Unveiling the Power of Flax Lignans: From Plant Biosynthesis to Human Health Benefits
Abstract
:1. Introduction
2. The Basic Types of Lignans
3. Lignan Synthesis and Regulation
4. Lignan Metabolic Pathways
5. Lignan Extraction, Isolation, Purification, and Toxicity
6. The Roles of Lignans in Human Health
7. Summary and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Vaisey-Genser, M.; Morris, D.H. Introduction: History of the cultivation and uses of flaxseed. In Flax; Muir, A.D., Westcott, N.D., Eds.; CRC Press: London, UK, 2003; pp. 13–33. [Google Scholar]
- Dzuvor, C.K.O.; Taylor, J.T.; Acquah, C.; Pan, S.; Agyei, D. Bioprocessing of Functional Ingredients from Flaxseed. Molecules 2018, 23, 2444. [Google Scholar] [CrossRef]
- Kosicka-Gębska, M.; Sajdakowska, M.; Jeżewska-Zychowicz, M.; Gębski, J.; Gutkowska, K. Consumer Perception of Innovative Fruit and Cereal Bars—Current and Future Perspectives. Nutrients 2024, 16, 11606. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, H.; Gao, F.; Wang, Y.; Guo, X.; Qiu, C. Effect of ultrasonic pretreatment for lignan accumulation in flax sprouts (Linum usitatissimum L.). Food Chem. 2022, 370, 131067. [Google Scholar] [CrossRef]
- Anjum, S.; Komal, A.; Drouet, S.; Kausar, H.; Hano, C.; Abbasi, B.H. Feasible Production of Lignans and Neolignans in Root-Derived In Vitro Cultures of Flax (Linum usitatissimum L.). Plants 2020, 9, 409. [Google Scholar] [CrossRef]
- Rizzolo-Brime, L.; Caro-Garcia, E.M.; Alegre-Miranda, C.A.; Felez-Nobrega, M.; Zamora-Ros, R. Lignan exposure: A worldwide perspective. Eur. J. Nutr. 2022, 61, 1143–1165. [Google Scholar] [CrossRef]
- Runeberg, P.A.; Brusentsev, Y.; Rendon, S.M.K.; Eklund, P.C. Oxidative Transformations of Lignans. Molecules 2019, 24, 300. [Google Scholar] [CrossRef]
- Socrier, L.; Quero, A.; Verdu, M.; Song, Y.; Molinie, R.; Mathiron, D.; Pilard, S.; Mesnard, F.; Morandat, S. Flax phenolic compounds as inhibitors of lipid oxidation: Elucidation of their mechanisms of action. Food Chem. 2019, 274, 651–658. [Google Scholar] [CrossRef]
- Haram, S.; Iffat, Z.A. A systematic review on the pharmacological potential of Linum usitatissimum L.: A significant nutraceutical plant. J. Herb. Med. 2023, 42, 100755. [Google Scholar] [CrossRef]
- Noreen, S.; Tufail, T.; Ul Ain, H.B.; Awuchi, C.G. Pharmacological, nutraceutical, and nutritional properties of flaxseed (Linum usitatissimum): An insight into its functionality and disease mitigation. Food Sci. Nutr. 2023, 11, 6820–6829. [Google Scholar] [CrossRef]
- Akter, Y.; Junaid, M.; Afrose, S. A Comprehensive review on Linum usitatissimum medicinal plant: Its phytochemistry, pharmacology, and ethnomedicinal uses. Mini Rev. Med. Chem. 2021, 21, 2801–2834. [Google Scholar] [CrossRef]
- Wu, J.; Wu, X.; Wu, R.; Wang, Z.; Tan, N. Research for improvement on the extract efficiency of lignans in traditional Chinese medicines by hybrid ionic liquids: As a case of Suhuang antitussive capsule. Ultrason. Sonochem. 2021, 73, 105539. [Google Scholar] [CrossRef]
- Hano, C.F.; Dinkova-Kostova, A.T.; Davin, L.B.; Cort, J.R.; Lewis, N.G. Editorial: Lignans: Insights Into Their Biosynthesis, Metabolic Engineering, Analytical Methods and Health Benefits. Front. Plant Sci. 2020, 11, 630327. [Google Scholar] [CrossRef]
- Cui, Q.; Du, R.; Liu, M.; Rong, L. Lignans and Their Derivatives from Plants as Antivirals. Molecules 2020, 25, 183. [Google Scholar] [CrossRef]
