Relationship Between Mediterranean Diet Adherence and Body Composition Parameters in Older Adults from the Mediterranean Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Study Sample
2.2. Data Collection
2.3. Data Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Obeid, C.A.; Gubbels, J.S.; Jaalouk, D.; Kremers, S.P.J.; Oenema, A. Adherence to the Mediterranean Diet among Adults in Mediterranean Countries: A Systematic Literature Review. Eur. J. Nutr. 2022, 61, 3327–3344. [Google Scholar] [CrossRef] [PubMed]
- Kibret, K.T.; Backholer, K.; Peeters, A.; Tesfay, F.; Nichols, M. Burdens of Non-Communicable Disease Attributable to Metabolic Risk Factors in Australia, 1990–2019: Joinpoint Regression Analysis of the Global Burden of Disease Study. BMJ Open 2023, 13, e071319. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Noncommunicable Diseases. 2023. Available online: https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases (accessed on 22 September 2024).
- Committee on the Environment, Public Health and Food Safety. REPORT on Non-Communicable Diseases (NCDs). 2023. Available online: https://www.europarl.europa.eu/doceo/document/A-9-2023-0366_EN.html (accessed on 5 September 2024).
- Ejigu, B.A.; Tiruneh, F.N. The Link between Overweight/Obesity and Noncommunicable Diseases in Ethiopia: Evidences from Nationwide WHO STEPS Survey 2015. Int. J. Hypertens. 2023, 2023, 2199853. [Google Scholar] [CrossRef] [PubMed]
- Monsalve, F.A.; Delgado-López, F.; Fernández-Tapia, B.; González, D.R. Adipose Tissue, Non-Communicable Diseases, and Physical Exercise: An Imperfect Triangle. Int. J. Mol. Sci. 2023, 24, 17168. [Google Scholar] [CrossRef]
- Ou, M.-Y.; Zhang, H.; Tan, P.-C.; Zhou, S.-B.; Li, Q.-F. Adipose Tissue Aging: Mechanisms and Therapeutic Implications. Cell Death Dis. 2022, 13, 300. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.-P.; Rolland, Y.; Schneider, S.M.; et al. Sarcopenia: European Consensus on Definition and Diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European Consensus on Definition and Diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef]
- Baumgartner, R.N. Body Composition in Healthy Aging. Ann. N. Y. Acad. Sci. 2006, 904, 437–448. [Google Scholar] [CrossRef]
- Mendonça, N.M.P.; Hengeveld, L.M.; Presse, N.; Canhão, H.; Simonsick, E.; Kritchevsky, S.B.; Farsijani, S.; Gaudreau, P.; Jagger, C.; Visser, M. Protein Intake, Physical Activity and Grip Strength in European and North American Community-Dwelling Older Adults: A Pooled Analysis of Individual Participant Data from Four Longitudinal Ageing Cohorts. Br. J. Nutr. 2023, 129, 1221–1231. [Google Scholar] [CrossRef]
- Elstgeest, L.E.; Schaap, L.A.; Heymans, M.W.; Hengeveld, L.M.; Naumann, E.; Houston, D.K.; Kritchevsky, S.B.; Simonsick, E.M.; Newman, A.B.; Farsijani, S.; et al. Sex-and Race-Specific Associations of Protein Intake with Change in Muscle Mass and Physical Function in Older Adults: The Health, Aging, and Body Composition (Health ABC) Study. Am. J. Clin. Nutr. 2020, 112, 84–95. [Google Scholar] [CrossRef]
