load, Salivary Buffer Capacity and Healthy Eating Index as Predictors of Children’s Dental Caries: A Cross-Sectional Study. Cureus 2023, 15, e39513. [Google Scholar] [CrossRef] [PubMed]
- Frassetto, L.A.; Todd, K.M.; Morris, R.C., Jr.; Sebastian, A. Estimation of net endogenous noncarbonic acid production in humans from diet potassium and protein contents. Am. J. Clin. Nutr. 1998, 68, 576–583. [Google Scholar] [CrossRef] [PubMed]
- Li, C.-F.; Liu, Y.-P.; Liu, C.-Y.; Zhu, H.-L.; Wu, B.-H.; Li, B.-L.; Chen, Y.-M. Dietary Acid Load Was Positively Associated with the Risk of Hip Fracture in Elderly Adults. Nutrients 2022, 14, 3748. [Google Scholar] [CrossRef] [PubMed]
- García-Gavilán, J.F.; Martínez, A.; Konieczna, J.; Mico-Perez, R.; García-Arellano, A.; Basora, J.; Barrubés, L.; Goday, A.; Canudas, S.; Salas-Salvadó, J.; et al. U-Shaped Association between Dietary Acid Load and Risk of Osteoporotic Fractures in 2 Populations at High Cardiovascular Risk. J. Nutr. 2021, 151, 152–161. [Google Scholar] [CrossRef] [PubMed]
- Hayhoe, R.P.G.; Abdelhamid, A.; Luben, R.N.; Khaw, K.T.; Welch, A.A. Dietary acid-base load and its association with risk of osteoporotic fractures and low estimated skeletal muscle mass. Eur. J. Clin. Nutr. 2020, 74 (Suppl. S1), 33–42. [Google Scholar] [CrossRef]
- Palomeras-Vilches, A.; Viñals-Mayolas, E.; Bou-Mias, C.; Jordà-Castro, M.; Agüero-Martínez, M.; Busquets-Barceló, M.; Pujol-Busquets, G.; Carrion, C.; Bosque-Prous, M.; Serra-Majem, L.; et al. Adherence to the Mediterranean Diet and Bone Fracture Risk in Middle-Aged Women: A Case Control Study. Nutrients 2019, 11, 2508. [Google Scholar] [CrossRef]
- Bojang, K.P.; Manchana, V. Nutrition and Healthy Aging: A Review. Curr. Nutr. Rep. 2023, 12, 369–375. [Google Scholar] [CrossRef]
- Sanz, J.M.; Sergi, D.; Colombari, S.; Capatti, E.; Situlin, R.; Biolo, G.; Passaro, A. Dietary acid load but not Mediterranean diet adherence score is associated with metabolic and cardiovascular health state: A population observational study from northern Italy. Front. Nutr. 2022, 9, 828587. [Google Scholar] [CrossRef]
- Stoś, K.; Rychlik, E.; Woźniak, A.; Ołtarzewski, M. Red and Processed Meat Consumption in Poland. Foods 2022, 11, 3283. [Google Scholar] [CrossRef]
- Stoś, K.; Rychlik, E.; Woźniak, A.; Ołtarzewski, M.; Wojda, B.; Przygoda, B.; Matczuk, E.; Pietraś, E.; Kłys, W. National Study of the Diet and Nutritional Status of the Polish Population; National Institute of Public Health PZH—National Research Institute: Warsaw, Poland, 2021. (In Polish) [Google Scholar]
- Osuna-Padillaa, I.A.; Leal-Escobarb, G.; Garza-Garcíac, C.A.; Rodríguez-Castellanos, F.E. Dietary acid load: Mechanisms and evidence of its health repercussions. Nefrologia 2019, 39, 343–354. [Google Scholar] [CrossRef]
- Dolati, S.; Razmjouei, S.; Alizadeh, M.; Faghfouri, A.H.; Moridpour, A.H. A high dietary acid load can potentially exacerbate cardiometabolic risk factors: An updated systematic review and meta-analysis of observational studies. Nutr. Metab. Cardiovasc. Dis. 2024, 34, 569–580. [Google Scholar] [CrossRef] [PubMed]