- Schultz, B.J.; Kim, S.Y.; Lau, W.; Sattely, E.S. Total Biosynthesis for Milligram-Scale Production of Etoposide Intermediates in a Plant Chassis. J. Am. Chem. Soc. 2019, 141, 19231–19235. [Google Scholar] [CrossRef]
- Kim, S.S.; Sattely, E.S. Dirigent Proteins Guide Asymmetric Heterocoupling for the Synthesis of Complex Natural Product Analogues. J. Am. Chem. Soc. 2021, 143, 5011–5021. [Google Scholar] [CrossRef]
- Wang, D.T.; Xue, Y.Y.; Zhang, Y.F.; Xun, H.; Guo, Q.R.; Tang, F.; Sun, J.; Qi, F.F. Lignans and phenylpropanoids from the liquid juice of phyllostachys edulis. Nat. Prod. Res. 2021, 35, 3241–3247. [Google Scholar] [CrossRef]
- Chhillar, H.; Chopra, P.; Ashfaq, M.A. Lignans from linseed (Linum usitatissimum L.) and its allied species: Retrospect, introspect and prospect. Crit. Rev. Food Sci. Nutr. 2021, 61, 2719–2741. [Google Scholar] [CrossRef]
- Tufano, I.; Buommino, E.; Iesce, M.R.; De Filippis, A.; Grieco, P.; Lembo, F.; DellaGreca, M. Synthesis of novel lignan-like compounds and their antimicrobial activity. Bioorg. Med. Chem. Lett. 2020, 30, 127413. [Google Scholar] [CrossRef]
- Fang, X.; Hu, X. Advances in the Synthesis of Lignan Natural Products. Molecules 2018, 23, 3385. [Google Scholar] [CrossRef]
- Teponno, R.B.; Kusari, S.; Spiteller, M. Recent advances in research on lignans and neolignans. Nat. Prod. Rep. 2016, 33, 1044–1092. [Google Scholar] [CrossRef]
- Rodriguez-Garcia, C.; Sanchez-Quesada, C.; Toledo, E.; Delgado-Rodriguez, M.; Gaforio, J.J. Naturally Lignan-Rich Foods: A Dietary Tool for Health Promotion? Molecules 2019, 24, 917. [Google Scholar] [CrossRef]
- Sain, A.; Kandasamy, T.; Naskar, D. Targeting UNC-51-like kinase 1 and 2 by lignans to modulate autophagy: Possible implications in metastatic colorectal cancer. Mol. Divers. 2022, 27, 27–43. [Google Scholar] [CrossRef]
- Thach, D.Q.; Maimone, T.J. Making light work of lignan synthesis. Nat. Chem. 2020, 13, 7–9. [Google Scholar] [CrossRef]
- Schmidt, T.J.; Hemmati, S.; Klaes, M.; Konuklugil, B.; Mohagheghzadeh, A.; Ionkova, I.; Fuss, E.; Wilhelm Alfermann, A. Lignans in flowering aerial parts of Linum species—Chemodiversity in the light of systematics and phylogeny. Phytochemistry 2010, 71, 1714–1728. [Google Scholar] [CrossRef]
- Hirano, T.; Gotoh, M.; Oka, K. Natural flavonoids and lignans are potent cytostatic agents against human leukemic HL-60 cells. Life Sci. 1994, 55, 1061–1069. [Google Scholar] [CrossRef]
- Eich, E.; Pertz, H.; Kaloga, M.; Schulz, J.; Fesen, M.R.; Mazumder, A.; Pommier, Y. (-)-Arctigenin as a lead structure for inhibitors of human immunodeficiency virus type-1 integrase. J. Med. Chem. 1996, 39, 86–95. [Google Scholar] [CrossRef]
- Herrmann, K.M. The Shikimate Pathway: Early Steps in the Biosynthesis of Aromatic Compounds. Plant Cell 1995, 7, 907–919. [Google Scholar] [CrossRef]
- Ford, J.D.; Huang, K.S.; Wang, H.B. Biosynthetic Pathway to the Cancer Chemopreventive Secoisolariciresinol Diglucoside−Hydroxymethyl Glutaryl Ester-Linked Lignan Oligomers in Flax (Linum usitatissimum) Seed. J. Nat. Prod. 2001, 65, 800. [Google Scholar] [CrossRef]
- Tohge, T.; Fernie, A.R. An Overview of Compounds Derived from the Shikimate and Phenylpropanoid Pathways and Their Medicinal Importance. Mini-Rev. Med. Chem. 2017, 17, 1013–1027. [Google Scholar] [CrossRef]
- Hausler, R.E.; Ludewig, F.; Krueger, S. Amino acids—A life between metabolism and signaling. Plant Sci. 2014, 229, 225–237. [Google Scholar] [CrossRef]
- Chen, Q.; Man, C.; Li, D.; Tan, H.; Xie, Y.; Huang, J. Arogenate Dehydratase Isoforms Differentially Regulate Anthocyanin Biosynthesis in Arabidopsis thaliana. Mol. Plant 2016, 9, 1609–1619. [Google Scholar] [CrossRef]