- Houston, D.K.; Nicklas, B.J.; Ding, J.; Harris, T.B.; Tylavsky, F.A.; Newman, A.B.; Lee, J.S.; Sahyoun, N.R.; Visser, M.; Kritchevsky, S.B. Dietary Protein Intake Is Associated with Lean Mass Change in Older, Community-Dwelling Adults: The Health, Aging, and Body Composition (Health ABC) Study. Am. J. Clin. Nutr. 2008, 87, 150–155. [Google Scholar] [CrossRef] [PubMed]
- Julibert, A.; Bibiloni, M.D.M.; Mateos, D.; Angullo, E.; Tur, J.A. Dietary Fat Intake and Metabolic Syndrome in Older Adults. Nutrients 2019, 11, 1901. [Google Scholar] [CrossRef] [PubMed]
- Drenowatz, C.; Shook, R.P.; Hand, G.A.; Hébert, J.R.; Blair, S.N. The Independent Association between Diet Quality and Body Composition. Sci. Rep. 2014, 4, 4928. [Google Scholar] [CrossRef] [PubMed]
- Sofi, F.; Macchi, C.; Abbate, R.; Gensini, G.F.; Casini, A. Mediterranean Diet and Health. BioFactors 2013, 39, 335–342. [Google Scholar] [CrossRef]
- Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.-I.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Fiol, M.; Lapetra, J.; et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts. N. Engl. J. Med. 2018, 378, e34. [Google Scholar] [CrossRef]
- Damigou, E.; Georgoulis, M.; Chrysohoou, C.; Barkas, F.; Vlachopoulou, E.; Adamidis, P.S.; Kravvariti, E.; Tsioufis, C.; Pitsavos, C.; Liberopoulos, E.; et al. Mediterranean-Type Diet Adherence and Body Mass Index through 20 Years of Follow-Up: Results from the ATTICA Cohort Study (2002–2022). Nutrients 2024, 16, 1128. [Google Scholar] [CrossRef]
- Davis, C.; Bryan, J.; Hodgson, J.; Murphy, K. Definition of the Mediterranean Diet; A Literature Review. Nutrients 2015, 7, 9139–9153. [Google Scholar] [CrossRef]
- Scoditti, E.; Tumolo, M.R.; Garbarino, S. Mediterranean Diet on Sleep: A Health Alliance. Nutrients 2022, 14, 2998. [Google Scholar] [CrossRef]
- Hu, F.B. Dietary Pattern Analysis: A New Direction in Nutritional Epidemiology. Curr. Opin. Lipidol. 2002, 13, 3–9. [Google Scholar] [CrossRef]
- Pérez-López, F.R.; Chedraui, P.; Haya, J.; Cuadros, J.L. Effects of the Mediterranean Diet on Longevity and Age-Related Morbid Conditions. Maturitas 2009, 64, 67–79. [Google Scholar] [CrossRef]
- Souza, A.F.A.D.S.; Silva, M.G.D.; Queiroz, A.C.C.; Rodrigues, S.M.; Forjaz, C.L.D.M.; Silva, C.L.Á.D. Body Mass Index Cutoff Points and Their Relationship to Chronic Non-Communicable Diseases in Older People. Rev. Bras. Geriatr. E Gerontol. 2023, 26, e230054. [Google Scholar] [CrossRef]
- Rocha, S.V. Association between Body Mass Index and Chronic Non-Communicable Diseases among the Elderly. MOJ Gerontol. Geriatr. 2017, 1, 120–126. [Google Scholar] [CrossRef]