- Lin, F.; Zhang, M.; Wang, R.; Sun, M.; Zhang, Z.; Qiao, Y.; Zhang, Z. Association between Dietary Acid Load and Hypertension in Chinese Adults: Analysis of the China Health and Nutrition Survey (2009). Nutrients 2023, 15, 4664. [Google Scholar] [CrossRef] [PubMed]
- Kucharska, A.M.; Szostak-Węgierek, D.E.; Waśkiewicz, A.; Piotrowski, W.; Stepaniak, U.; Pająk, A.; Kozakiewicz, K.; Tykarski, A.; Rutkowski, M.; Bielecki, W.J.; et al. Dietary acid load and cardiometabolic risk in the Polish adult population. Adv. Clin. Exp. Med. 2018, 27, 1347–1354. [Google Scholar] [CrossRef] [PubMed]
- Hatami, E.; Abbasi, K.; Salehi-Sahlabadi, A.; Beigrezaei, S.; Bahrami, A.; Ghiasvand, R.; Pourmasoumi, M. Dietary acid load and risk of type 2 diabetes mellitus: A case-control study. Clin. Nutr. ESPEN 2022, 48, 308–312. [Google Scholar] [CrossRef]
- Ozturk, E.E.; Yildiz, H. Examining dietary acid load in individuals with type 2 diabetes: A case-control study. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 2443–2452. [Google Scholar]
- Bahrami, A.; Khalesi, S.; Ghafouri-Taleghani, F.; Alibeyk, S.; Hajigholam-Saryazdi, M.; Haghighi, S.; Hejazi, E. Dietary acid load and the risk of cancer: A systematic review and dose-response meta-analysis of observational studies. Eur. J. Cancer Prev. 2022, 31, 577–584. [Google Scholar] [CrossRef]
- Shi, L.W.; Wu, Y.L.; Hu, J.J.; Yang, P.F.; Sun, W.P.; Gao, J.; Wang, K.; Peng, Y.; Wu, J.J.; Zhong, G.C. Dietary Acid Load and the Risk of Pancreatic Cancer: A Prospective Cohort Study. Cancer Epidemiol. Biomarkers Prev. 2021, 30, 1009–1019. [Google Scholar] [CrossRef]
- Ronco, A.L.; Storz, M.A. Dietary Acid Load and Cancer Risk: A Review of the Uruguayan Experience. Nutrients 2023, 15, 3098. [Google Scholar] [CrossRef]
- Hejazi, E.; Emamat, H.; Sharafkhah, M.; Saidpour, A.; Poustchi, H.; Sepanlou, S.; Sotoudeh, M.; Dawsey, S.; Boffetta, P.; Abnet, C.; et al. Dietary acid load and mortality from all causes, CVD and cancer: Results from the Golestan Cohort Study. Br. J. Nutr. 2022, 128, 237–243. [Google Scholar] [CrossRef]
- World Health Organization. Obesity: Preventing and Managing the Global Epidemic; Report of a WHO Consultation; World Health Organization Technical Report Series; WHO: Geneva, Switzerland, 2000; Volume 894, pp. 1–253. [Google Scholar]
- Wilson, M.M.; Reedy, J.; Krebs-Smith, S.M. American Diet Quality: Where It Is, Where It Is Heading, and What It Could Be. J. Acad. Nutr. Diet. 2016, 116, 302–310. [Google Scholar] [CrossRef]
- Willett, W.C. Nutritional Epidemiology, 3rd ed.; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Szponar, L.; Wolnicka, K.; Rychlik, E. Album Fotografii Produktów i Potraw. [Album of Photographs of Food Products and Dishes]; Wydawnictwo IŻŻ: Warsaw, Poland, 2000. (In Polish) [Google Scholar]
- Kunachowicz, H.; Przygoda, B.; Nadolna, I.; Iwanow, K. Tabele Składu i Wartości Odżywczych Żywności. [Tables of Food Composition and Nutritional Value]; PZWL Wydawnictwo Lekarskie: Warsaw, Poland, 2020. (In Polish) [Google Scholar]
- Remer, T.; Manz, F. Potential renal acid load of foods and its influence on urine pH. J. Am. Diet. Assoc. 1995, 95, 791–797. [Google Scholar] [CrossRef] [PubMed]