- Struijs, K. The Lignan Macromolecule from Flaxseed: Structure and Bioconversion of Lignans; Wageningen University and Research: Wageningen, The Netherlands, 2008. [Google Scholar]
- Boerjan, W.; Ralph, J.; Baucher, M. Lignin Biosynthesis. Annu. Rev. Plant Biol. 2003, 54, 519–546. [Google Scholar] [CrossRef]
- Kezimana, P.; Dmitriev, A.A.; Kudryavtseva, A.V.; Romanova, E.V.; Melnikova, N.V. Secoisolariciresinol Diglucoside of Flaxseed and Its Metabolites: Biosynthesis and Potential for Nutraceuticals. Front. Genet. 2018, 9, 641. [Google Scholar] [CrossRef]
- Schmidt, T.J.; Klaes, M.; Sendker, J. Lignans in seeds of Linum species. Phytochemistry 2012, 82, 89–99. [Google Scholar] [CrossRef]
- von Heimendahl, C.B.; Schafer, K.M.; Eklund, P.; Sjoholm, R.; Schmidt, T.J.; Fuss, E. Pinoresinol-lariciresinol reductases with different stereospecificity from Linum album and Linum usitatissimum. Phytochemistry 2005, 66, 1254–1263. [Google Scholar] [CrossRef]
- Hemmati, S.; Schmidt, T.J.; Fuss, E. (+)-Pinoresinol/(−)-lariciresinol reductase from Linum perenne Himmelszelt involved in the biosynthesis of justicidin B. FEBS Lett. 2007, 581, 603–610. [Google Scholar] [CrossRef]
- Fofana, B.; Ghose, K.; McCallum, J.; You, F.M.; Cloutier, S. UGT74S1 is the key player in controlling secoisolariciresinol diglucoside (SDG) formation in flax. BMC Plant Biol. 2017, 17, 35. [Google Scholar] [CrossRef]
- Barvkar, V.T.; Pardeshi, V.C.; Kale, S.M.; Kadoo, N.Y.; Gupta, V.S. Phylogenomic analysis of UDP glycosyltransferase 1 multigene family in Linum usitatissimum identified genes with varied expression patterns. BMC Genom. 2012, 13, 175. [Google Scholar] [CrossRef]
- Umezawa, T.; Davin, L.B.; Yamamoto, E.; Kingston, D.G.I.; Lewis, N.G. Lignan biosynthesis in forsythia species. J. Chem. Soc. Chem. Commun. 1990, 266, 1405–1408. [Google Scholar] [CrossRef]
- Davin, L.B.; Wang, H.B.; Crowell, A.L.; Bedgar, D.L.; Martin, D.M.; Sarkanen, S.; Lewis, N.G. Stereoselective bimolecular phenoxy radical coupling by an auxiliary (dirigent) protein without an active center. Science 1997, 275, 362–366. [Google Scholar] [CrossRef]
- Dalisay, D.S.; Kim, K.W.; Lee, C.; Yang, H.; Rubel, O.; Bowen, B.P.; Davin, L.B.; Lewis, N.G. Dirigent Protein-Mediated Lignan and Cyanogenic Glucoside Formation in Flax Seed: Integrated Omics and MALDI Mass Spectrometry Imaging. J. Nat. Prod. 2015, 78, 1231–1242. [Google Scholar] [CrossRef]
- Corbin, C.; Drouet, S.; Mateljak, I.; Markulin, L.; Decourtil, C.; Renouard, S.; Lopez, T.; Doussot, J.; Lamblin, F.; Auguin, D.; et al. Functional characterization of the pinoresinol-lariciresinol reductase-2 gene reveals its roles in yatein biosynthesis and flax defense response. Planta 2017, 246, 405–420. [Google Scholar] [CrossRef]
- Yousefzadi, M.; Sharifi, M.; Behmanesh, M.; Moyano, E.; Bonfill, M.; Cusido, R.M.; Palazon, J. Podophyllotoxin: Current approaches to its biotechnological production and future challenges. Eng. Life Sci. 2010, 10, 281–292. [Google Scholar] [CrossRef]
- Markulin, L.; Corbin, C.; Renouard, S.; Drouet, S.; Gutierrez, L.; Mateljak, I.; Auguin, D.; Hano, C.; Fuss, E.; Laine, E. Pinoresinol-lariciresinol reductases, key to the lignan synthesis in plants. Planta 2019, 249, 1695–1714. [Google Scholar] [CrossRef]
- Renouard, S.; Corbin, C.; Lopez, T.; Montguillon, J.; Gutierrez, L.; Lamblin, F.; Laine, E.; Hano, C. Abscisic acid regulates pinoresinol-lariciresinol reductase gene expression and secoisolariciresinol accumulation in developing flax (Linum usitatissimum L.) seeds. Planta 2012, 235, 85–98. [Google Scholar] [CrossRef]