- Barrón-Pavón, V.; González-Stager, M.A.; Rodríguez-Fernández, A. Relationship between body composition and the risk of non-communicable chronic diseases in active older women from Chillán. Rev. Esp. Salud Publica 2023, 97, e202306045. [Google Scholar]
- Srikanthan, P.; Horwich, T.B.; Calfon Press, M.; Gornbein, J.; Watson, K.E. Sex Differences in the Association of Body Composition and Cardiovascular Mortality. J. Am. Heart Assoc. 2021, 10, e017511. [Google Scholar] [CrossRef]
- Ducharme, J.B.; Hall, H.; Fennel, Z.J.; Gerard-Osbourne, A.; Houck, J.M.; Clark, C.; Gibson, A.L. Worth the Wait? Time Course of Supine Shifts in Body Water Compartments on Variables of Bioelectrical Impedance Analysis. J. Electr. Bioimpedance 2023, 13, 96–105. [Google Scholar] [CrossRef]
- Sotos-Prieto, M.; Moreno-Franco, B.; Ordovás, J.M.; León, M.; Casasnovas, J.A.; Peñalvo, J.L. Design and Development of an Instrument to Measure Overall Lifestyle Habits for Epidemiological Research: The Mediterranean Lifestyle (MEDLIFE) Index. Public Health Nutr. 2015, 18, 959–967. [Google Scholar] [CrossRef]
- Sotos-Prieto, M. Validación de un Cuestionario Para Medir los Hábitos de Estilo de Vida. Nutr. Hosp. 2015, 32, 1153–1163. [Google Scholar] [CrossRef]
- Mattavelli, E.; Olmastroni, E.; Bonofiglio, D.; Catapano, A.L.; Baragetti, A.; Magni, P. Adherence to the Mediterranean Diet: Impact of Geographical Location of the Observations. Nutrients 2022, 14, 2040. [Google Scholar] [CrossRef]
- Sotos-Prieto, M.; Ortolá, R.; Ruiz-Canela, M.; Garcia-Esquinas, E.; Martínez-Gómez, D.; Lopez-Garcia, E.; Martínez-González, M.Á.; Rodriguez-Artalejo, F. Association between the Mediterranean Lifestyle, Metabolic Syndrome and Mortality: A Whole-Country Cohort in Spain. Cardiovasc. Diabetol. 2021, 20, 5. [Google Scholar] [CrossRef]
- Predieri, S.; Sinesio, F.; Monteleone, E.; Spinelli, S.; Cianciabella, M.; Daniele, G.M.; Dinnella, C.; Gasperi, F.; Endrizzi, I.; Torri, L.; et al. Gender, Age, Geographical Area, Food Neophobia and Their Relationships with the Adherence to the Mediterranean Diet: New Insights from a Large Population Cross-Sectional Study. Nutrients 2020, 12, 1778. [Google Scholar] [CrossRef]
- Sedlmeier, A.M.; Baumeister, S.E.; Weber, A.; Fischer, B.; Thorand, B.; Ittermann, T.; Dörr, M.; Felix, S.B.; Völzke, H.; Peters, A.; et al. Relation of Body Fat Mass and Fat-Free Mass to Total Mortality: Results from 7 Prospective Cohort Studies. Am. J. Clin. Nutr. 2021, 113, 639–646. [Google Scholar] [CrossRef] [PubMed]
- Visser, M.; Langlois, J.; Guralnik, J.M.; Cauley, J.A.; Kronmal, R.A.; Robbins, J.; Williamson, J.D.; Harris, T.B. High Body Fatness, but Not Low Fat-Free Mass, Predicts Disability in Older Men and Women: The Cardiovascular Health Study. Am. J. Clin. Nutr. 1998, 68, 584–590. [Google Scholar] [CrossRef] [PubMed]