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Frailty in older adults: Evidence for a phenotype. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2001, 56, 146–156. [Google Scholar] [CrossRef] [PubMed]
- Wądołowska, L. Zasady Obliczania i Interpretacji Wyników. In Przewodnik Metodyczny Badań Sposobu Żywienia; Gronowska-Senger, A., Ed.; Komitet Nauki o Żywieniu Człowieka Polskiej Akademii Nauk: Warsaw, Poland, 2013; pp. 38–67. (In Polish) [Google Scholar]
- Rinonapoli, G.; Ruggiero, C.; Meccariello, L.; Bisaccia, M.; Ceccarini, P.; Caraffa, A. Osteoporosis in Men: A Review of an Underestimated Bone Condition. Int. J. Mol. Sci. 2021, 22, 2105. [Google Scholar] [CrossRef]
- Jia, T.; Byberg, L.; Lindholm, B.; Larsson, T.E.; Lind, L.; Michaëlsson, K.; Carrero, J.J. Dietary acid load, kidney function, osteoporosis, and risk of fractures in elderly men and women. Osteoporos. Int. 2015, 26, 563–570. [Google Scholar] [CrossRef] [PubMed]
- Papageorgiou, M.; Merminod, F.; Chevalley, T.; van Rietbergen, B.; Ferrari, S.; Rizzoli, R.; Biver, E. Associations between age-related changes in bone microstructure and strength and dietary acid load in a cohort of community-dwelling, healthy men and postmenopausal women. Am. J. Clin. Nutr. 2020, 112, 1120–1131. [Google Scholar] [CrossRef] [PubMed]
- Gholami, F.; Naghshi, S.; Samadi, M.; Rasaei, N.; Mirzaei, K. Dietary Acid Load and Bone Health: A Systematic Review and Meta-Analysis of Observational Studies. Front. Nutr. 2022, 6, 869132. [Google Scholar] [CrossRef]
- Farshbaf-Khalili, A.; Ostadrahimi, A.; Ahmadian Heris, J.; Sarrafi, S.; Mohammadisima, N. Dietary acid load is associated with primary osteoporosis in postmenopausal women aged 50–65 years: A cross-sectional study. Food Sci. Nutr. 2022, 11, 668–676. [Google Scholar] [CrossRef]
- Frassetto, L.; Banerjee, T.; Powe, N.; Sebastian, A. Acid Balance, Dietary Acid Load, and Bone Effects-A Controversial Subject. Nutrients 2018, 10, 517. [Google Scholar] [CrossRef]
- Kataya, Y.; Murakami, K.; Kobayashi, S.; Suga, H.; Sasaki, S. Three-generation Study of Women on Diets and Health Study Group. Higher dietary acid load is associated with a higher prevalence of frailty, particularly slowness/weakness and low physical activity, in elderly Japanese women. Eur. J. Nutr. 2018, 57, 1639–1650. [Google Scholar] [CrossRef]
- Caso, G.; Garlick, P.J. Control of muscle protein kinetics by acid-base balance. Curr. Opin. Clin. Nutr. Metab. Care 2005, 8, 73–76. [Google Scholar] [CrossRef]
- McLean, R.R.; Qiao, N.; Broe, K.E.; Tucker, K.L.; Casey, V.; Cupples, L.A.; Kiel, D.P.; Hannan, M.T. Dietary acid load is not associated with lower bone mineral density except in older men. J. Nutr. 2011, 141, 588–594. [Google Scholar] [CrossRef]
- Baum, J.I.; Kim, I.-Y.; Wolfe, R.R. Protein Consumption and the Elderly: What Is the Optimal Level of Intake? Nutrients 2016, 8, 359. [Google Scholar] [CrossRef] [PubMed]
- Imamura, F.; Micha, R.; Khatibzadeh, S.; Fahimi, S.; Shi, P.; Powles, J.; Mozaffarian, D. Dietary quality among men and women in 187 countries in 1990 and 2010: A systematic assessment. Lancet Glob. Health 2015, 3, E132–E142. [Google Scholar] [CrossRef] [PubMed]