- Hemmati, S.; von Heimendahl, C.B.; Klaes, M.; Alfermann, A.W.; Schmidt, T.J.; Fuss, E. Pinoresinol-lariciresinol reductases with opposite enantiospecificity determine the enantiomeric composition of lignans in the different organs of Linum usitatissimum L. Planta Med. 2010, 76, 928–934. [Google Scholar] [CrossRef]
- Schmitt, J.; Petersen, M. Influence of methyl jasmonate and coniferyl alcohol on pinoresinol and matairesinol accumulation in a Forsythia × intermedia suspension culture. Plant Cell Rep. 2002, 20, 885–890. [Google Scholar] [CrossRef]
- Hano, C.; Martin, I.; Fliniaux, O.; Legrand, B.; Gutierrez, L.; Arroo, R.R.; Mesnard, F.; Lamblin, F.; Laine, E. Pinoresinol-lariciresinol reductase gene expression and secoisolariciresinol diglucoside accumulation in developing flax (Linum usitatissimum) seeds. Planta 2006, 224, 1291–1301. [Google Scholar] [CrossRef]
- Ghose, K.; Selvaraj, K.; McCallum, J.; Kirby, C.W.; Sweeney-Nixon, M.; Cloutier, S.J.; Deyholos, M.; Datla, R.; Fofana, B. Identification and functional characterization of a flax UDP-glycosyltransferase glucosylating secoisolariciresinol (SECO) into secoisolariciresinol monoglucoside (SMG) and diglucoside (SDG). BMC Plant Biol. 2014, 14, 82. [Google Scholar] [CrossRef]
- Caputi, L.; Malnoy, M.; Goremykin, V.; Nikiforova, S.; Martens, S. A genome-wide phylogenetic reconstruction of family 1 UDP-glycosyltransferases revealed the expansion of the family during the adaptation of plants to life on land. Plant J. 2012, 69, 1030–1042. [Google Scholar] [CrossRef]
- Jones, P.; Vogt, T. Glycosyltransferases in secondary plant metabolism: Tranquilizers and stimulant controllers. Planta 2001, 213, 164–174. [Google Scholar] [CrossRef]
- Witte, S.; Moco, S.; Vervoort, J.; Matern, U.; Martens, S. Recombinant expression and functional characterisation of regiospecific flavonoid glucosyltransferases from Hieracium pilosella L. Planta 2009, 229, 1135–1146. [Google Scholar] [CrossRef]
- Gachon, C.M.; Langlois-Meurinne, M.; Saindrenan, P. Plant secondary metabolism glycosyltransferases: The emerging functional analysis. Trends Plant Sci. 2005, 10, 542–549. [Google Scholar] [CrossRef]
- Fofana, B.; Ghose, K.; Somalraju, A.; McCallum, J.; Main, D.; Deyholos, M.K.; Rowland, G.G.; Cloutier, S. Induced Mutagenesis in UGT74S1 Gene Leads to Stable New Flax Lines with Altered Secoisolariciresinol Diglucoside (SDG) Profiles. Front. Plant Sci. 2017, 8, 1638. [Google Scholar] [CrossRef]
- Bowey, E.; Adlercreutz, H.; Rowland, I. Metabolism of isoflavones and lignans by the gut microflora: A study in germ-free and human flora associated rats. Food Chem. Toxicol. 2003, 41, 631–636. [Google Scholar] [CrossRef]
- Eeckhaut, E.; Struijs, K.; Possemiers, S.; Vincken, J.P.; Keukeleire, D.D.; Verstraete, W. Metabolism of the lignan macromolecule into enterolignans in the gastrointestinal lumen as determined in the simulator of the human intestinal microbial ecosystem. J. Agric. Food Chem. 2008, 56, 4806–4812. [Google Scholar] [CrossRef]
- Clavel, T.; Borrmann, D.; Braune, A.; Dore, J.; Blaut, M. Occurrence and activity of human intestinal bacteria involved in the conversion of dietary lignans. Anaerobe 2006, 12, 140–147. [Google Scholar] [CrossRef]
- Clavel, T.; Henderson, G.; Alpert, C.A.; Philippe, C.; Rigottier-Gois, L.; Dore, J.; Blaut, M. Intestinal bacterial communities that produce active estrogen-like compounds enterodiol and enterolactone in humans. Appl. Environ. Microbiol. 2005, 71, 6077–6085. [Google Scholar] [CrossRef]