- Koster, A.; Ding, J.; Stenholm, S.; Caserotti, P.; Houston, D.K.; Nicklas, B.J.; You, T.; Lee, J.S.; Visser, M.; Newman, A.B.; et al. Does the Amount of Fat Mass Predict Age-Related Loss of Lean Mass, Muscle Strength, and Muscle Quality in Older Adults? J. Gerontol. A Biol. Sci. Med. Sci. 2011, 66A, 888–895. [Google Scholar] [CrossRef] [PubMed]
- Spahillari, A.; Mukamal, K.J.; DeFilippi, C.; Kizer, J.R.; Gottdiener, J.S.; Djoussé, L.; Lyles, M.F.; Bartz, T.M.; Murthy, V.L.; Shah, R.V. The Association of Lean and Fat Mass with All-Cause Mortality in Older Adults: The Cardiovascular Health Study. Nutr. Metab. Cardiovasc. Dis. 2016, 26, 1039–1047. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Xia, J.; Zhang, X.; Gathirua-Mwangi, W.G.; Guo, J.; Li, Y.; Mckenzie, S.; Song, Y. Associations of Muscle Mass and Strength with All-Cause Mortality among US Older Adults. Med. Sci. Sports Exerc. 2018, 50, 458–467. [Google Scholar] [CrossRef]
- Lorenzo, I.; Serra-Prat, M.; Yébenes, J.C. The Role of Water Homeostasis in Muscle Function and Frailty: A Review. Nutrients 2019, 11, 1857. [Google Scholar] [CrossRef]
- Serra-Prat, M.; Lorenzo, I.; Papiol, M.; Palomera, E.; Bartolomé, M.; Pleguezuelos, E.; Burdoy, E. Intracellular Water Content in Lean Mass as an Indicator of Muscle Quality in an Older Obese Population. J. Clin. Med. 2020, 9, 1580. [Google Scholar] [CrossRef]
- Baldini, J.M.D.F.; Muñoz Fernández, S.S.; Ribeiro, S.M.L. Association between Raw Bioelectrical Impedance Parameters and Muscle Mass and Strength Measured by DXA and Dynamometry in Older Adults: A Pilot Study. Nutrire 2021, 46, 5. [Google Scholar] [CrossRef]
Total (N = 521) | Male (N = 162) | Female (N = 359) | p-Value (ηp2) | |
---|---|---|---|---|
Age (years) | 69.6 ± 6.3 | 70.8 ± 6.5 | 69.1 ± 6.1 | 0.007 (0.015) |
Body height (cm) | 164.5 ± 8.1 | 172.4 ± 6.4 | 161.0 ± 6.1 | <0.001 (0.428) |
Body mass (kg) | 77.8 ± 14.2 | 76.3 ± 14.1 | 78.4 ± 14.1 | |
Body mass index (kg/m2) | 28.7 ± 4.7 | 28.6 ± 4.7 | 28.7 ± 4.7 | |
Fat mass (%) | 31.0 ± 8.3 | 25.0 ± 6.8 | 33.7 ± 7.4 | <0.001(0.232) |
Fat-free mass (%) | 69.0 ± 8.3 | 75.0 ± 6.8 | 66.3 ± 7.4 | <0.001 (0.232) |
Muscle mass (%) | 31.2 ± 8.0 | 37.6 ± 7.8 | 28.2 ± 6.1 | <0.001 (0.287) |
SMI | 7.9 ± 1.6 | 9.6 ± 1.2 | 7.1 ± 1.0 | <0.001 (0.536) |
TBW (%) | 50.6 ± 6.1 | 55.2 ± 5.0 | 48.5 ± 5.3 | <0.001 (0.254) |
ECW (%) | 47.2 ± 4.1 | 46.2 ± 4.5 | 47.7 ± 3.5 | <0.001 (0.029) |
ICW (%) | 52.8 ± 4.1 | 53.8 ± 4.5 | 52.3 ± 3.8 | <0.001 (0.029) |
Rz(Ω) | 551.7 ± 80.1 | 490.5 ± 63.8 | 579.7 ± 70.6 | <0.001 (0.274) |
Xc (Ω) | 55.2 ± 9.5 | 51.0 ± 8.7 | 57.0 ± 9.3 | <0.001 (0.085) |
PA (°) | 5.7 ± 1.0 | 6.0 ± 1.1 | 5.6 ± 0.9 | <0.001 (0.025) |
SPA (°) | 1.2 ± 1.6 | 0.5 ± 1.5 | 1.5 ± 1.6 | <0.001 (0.066) |
MEDLIFE index (pt) | 17.0 ± 3.3 | 16.4 ± 3.4 | 17.3 ± 3.2 | 0.002 (0.019) |
Total (N = 521) | Male (N = 162) | Female (N = 359) | p-Value (ηp2) | |
---|---|---|---|---|
MEDLIFE total score (pt) | 17.1 ± 3.3 | 16.4 ± 3.4 | 17.3 ± 3.2 | 0.002 (0.018) |
MEDLIFE partial score 1 (pt) | 8.7 ± 2.4 | 8.3 ± 2.4 | 8.9 ± 2.3 | 0.004 (0.016) |