- Jeruszka-Bielak, M.; Hamulka, J.; Czarniecka-Skubina, E.; Hoffmann, M.; Kostyra, E.; Stasiewicz, B.; Jeszka, J.; Wadolowska, L. Dietary–Physical Activity Patterns in the Health Context of Older Polish Adults: The ‘ABC of Healthy Eating’ Project. Nutrients 2022, 14, 3757. [Google Scholar] [CrossRef] [PubMed]
- Wyka, J.; Biernat, J.; Mikołajczak, J.; Piotrowska, E. Assessment of dietary intake and nutritional status (MNA) in Polish free-living elderly people from rural environments. Arch. Gerontol. Geriatr. 2012, 54, 44–49. [Google Scholar] [CrossRef]
- Lepsy, E.; Żurek, G.; Żurek, A.; Golachowska, M.; Delaunay, G. Evaluation of Dietary Patterns among Men and Women over 80 Years of Age Living in a Rural Area of South-West Poland. Med. Sci. Pulse 2018, 12, 22–27. [Google Scholar] [CrossRef]
- Drywień, M.E.; Kuć, A. Specyfika zachowań żywieniowych osób starszych pochodzących ze środowiska wiejskiego. Kosmos 2019, 68, 303–310. [Google Scholar] [CrossRef]
- Kehoe, L.; Walton, J.; Flynn, A. Nutritional challenges for older adults in Europe: Current status and future directions. Proc. Nutr. Soc. 2019, 78, 221–233. [Google Scholar] [CrossRef]
- WHO. Interim summary of conclusions & dietary recommendations on total fat & fatty acids. In The Joint FAO/WHO Expert Consultation on Fats & Fatty Acids in Human Nutrition; WHO: Geneva, Switzerland, 2008; pp. 1–14. Available online: https://www.foodpolitics.com/wp-content/uploads/FFA_summary_rec_conclusion.pdf (accessed on 15 September 2024).
- Jarosz, M.; Rychlik, E.; Sto’s, K.; Charzewska, J. Polish Dietary Reference Intakes—Revision; National Institute of Public Health—National Institute of Hygiene: Warsaw, Poland, 2020; ISBN 9788365870285. (In Polish) [Google Scholar]
- Jurewicz, J.; Kaleta, D. Correlates of Poor Self-Assessed Health Status among Socially Disadvantaged Populations in Poland. Int. J. Environ. Res. Public Health 2020, 17, 1372. [Google Scholar] [CrossRef]
- Engberink, M.F.; Bakker, S.J.L.; Brink, E.J.; van Baak, M.A.; van Rooij, F.J.A.; Hofman, A.; Jacqueline, W.; Johanna, G. Dietary acid load and risk of hypertension: The Rotterdam Study. Am. J. Clin. Nutr. 2012, 95, 1438–1444. [Google Scholar] [CrossRef]
- Esche, J.; Krupp, D.; Mensink, G.B.M.; Remer, T. Dietary Potential Renal Acid Load Is Positively Associated with Serum Uric Acid and Odds of Hyperuricemia in the German Adult Population. J. Nutr. 2018, 148, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Welch, A.A.; Bingham, S.A.; Reeve, J.; Khaw, K.T. More acidic dietary acid-base load is associated with reduced calcaneal broadband ultrasound attenuation in women but not in men: Results from the EPIC-Norfolk cohort study. Am. J. Clin. Nutr. 2007, 85, 1134–1141. [Google Scholar] [CrossRef]
- Shea, M.; Gilhooly, C.; Dawson-Hughes, B. Food groups associated with measured net acid excretion in community-dwelling older adults. Eur. J. Clin. Nutr. 2017, 71, 420–424. [Google Scholar] [CrossRef] [PubMed]