- Jin, J.S.; Hattori, M. Further studies on a human intestinal bacterium Ruminococcus sp. END-1 for transformation of plant lignans to mammalian lignans. J. Agric. Food Chem. 2009, 57, 7537–7542. [Google Scholar] [CrossRef]
- Xie, L.H.; Akao, T.; Hamasaki, K.; Deyama, T.; Hattori, M. Biotransformation of pinoresinol diglucoside to mammalian lignans by human intestinal microflora, and isolation of Enterococcus faecalis strain PDG-1 responsible for the transformation of (+)-pinoresinol to (+)-lariciresinol. Chem. Pharm. Bull. 2003, 51, 508–515. [Google Scholar] [CrossRef]
- Heinonen, S.; Nurmi, T.; Liukkonen, K.; Poutanen, K.; Wahala, K.; Deyama, T.; Nishibe, S.; Adlercreutz, H. In vitro metabolism of plant lignans: New precursors of mammalian lignans enterolactone and enterodiol. J. Agric. Food Chem. 2001, 49, 3178–3186. [Google Scholar] [CrossRef]
- Adlercreutz, H. Lignans and human health. Crit. Rev. Clin. Lab. Sci. 2007, 44, 483–525. [Google Scholar] [CrossRef]
- Feng, J.; Shi, Z.; Ye, Z. Effects of metabolites of the lignans enterolactone and enterodiol on osteoblastic differentiation of MG-63 cells. Biol. Pharm. Bull. 2008, 31, 1067–1070. [Google Scholar] [CrossRef]
- Adolphe, J.L.; Whiting, S.J.; Juurlink, B.H.; Thorpe, L.U.; Alcorn, J. Health effects with consumption of the flax lignan secoisolariciresinol diglucoside. Br. J. Nutr. 2010, 103, 929–938. [Google Scholar] [CrossRef]
- Zaineddin, A.K.; Vrieling, A.; Buck, K.; Becker, S.; Linseisen, J.; Flesch-Janys, D.; Kaaks, R.; Chang-Claude, J. Serum enterolactone and postmenopausal breast cancer risk by estrogen, progesterone and herceptin 2 receptor status. Int. J. Cancer 2012, 130, 1401–1410. [Google Scholar] [CrossRef]
- Jan, K.C.; Hwang, L.S.; Ho, C.T. Biotransformation of sesaminol triglucoside to mammalian lignans by intestinal microbiota. J. Agric. Food Chem. 2009, 57, 6101–6106. [Google Scholar] [CrossRef]
- Borriello, S.P.; Setchell, K.D.; Axelson, M.; Lawson, A.M. Production and metabolism of lignans by the human faecal flora. J. Appl. Bacteriol. 1985, 58, 37–43. [Google Scholar] [CrossRef]
- Landete, J.M.; Arques, J.; Medina, M.; Gaya, P.; de Las Rivas, B.; Munoz, R. Bioactivation of Phytoestrogens: Intestinal Bacteria and Health. Crit. Rev. Food Sci. Nutr. 2016, 56, 1826–1843. [Google Scholar] [CrossRef]
- Bravo, D.; Peirotén, Á.; Álvarez, I.; Landete, J.M. Phytoestrogen metabolism by lactic acid bacteria: Enterolignan production by Lactobacillus salivarius and Lactobacillus gasseri strains. J. Funct. Foods 2017, 37, 373–378. [Google Scholar] [CrossRef]
- Quartieri, A.; Garcia-Villalba, R.; Amaretti, A.; Raimondi, S.; Leonardi, A.; Rossi, M.; Tomas-Barberan, F. Detection of novel metabolites of flaxseed lignans in vitro and in vivo. Mol. Nutr. Food Res. 2016, 60, 1590–1601. [Google Scholar] [CrossRef]
- Clavel, T.; Dore, J.; Blaut, M. Bioavailability of lignans in human subjects. Nutr. Res. Rev. 2006, 19, 187–196. [Google Scholar] [CrossRef]
- Durazzo, A.; Lucarini, M.; Camilli, E.; Marconi, S.; Gabrielli, P.; Lisciani, S.; Gambelli, L.; Aguzzi, A.; Novellino, E.; Santini, A.; et al. Dietary Lignans: Definition, Description and Research Trends in Databases Development. Molecules 2018, 23, 3251. [Google Scholar] [CrossRef]
- Zhuang, C.-C.; Liu, C.-R.; Shan, C.-B.; Liu, Z.; Liu, L.; Ma, C.-M. High-yield production of secoisolariciresinol diglucoside from flaxseed hull by extraction with alcoholic ammonium hydroxide and chromatography on microporous resin. Food Prod. Process. Nutr. 2021, 3, 35. [Google Scholar] [CrossRef]