MEDLIFE partial score 2 (pt) | 4.2 ± 1.4 | 4.0 ± 1.5 | 4.3 ± 1.3 | 0.062 |
MEDLIFE partial score 3 (pt) | 4.0 ± 1.2 | 3.9 ± 1.2 | 4.0 ± 1.2 | 0.353 |
BIA Parameters | Q1 | Q2 | Q3 | Q4 | p-Value (ηp2) |
---|---|---|---|---|---|
Rz (Ω) | 544.9 ± 86.4 | 556.2 ± 82.8 | 554.5 ± 70.7 | 552.6 ± 77.9 | 0.544 |
Xc (Ω) | 55.2 ± 8.6 | 55.3 ± 11.9 | 54.3 ± 8.3 | 55.8 ± 8.8 | 0.220 |
FM (%) | 31.1 ± 8.4 | 31.8 ± 8.5 | 30.8 ± 7.6 | 30.2 ± 8.5 | 0.016 (0.020) |
FFM (%) | 68.9 ± 8.4 | 68.2 ± 8.5 | 69.2 ± 7.6 | 69.7 ± 8.5 | 0.016 (0.020) |
MM (%) | 31.9 ± 8.4 | 30.0 ± 6.9 | 30.3 ± 7.3 | 32.4 ± 9.0 | 0.013 (0.021) |
SMI | 8.2 ± 1.7 | 7.9 ± 1.6 | 7.7 ± 1.5 | 7.8 ± 1.5 | 0.982 |
TBW (%) | 50.5 ± 6.2 | 49.9 ± 6.3 | 50.8 ± 5.5 | 51.1 ± 6.3 | 0.007 (0.024) |
ECW (%) | 46.7 ± 4.4 | 47.5 ± 4.5 | 47.8 ± 3.5 | 46.9 ± 3.9 | 0.273 |
ICW (%) | 53.3 ± 4.4 | 52.5 ± 4.5 | 52.2 ± 3.5 | 53.1 ± 3.8 | 0.273 |
PA (°) | 5.9 ± 1.1 | 5.7 ± 1.1 | 5.6 ± 0.7 | 5.8 ± 1.0 | 0.354 |
SPA (°) | 1.1 ± 1.5 | 1.2 ± 1.9 | 1.3 ± 1.4 | 1.3 ± 1.6 | 0.971 |
B | β | p | rp | VIF | |
---|---|---|---|---|---|
Rz | |||||
Red meat | 31.817 | 0.150 | 0.007 | 0.145 | 1.095 |
White meat | −26.710 | −0.153 | 0.006 | −0.149 | 1.090 |
Fruit | −21.512 | −0.131 | 0.014 | −0.133 | 1.005 |
FM (%) | |||||
Processed meat | −2.699 | −0.173 | 0.001 | −0.176 | 1.004 |
Olive oil | −2.314 | −0.134 | 0.011 | −0.137 | 1.004 |
Limit snacking between meals | −1.580 | −0.107 | 0.041 | −0.110 | 1.001 |
SMI | |||||
Red meat | −0.478 | −0.158 | 0.005 | −0.152 | 1.095 |
White meat | 0.360 | 0.144 | 0.009 | 0.140 | 1.090 |
Fruit | 0.283 | 0.121 | 0.023 | 0.122 | 1.005 |
TBW (%) | |||||
Processed meat | 1.839 | 0.163 | 0.002 | 0.166 | 1.004 |
Olive oil | 1.749 | 0.140 | 0.008 | 0.143 | 1.005 |
Cereals | −1.525 | −0.125 | 0.017 | −0.128 | 1.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teraž, K.; Pus, K.; Pišot, S.; Cikač, A.; Šimunič, B. Relationship Between Mediterranean Diet Adherence and Body Composition Parameters in Older Adults from the Mediterranean Region. Nutrients 2024, 16, 3598. https://doi.org/10.3390/nu16213598
Teraž K, Pus K, Pišot S, Cikač A, Šimunič B. Relationship Between Mediterranean Diet Adherence and Body Composition Parameters in Older Adults from the Mediterranean Region. Nutrients. 2024; 16(21):3598. https://doi.org/10.3390/nu16213598
Chicago/Turabian StyleTeraž, Kaja, Katarina Pus, Saša Pišot, Ana Cikač, and Boštjan Šimunič. 2024. "Relationship Between Mediterranean Diet Adherence and Body Composition Parameters in Older Adults from the Mediterranean Region" Nutrients 16, no. 21: 3598. https://doi.org/10.3390/nu16213598
APA StyleTeraž, K., Pus, K., Pišot, S., Cikač, A., & Šimunič, B. (2024). Relationship Between Mediterranean Diet Adherence and Body Composition Parameters in Older Adults from the Mediterranean Region. Nutrients, 16(21), 3598. https://doi.org/10.3390/nu16213598