- Rosenfeld, D.L.; Tomiyama, A.J. Gender differences in meat consumption and openness to vegetarianism. Appetite 2021, 166, 105475. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Andreyeva, T. Diet Quality and Health in Older Americans. Nutrients 2022, 14, 1198. [Google Scholar] [CrossRef] [PubMed]
- Zujko, M.E.; Waśkiewicz, A.; Drygas, W.; Cicha-Mikołajczyk, A.; Zujko, K.; Szcześniewska, D.; Kozakiewicz, K.; Witkowska, A.M. Dietary Habits and Dietary Antioxidant Intake Are Related to Socioeconomic Status in Polish Adults: A Nationwide Study. Nutrients 2020, 12, 518. [Google Scholar] [CrossRef]
- Gajda, R.; Jeżewska-Zychowicz, M. The importance of social financial support in reducing food insecurity among elderly people. Food Sec. 2021, 13, 717–727. [Google Scholar] [CrossRef]
- Manz, F. History of nutrition and acid-base physiology. Eur. J. Nutr. 2001, 40, 189–199. [Google Scholar] [CrossRef]
- Agarwal, S.; Driscoll, J.C.; Gabaix, X.; Laibson, D. The age of reason: Financial decisions over the life cycle and implications for regulation. Brook. Pap. Econ. Act. 2009, 51–117. [Google Scholar] [CrossRef]
- Wunderlich, S.; Brusca, J.; Johnson-Austin, M.; Bai, Y.O.; Malley, M. Eating behaviors of older adults participating in government-sponsored programs with different demographic backgrounds. Glob. J. Health Sci. 2012, 4, 204–215. [Google Scholar] [CrossRef]
- Gajda, R.; Jeżewska-Zychowicz, M.; Raczkowska, E. Differences in Dietary Patterns among the Polish Elderly: A Challenge for Public Health. Nutrients 2021, 13, 3966. [Google Scholar] [CrossRef] [PubMed]
- Schoufour, J.D.; de Jonge, E.A.; Kiefte-de Jong, J.C.; van Lenthe, F.J.; Hofman, A.; Nunn, S.P.; Franco, O.H. Socio-economic indicators and diet quality in an older population. Maturitas 2018, 107, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Granic, A.; Davies, K.; Adamson, A.; Kirkwood, T.; Hill, T.R.; Siervo, M.; Mathers, J.C.; Jagger, C. Dietary patterns and socioeconomic status in the very old: The Newcastle 85+ Study. PLoS ONE 2015, 10, e0139713. [Google Scholar] [CrossRef] [PubMed]
- CBOS: Jak Zdrowo Odżywiają Się Polacy? Available online: https://www.cbos.pl/SPISKOM.POL/2019/K_106_19.PDF (accessed on 19 April 2024).
- Raport: Sytuacja Zdrowotna Ludności Polski i Jej Uwarunkowania. Available online: https://www.pzh.gov.pl/najnowszy-raport-nizp-pzh-sytuacja-zdrowotna-ludnosci-polski-i-jej-uwarunkowania (accessed on 19 April 2024).
- Zalewska, M.; Maciorkowska, E. Rola edukacji żywieniowej w populacji dzieci i młodzieży. Med. Ogólna Nauk. Zdrowiu 2013, 19, 375–378. (In Polish) [Google Scholar]
- McMullen, M.K. Many foods are more acid-forming than acid-alkaline formulas indicate. Nutr. Health 2024, 30, 419–427. [Google Scholar] [CrossRef]
- Szczerbińska, K.; Zalewski, Z.; Gąsowski, J.; Hartman, J.; Cwynar, M.; Szymczakiewicz-Multanowska, A.; Edbrooke, D.L.; Mills, G.H.; Crome, P.; Cherubini, A.; et al. The representation of elderly patients in clinical trials—Presentation of assumptions of PREDICT project. Gerontol. Pol. 2010, 18, 176–182. (In Polish) [Google Scholar]
- GUS. Available online: https://stat.gov.pl/download/gfx/portalinformacyjny/en/defaultaktualnosci/3288/2/16/1/life_expentancy_tables_of_poland_2022.pdf (accessed on 15 June 2024).