- Akl, E.M.; Mohamed, S.S.; Hashem, A.I.; Taha, F.S. Optimum Extraction of Phenolic Compounds from Flaxseed Meal. Am. J. Food Technol. 2017, 12, 152–169. [Google Scholar] [CrossRef]
- Corbin, C.; Fidel, T.; Leclerc, E.A.; Barakzoy, E.; Sagot, N.; Falguieres, A.; Renouard, S.; Blondeau, J.P.; Ferroud, C.; Doussot, J.; et al. Development and validation of an efficient ultrasound assisted extraction of phenolic compounds from flax (Linum usitatissimum L.) seeds. Ultrason. Sonochem. 2015, 26, 176–185. [Google Scholar] [CrossRef]
- Liggins, J.; Grimwood, R.; Bingham, S.A. Extraction and Quantification of Lignan Phytoestrogens in Food and Human Samples. Anal. Biochem. 2000, 287, 102–109. [Google Scholar] [CrossRef]
- Garros, L.; Drouet, S.; Corbin, C. Insight into the Influence of Cultivar Type, Cultivation Year, and Site on the Lignans and Related Phenolic Profiles, and the Health-Promoting Antioxidant Potential of Flax (Linum usitatissimum L.) Seeds. Molecules 2018, 23, 2636. [Google Scholar] [CrossRef]
- Li, X.; Yuan, J.P.; Xu, S.P.; Wang, J.H.; Liu, X. Separation and determination of secoisolariciresinol diglucoside oligomers and their hydrolysates in the flaxseed extract by high-performance liquid chromatography. J. Chromatogr. A 2008, 1185, 223–232. [Google Scholar] [CrossRef]
- Hosseinian, F.S.; Beta, T. Patented techniques for the extraction and isolation of secoisolari-ciresinol diglucoside from flaxseed. Recent Pat. Food Nutr. Agric. 2009, 1, 25–31. [Google Scholar] [CrossRef]
- Renouard, S.; Hano, C.; Corbin, C.; Fliniaux, O.; Lopez, T.; Montguillon, J.; Barakzoy, E.; Mesnard, F.; Lamblin, F.; Lainé, E. Cellulase-assisted release of secoisolariciresinol from extracts of flax (Linum usitatissimum) hulls and whole seeds. Food Chem. 2010, 122, 679–687. [Google Scholar] [CrossRef]
- Fuentealba, C.; Figuerola, F.; Estévez, A.M.; González-Muñoz, A.; Muñoz, O. Optimization of secoisolariciresinol diglucoside extraction from flaxseed (Linum usitatissimum L.) and isolation by a simple HPLC-UV method. CYTA-J. Food 2014, 13, 273–281. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Y.; Wu, Y.; Xu, Y.; Jiang, Y.; Zhang, Y.; Wang, L.; Zhang, L. Ultrasonic-Assisted Aqueous Two-Phase Extraction Combined with Macroporous Resin Enrichment of Lignans from Flaxseed Meal and Their Antioxidant Activities. J. AOAC Int. 2021, 105, 1183–1192. [Google Scholar] [CrossRef]
- Nemes, S.M.; Orsat, V. Microwave-Assisted Extraction of Secoisolariciresinol Diglucoside—Method Development. Food Bioprocess. Technol. 2009, 4, 1219–1227. [Google Scholar] [CrossRef]
- Eliasson, C.; Kamal-Eldin, A.; Andersson, R.; Aman, P. High-performance liquid chromatographic analysis of secoisolariciresinol diglucoside and hydroxycinnamic acid glucosides in flaxseed by alkaline extraction. J. Chromatogr. A 2003, 1012, 151–159. [Google Scholar] [CrossRef]
- Beejmohun, V.; Fliniaux, O.; Grand, E.; Lamblin, F.; Bensaddek, L.; Christen, P.; Kovensky, J.; Fliniaux, M.A.; Mesnard, F. Microwave-assisted extraction of the main phenolic compounds in flaxseed. Phytochem. Anal. 2007, 18, 275–282. [Google Scholar] [CrossRef]
- Thompson, L.U.; Boucher, B.A.; Liu, Z.; Cotterchio, M.; Kreiger, N. Phytoestrogen content of foods consumed in Canada, including isoflavones, lignans, and coumestan. Nutr. Cancer 2006, 54, 184–201. [Google Scholar] [CrossRef]