Factor | Total n= 133 | Women n = 66 (49.6%) | Men n = 67 (50.4%) |
---|---|---|---|
PRAL | |||
Average (SD) | 15.7 (26.0) | 28.9 (23.2) | 2.6 (21.7) |
Range | −42.4–101.7 | −28.3–101.7 | −42.4–89.0 |
NEAP | |||
Average (SD) | 40.9 (14.9) | 39.1 (16.1) | 42.6 (13.6) |
Range | 5.9–109.6 | 5.9–109.6 | 23.2–78.9 |
Factor | Total n = 133 | PRAL > 0 Acid-Forming Potential n = 95 (71.4%) | PRAL < 0 Base-Forming Potential n = 38 (28.6%) | p-Value |
---|---|---|---|---|
Gender | <0.0000 1 | |||
Women | 66 (49.6) | 62 (65.3) | 4 (10.5) | |
Men | 67 (50.4) | 33 (34.7) | 34 (89.5) | |
Age [years] | 0.9161 2 | |||
Average (SD) | 74.5 (4.9) | 74.7 (5.3) | 74.1 (3.6) | |
Range | 70–97 | 70–97 | 70–89 | |
Education level | 0.9295 1 | |||
Primary | 11 (8.3) | 8 (8.4) | 3 (7.9) | |
Secondary | 45 (33.8) | 33 (34.7) | 12 (31.6) | |
Higher | 77 (57.9) | 54 (56.9) | 23 (60.5) | |
Residential area | 0.8013 1 | |||
City >100,000 inh. | 111 (83.4) | 78 (82.1) | 33 (86.8) | |
City <100,000 inh. | 9 (6.8) | 7 (7.4) | 2 (5.3) | |
Village | 13 (9.8) | 10 (10.5) | 3 (7.9) | |
Household size [number of members] | 0.9009 2 | |||
Average (SD) | 2.01 (1.14) | 2.03 (1.17) | 1.95 (1.09) | |
Range | 1–7 | 1–7 | 1–7 | |
Spousal status | 0.1199 1 | |||
Without spouse | 56 (42.1) | 44 (46.3) | 12 (31.6) | |
With spouse | 77 (57.9) | 51 (53.7) | 26 (68.4) |
Factor | Total n = 133 | PRAL > 0 Acid-Forming Potential n = 95 (71.4%) | PRAL < 0 Base-Forming Potential n = 38 (28.6%) | p-Value 1 |
---|---|---|---|---|
Self-rated physical activity | 0.0989 | |||
High | 23 (17.3) | 13 (13.7) | 10 (26.3) | |
Average | 63 (47.4) | 44 (46.3) | 19 (50.0) | |
Low | 47 (35.3) | 38 (40.0) | 9 (23.7) | |
Nutritional knowledge | 0.5924 | |||
Good | 26 (19.5) | 19 (20.0) | 7 (18.4) | |
Average | 83 (62.4) | 57 (60.0) | 26 (68.4) | |
Lack | 24 (18.1) | 19 (20.0) | 5 (13.2) | |
SNAQ | 0.1828 | |||
Risk of malnutrition | 19 (14.3) | 16 (16.8) | 3 (7.9) | |
Not at risk of malnutrition | 114 (85.7) | 79 (83.2) | 35 (92.1) | |
Dietary supplement use | 0.0135 | |||
Yes | 97 (72.9) | 75 (78.9) | 22 (57.9) | |
No | 36 (27.1) | 20 (21.1) | 16 (42.1) | |
Current smoking | 0.8624 | |||
Yes | 15 (11.3) | 11 (11.6) | 4 (10.4) | |
No | 118 (88.7) | 84 (88.4) | 34 (89.6) | |
Alcohol drinking | 0.0352 | |||
Yes | 112 (84.2) | 84 (88.4) | 28 (73.7) | |
No | 21 (15.8) | 11 (11.6) | 10 (26.3) |
Factor | Total n = 133 | PRAL > 0 Acid-Forming Potential n = 95 (71.4%) | PRAL < 0 Base-Forming Potential n = 38 (28.6%) | p-Value |
---|---|---|---|---|
BMI [kg/m2] | 0.6291 2 | |||