- Olmo-Cunillera, A.; Lopez-Yerena, A.; Lozano-Castellon, J.; Tresserra-Rimbau, A.; Vallverdu-Queralt, A.; Perez, M. NMR spectroscopy: A powerful tool for the analysis of polyphenols in extra virgin olive oil. J. Sci. Food Agric. 2020, 100, 1842–1851. [Google Scholar] [CrossRef]
- Mueed, A.; Shibli, S.; Jahangir, M.; Jabbar, S.; Deng, Z. A comprehensive review of flaxseed (Linum usitatissimum L.): Health-affecting compounds, mechanism of toxicity, detoxification, anticancer and potential risk. Crit. Rev. Food Sci. Nutr. 2023, 63, 11081–11104. [Google Scholar] [CrossRef]
- Aljedaani, H.M.; Akm, S.O.; Mhr, E. Role of Flaxseed Oil Against Lead Toxicity in Liver of Male Rats. Acta Sci. Med. Sci. 2021, 51, 84–96. [Google Scholar] [CrossRef]
- Tashkandi, B.; Baghdadi, G.M.; Baghdadi, A.M. Protective Impact of Flaxseed Oil against Acetaminophen-Induced Nephrotoxicity in Rats: Antioxidant and Anti-inflammatory Pathway. J. Complement. Med. Res. 2023, 14, 56–60. [Google Scholar] [CrossRef]
- Hashim, M.; Al-attar, A.; Abu, Z.I. Efficacy of Moringa Oil and Flaxseed Oil against Carbendazim Toxicity in Hepatorenal Organs of Male Rats: A Physiological and Histological Study. Curr. Sci. Int. 2023, 12, 557–574. [Google Scholar] [CrossRef]
- Senizza, A.; Rocchetti, G.; Mosele, J.I.; Patrone, V.; Callegari, M.L.; Morelli, L.; Lucini, L. Lignans and Gut Microbiota: An Interplay Revealing Potential Health Implications. Molecules 2020, 25, 5709. [Google Scholar] [CrossRef]
- Imran, M.; Ahmad, N.; Anjum, F.M.; Khan, M.K.; Mushtaq, Z.; Nadeem, M.; Hussain, S. Potential protective properties of flax lignan secoisolariciresinol diglucoside. Nutr. J. 2015, 14, 71. [Google Scholar] [CrossRef]
- Zhang, Y.; Cai, P.; Cheng, G.; Zhang, Y. A Brief Review of Phenolic Compounds Identified from Plants: Their Extraction, Analysis, and Biological Activity. Nat. Prod. Commun. 2022, 17, 1934578X2110697. [Google Scholar] [CrossRef]
- Niemeyer, H.B.; Metzler, M. Differences in the antioxidant activity of plant and mammalian lignans. J. Food Eng. 2003, 56, 255–256. [Google Scholar] [CrossRef]
- Bergman Jungestrom, M.; Thompson, L.U.; Dabrosin, C. Flaxseed and its lignans inhibit estradiol-induced growth, angiogenesis, and secretion of vascular endothelial growth factor in human breast cancer xenografts in vivo. Clin. Cancer Res. 2007, 13, 1061–1067. [Google Scholar] [CrossRef]
- Swaby, R.F.; Sharma, C.G.; Jordan, V.C. SERMs for the treatment and prevention of breast cancer. Rev. Endocr. Metab. Disord. 2007, 8, 229–239. [Google Scholar] [CrossRef]
- Bowers, L.W.; Lineberger, C.G.; Ford, N.A. The flaxseed lignan secoisolariciresinol diglucoside decreases local inflammation, suppresses NFκB signaling, and inhibits mammary tumor growth. Breast Cancer Res. Treat. 2019, 173, 545–557. [Google Scholar] [CrossRef]
- Nedelcheva, R.; Zarev, Y.; Mihaylova, R.; Kozuharova, E.; Momekov, G.; Ionkova, I. Arylnaphthalene lignans with a focus Linum species: A review on phytochemical, biotechnological and pharmacological potential. Pharmacia 2024, 71, 1–10. [Google Scholar] [CrossRef]
- Lan, P.; Du, M.; Teng, Y. Structural Modifications of a Flaxseed Lignan in Pursuit of Higher Liposolubility: Evaluation of the Antioxidant and Permeability Properties of the Resulting Derivatives. J. Agric. Food Chem. 2019, 67, 14152–14159. [Google Scholar] [CrossRef]
- Fukumitsu, S.; Aida, K.; Ueno, N.; Ozawa, S.; Takahashi, Y.; Kobori, M. Flaxseed lignan attenuates high-fat diet-induced fat accumulation and induces adiponectin expression in mice. Br. J. Nutr. 2008, 100, 669–676. [Google Scholar] [CrossRef]