average (SD) | 26.6 (4.9) | 26.5 (5.2) | 26.7 (4.0) | |
range | 17.6–42.4 | 17.6–42.4 | 18.2–35.8 | |
Weight change | 0.3425 1 | |||
Yes | 79 (59.4) | 54 (56.8) | 25 (65.8) | |
No | 54 (40.6) | 41 (43.2) | 13 (34.2) | |
Self-rated health status | 0.0014 1 | |||
Good | 73 (54.9) | 53 (55.8) | 20 (52.6) | |
Average | 55 (41.3) | 42 (44.2) | 13 (34.2) | |
Poor | 5 (3.8) | 0 | 5 (13.2) | |
Diabetes | 0.6623 1 | |||
Yes | 9 (6.8) | 7 (7.4) | 2 (5.3) | |
No | 124 (93.2) | 88 (92.6) | 36 (94.7) | |
Hypertension | 0.2900 1 | |||
Yes | 78 (58.6) | 53 (55.8) | 25 (65.8) | |
No | 55 (41.4) | 42 (44.2) | 13 (34.2) | |
Thyroid diseases | 0.6222 1 | |||
Yes | 17 (12.8) | 13 (13.7) | 4 (10.5) | |
No | 116 (87.2) | 82 (86.3) | 34 (89.5) | |
Osteoporosis | 0.0463 1 | |||
Yes | 29 (21.8) | 25 (26.3) | 4 (10.5) | |
No | 104 (78.2) | 70 (73.7) | 34 (89.5) | |
Osteoarthritis | 0.1125 1 | |||
Yes | 33 (24.8) | 20 (21.1) | 13 (34.2) | |
No | 100 (75.2) | 75 (78.9) | 25 (65.8) | |
Frailty syndrome | 0.1614 1 | |||
Frail | 13 (9.8) | 12 (12.6) | 1 (2.6) | |
Pre-frail | 46 (34.6) | 30 (31.6) | 16 (42.1) | |
Non-frail | 74 (55.6) | 53 (55.8) | 21 (55.3) | |
Hospitalization | 0.0387 1 | |||
Yes | 24 (18.1) | 13 (13.7) | 11 (28.9) | |
No | 109 (81.9) | 82 (86.3) | 27 (71.1) |
Factor | Total (n = 133) | PRAL > 0 Acid-Forming Potential n = 95 (71.4%) | PRAL < 0 Base-Forming Potential n = 38 (28.6%) | p-Value 2 |
---|---|---|---|---|
PRAL (mEq/d) | 15.7 ± 26.0 | 27.5 ± 20.6 | −13.8 ± 8.9 | --- |
NEAP (mEq/d) | 40.85 ± 14.9 | 42.3 ± 15.2 | 37.1 ± 13.9 | 0.0835 |
Nutrient intake | ||||
Energy (kcal/d) | 1794.0 ± 659.7 | 1800.0 ± 624.2 | 1779.0 ± 750.1 | 0.4565 |
Water (ml/d) | 2002.9 ± 732.4 | 1853.1 ± 680.0 | 2377.4 ± 732.9 | <0.0000 |
Carbohydrates (% of energy) | 49.2 ± 7.7 | 48.6 ± 7.1 | 50.9 ± 8.9 | 0.2854 |
Protein (% of energy) | 16.9 ± 3.8 | 17.0 ± 3.8 | 16.5 ± 3.7 | 0.7480 |
Fat (% of energy) | 33.5 ± 7.1 | 34.6 ± 7.0 | 30.9 ± 6.7 | 0.0258 |
Carbohydrates (g/d) | 232.5 ± 94.9 | 227.7 ± 82.6 | 244.4 ± 120.8 | 0.9742 |
Fiber (g/d) | 23.0 ± 10.7 | 23.6 ± 10.6 | 21.5 ± 11.1 | 0.0967 |
Protein (g/d) | 74.1 ± 26.5 | 75.3 ± 26.9 | 71.1 ± 25.6 | 0.4998 |
Animal protein (g/d) | 48.2 ± 20.5 | 48.7 ± 21.5 | 46.9 ± 18.1 | 0.9742 |
Plant protein (g/d) | 25.9 ± 11.2 | 26.5 ± 11.5 | 24.2 ± 10.4 | 0.2448 |
Fat (g/d) | 68.6 ± 30.9 | 71.3 ± 32.1 | 61.6 ± 26.7 | 0.1263 |
SFA (g/d) | 24.3 ± 12.0 | 24.9 ± 12.5 | 22.7 ± 10.7 | 0.3132 |
MUFA (g/d) | 26.7 ± 12.9 | 27.8 ± 13.3 | 24.0 ± 11.3 | 0.1662 |
PUFA (g/d) | 12.2 ± 8.0 | 13.1 ± 8.5 | 10.1 ± 6.1 | 0.0587 |
Phosphorus (mg/d) | 1282.2 ± 478.7 | 1308.7 ± 478.3 | 1215.9 ± 479.7 | 0.2922 |
Potassium (mg/d) | 3365.2 ± 1230.2 | 3317.6 ± 1144.3 | 3484.2 ± 1432.7 | 0.5484 |
Calcium (mg/d) | 726.7 ± 349.7 | 730.4 ± 358.2 | 717.3 ± 331.8 | 0.9781 |
Magnesium (mg/d) | 370.6 ± 175.2 | 373.1 ± 184.1 | 364.2 ± 152.8 | 0.8246 |
Sodium (mg/d) | 2619.2 ± 1462.0 | 2399.7 ± 1403.6 | 3168.1 ± 1478.9 | 0.0018 |
B6 (mg/d) | 2.5 ± 5.1 | 2.1 ± 1.4 | 3.5 ± 3.7 | 0.0207 |
B12 (µg/d) | 4.3 ± 2.3 | 4.2 ± 2.1 | 4.5 ± 2.7 | 0.8233 |
Folacin (µg/d) | 319.4 ± 130.9 | 317.3 ± 121.8 | 324.6 ± 153.2 | 0.7608 |
Vit. D (µg/d) | 5.4 ± 5.8 | 5.1 ± 5.5 | 6.3 ± 6.5 | 0.3704 |
Variable | p-Value | OR | 95% CI |
---|---|---|---|
NEAP | 0.001 | 1.135 | 1.051–1.227 |
Gender | |||
Reference—Men | <0.000 | 13.504 | 3.034–41.734 |
Self-rated health status | |||
Reference—good | |||
Average | 0.007 | 10.644 | 1.738–55.335 |
Poor | 0.003 | 0.124 | 0.052–0.801 |
Frailty Syndrome | |||
Reference—non-frail | |||
Pre-frail | 0.055 | 0.536 | 0.115–1.416 |
Frail | 0.565 | 1.679 | 0.211–13.370 |
Hypertension | |||
Reference—No | 0.093 | 0.520 | 0.242–1.115 |
Diabetes | |||
Reference—No | 0.348 | 2.093 | 0.448–8.777 |
Thyroid diseases | |||
Reference—No | 0.058 | 0.307 | 0.095–0.990 |
Osteoporosis | |||
Reference—No | 0.557 | 0.734 | 0.261–2.062 |
Osteoarthritis | |||
Reference—No | 0.016 | 0.363 | 0.160–0.827 |
Hospitalization | |||
Reference—Yes | 0.035 | 2.879 | 1.077–7.697 |
Alcohol drinking | |||
Reference—Yes | 0.035 | 0.421 | 0.188–0.941 |
Nutritional knowledge | |||
Reference—good | |||
Average | 0.005 | 0.165 | 0.047–0.579 |
Lack | 0.012 | 6.809 | 1.511–13.671 |
Dietary supplement use | |||
Reference—Yes | 0.359 | 1.415 | 0.674–2.971 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rolf, K.; Januszko, O. Risk Factors for a Higher Dietary Acid Load (Potential Renal Acid Load) in Free-Living Elderly in Poland. Nutrients 2024, 16, 3409. https://doi.org/10.3390/nu16193409
Rolf K, Januszko O. Risk Factors for a Higher Dietary Acid Load (Potential Renal Acid Load) in Free-Living Elderly in Poland. Nutrients. 2024; 16(19):3409. https://doi.org/10.3390/nu16193409
Chicago/Turabian StyleRolf, Katarzyna, and Olga Januszko. 2024. "Risk Factors for a Higher Dietary Acid Load (Potential Renal Acid Load) in Free-Living Elderly in Poland" Nutrients 16, no. 19: 3409. https://doi.org/10.3390/nu16193409
APA StyleRolf, K., & Januszko, O. (2024). Risk Factors for a Higher Dietary Acid Load (Potential Renal Acid Load) in Free-Living Elderly in Poland. Nutrients, 16(19), 3409. https://doi.org/10.3390/nu16193409