Plant Name | Different Lignans Content | Total Content | Methods | Reference | |||
---|---|---|---|---|---|---|---|
SECO | MAT | PINO | LAR | ||||
Oilseeds and nuts | |||||||
Flaxseed | 294,210 | 553 | 3324 | 3041 | 301,129 | μg/100 g fresh edible weight | [18] |
Flaxseed | 7208 | 0 | 2 | 29 | - | μg/100 g wet basis | [19] |
Flaxseed (whole) | 11,845 | 26 | 383 | 220 | - | μg/100 g wet basis | [18] |
Flaxseed | 369,900 | 1087 | - | - | 370,987 | μg/100 g dry wt | [20] |
Sunflower seeds | 26.2 | 0.5 | 33.9 | 149.7 | - | μg/100 g wet basis | [19] |
Sesame seed | 66 | 481 | 29,331 | 9470 | 39,348 | μg/100 g fresh edible weight | [18] |
Vegetables | |||||||
Garlic | 50 | 0 | 200 | 286 | 536 | μg/100 g fresh edible weight | [18] |
Curly kale | 19 | 12 | 1691 | 599 | 2321 | μg/100 g fresh edible weight | [18] |
Broccoli | 38 | 0 | 315 | 972 | 1325 | μg/100 g fresh edible weight | [18] |
Asparagus | 743 | 14 | 122 | 92 | 1034 | [16] | |
Cabbages (Finnish database) | 30.3 | 0.2 | - | - | 30.5 | Mean of the group | [21] |
Cabbages (Dutch database) | 8 | 2 | 335 | 255 | 600 | Weighted mean (most common cabbages) | [21] |
Fruit vegetables (Finnish database) | 5.49 | 0.01 | - | - | 5.5 | Weighted mean (tomato and cucumber) | [21] |
Fruit vegetables (Dutch database) | 10 | 0 | 19 | 103 | 132 | Mean of sweet pepper, zucchini, cucumber and tomato | [21] |
Onion-family vegetables (Finnish database) | 20 | 3.8 | - | - | 23.8 | Mean, SECO-value weighted by onion | [21] |
Onion-family vegetables (Dutch database) | 34 | 0 | 100 | 153 | 287 | Mean of garlic, leek and onion | [21] |
Fruits | |||||||
Apricot | 31 | 0 | 314 | 105 | 450 | μg/100 g fresh edible weight | [18] |
Strawberry | 5 | 0 | 117 | 212 | 334 | μg/100 g fresh edible weight | [18] |
Peach | 27 | 0 | 186 | 80 | 293 | μg/100 g fresh edible weight | [18] |
Yuzu | 26 | - | 654 | 192 | 1291 | μg/100 g wet basis | [16] |
Valencia orange | 56 | - | 51 | 193 | 521 | μg/100 g wet basis | [16] |
Cereal and grain products | |||||||
Rye (Finnish database) | 40 | 55 | - | - | 95 | Weighted mean (whole grain rye flour) | [21] |
Rye (Dutch database) | 23 | 20 | 246 | 175 | 458 | Ryebread × 1.43 | [21] |
Wheat (Finnish database) | 20 | 5 | - | - | 25 | Weighted mean (wheat flour) | [21] |
Wheat (Dutch database) | 12 | 0 | 29 | 60 | 99 | Wheatbread × 1.43 | [21] |
Rice (Finnish database) | 26.4 | 1 | - | - | 27.4 | Means of rice/rice-containing foods | [21] |
Rice (Dutch database) | 1.5 | 1 | 3.5 | 17.5 | 23.5 | Means of white rice and whole grain rice | [21] |
Pasta and macaroni (Finnish database) | 6.8 | 0.4 | - | - | 7.2 | Mean of all pastas | [21] |
Pasta and macaroni (Dutch database) | 18 | 5 | 0 | 4 | 9 | Cooked pasta | [21] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Z.; Cao, Q.; Deng, Z. Unveiling the Power of Flax Lignans: From Plant Biosynthesis to Human Health Benefits. Nutrients 2024, 16, 3520. https://doi.org/10.3390/nu16203520
Gao Z, Cao Q, Deng Z. Unveiling the Power of Flax Lignans: From Plant Biosynthesis to Human Health Benefits. Nutrients. 2024; 16(20):3520. https://doi.org/10.3390/nu16203520
Chicago/Turabian StyleGao, Zhan, Qinglei Cao, and Zhongyuan Deng. 2024. "Unveiling the Power of Flax Lignans: From Plant Biosynthesis to Human Health Benefits" Nutrients 16, no. 20: 3520. https://doi.org/10.3390/nu16203520
APA StyleGao, Z., Cao, Q., & Deng, Z. (2024). Unveiling the Power of Flax Lignans: From Plant Biosynthesis to Human Health Benefits. Nutrients, 16(20), 3520. https://doi.org/10.3390/nu16203520