Oral Administration of a Novel, Synthetic Ketogenic Compound Elevates Blood β-Hydroxybutyrate Levels in Mice in Both Fasted and Fed Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Declaration
2.2. Chemistry
2.2.1. Synthesis of Propane-1, 2, 3-Triyl Tris (3-Oxobutanoate) (1)
2.2.2. Liquid Chromatography–Mass Spectrometry
2.3. Animal Experiments
2.3.1. Experiment 1: Dose Response
2.3.2. Experiment 2: High Dose, Fasted for 24 h
2.3.3. Experiment 3: High Dose, Fasted for 4 h
2.3.4. Experiment 4: High Dose, Not Fasted
2.4. Statistical Analysis and Graphical Presentation
3. Results
3.1. Experiment 1: Dose Response, Fasted for 5 h Post-Gavage
3.2. Experiment 2: High Dose, Fasted for 24 h Post-Gavage
3.3. Experiment 3: High Dose, Fasted for 4 h Post-Gavage
3.4. Experiment 4: High Dose: Not Fasted
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Azari, H.; Poff, A.; D’Agostino, D.; Reynolds, B. Ketone ester supplementation of Atkins-type diet prolongs survival in an orthotopic xenograft model of glioblastoma. Anat. Cell Biol. 2024, 57, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Dowis, K.; Banga, S. The Potential Health Benefits of the Ketogenic Diet: A Narrative Review. Nutrients 2021, 13, 1654. [Google Scholar] [CrossRef] [PubMed]
- Masood, W.; Annamaraju, P.; Khan Suheb, M.Z.; Uppaluri, K.R. Ketogenic Diet. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Poff, A.M.; Moss, S.; Soliven, M.; D’Agostino, D.P. Ketone Supplementation: Meeting the Needs of the Brain in an Energy Crisis. Front. Nutr. 2021, 8, 783659. [Google Scholar] [CrossRef] [PubMed]
- Waldman, H.S.; O’Neal, E.K.; Barker, G.A.; Witt, C.R.; Lara, D.A.; Huber, A.K.; Forsythe, V.N.; Koutnik, A.P.; D’Agostino, D.P.; Staiano, W.; et al. A Ketone Monoester with Carbohydrate Improves Cognitive Measures Postexercise, but Not Performance in Trained Females. Med. Sci. Sports Exerc. 2024, 56, 725–736. [Google Scholar] [CrossRef]
- Wheless, J.W. History of the ketogenic diet. Epilepsia 2008, 49 (Suppl. S8), 3–5. [Google Scholar] [CrossRef]
- Ari, C.; Koutnik, A.P.; DeBlasi, J.; Landon, C.; Rogers, C.Q.; Vallas, J.; Bharwani, S.; Puchowicz, M.; Bederman, I.; Diamond, D.M.; et al. Delaying latency to hyperbaric oxygen-induced CNS oxygen toxicity seizures by combinations of exogenous ketone supplements. Physiol. Rep. 2019, 7, e13961. [Google Scholar] [CrossRef]
- Ciarlone, S.L.; Grieco, J.C.; D’Agostino, D.P.; Weeber, E.J. Ketone ester supplementation attenuates seizure activity, and improves behavior and hippocampal synaptic plasticity in an Angelman syndrome mouse model. Neurobiol. Dis. 2016, 96, 38–46. [Google Scholar] [CrossRef]
- D’Agostino, D.P.; Pilla, R.; Held, H.E.; Landon, C.S.; Puchowicz, M.; Brunengraber, H.; Ari, C.; Arnold, P.; Dean, J.B. Therapeutic ketosis with ketone ester delays central nervous system oxygen toxicity seizures in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2013, 304, R829–R836. [Google Scholar] [CrossRef] [PubMed]
- Stavitzski, N.M.; Landon, C.S.; Hinojo, C.M.; Poff, A.M.; Rogers, C.Q.; D’Agostino, D.P.; Dean, J.B. Exogenous ketone ester delays CNS oxygen toxicity without impairing cognitive and motor performance in male Sprague-Dawley rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2021, 321, R100–R111. [Google Scholar] [CrossRef]
- Deemer, S.E.; Davis, R.A.H.; Roberts, B.M.; Smith, D.L., Jr.; Koutnik, A.P.; Poff, A.M.; D’Agostino, D.P.; Plaisance, E.P. Exogenous Dietary Ketone Ester Decreases Body Weight and Adiposity in Mice Housed at Thermoneutrality. Obesity 2020, 28, 1447–1455. [Google Scholar] [CrossRef]
- Seyfried, T.N.; Yu, G.; Maroon, J.C.; D’Agostino, D.P. Press-pulse: A novel therapeutic strategy for the metabolic management of cancer. Nutr. Metab. 2017, 14, 19. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Leng, S.X.; Zhang, H. Ketogenic Diet: An Effective Treatment Approach for Neurodegenerative Diseases. Curr. Neuropharmacol. 2022, 20, 2303–2319. [Google Scholar] [CrossRef] [PubMed]
- Gershuni, V.M.; Yan, S.L.; Medici, V. Nutritional Ketosis for Weight Management and Reversal of Metabolic Syndrome. Curr. Nutr. Rep. 2018, 7, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Trachtenbarg, D.E. Diabetic ketoacidosis. Am. Fam. Physician 2005, 71, 1705–1714. [Google Scholar]
- Desrochers, S.; Dubreuil, P.; Brunet, J.; Jette, M.; David, F.; Landau, B.R.; Brunengraber, H. Metabolism of (R,S)-1,3-butanediol acetoacetate esters, potential parenteral and enteral nutrients in conscious pigs. Am. J. Physiol. 1995, 268, E660–E667. [Google Scholar] [CrossRef]
- Clarke, K.; Tchabanenko, K.; Pawlosky, R.; Carter, E.; Todd King, M.; Musa-Veloso, K.; Ho, M.; Roberts, A.; Robertson, J.; Vanitallie, T.B.; et al. Kinetics, safety and tolerability of (R)-3-hydroxybutyl (R)-3-hydroxybutyrate in healthy adult subjects. Regul. Toxicol. Pharmacol. 2012, 63, 401–408. [Google Scholar] [CrossRef]
- Charan, J.; Kantharia, N.D. How to calculate sample size in animal studies? J. Pharmacol. Pharmacother. 2013, 4, 303–306. [Google Scholar] [CrossRef]
- Parasuraman, S.; Raveendran, R.; Kesavan, R. Blood sample collection in small laboratory animals. J. Pharmacol. Pharmacother. 2010, 1, 87–93. [Google Scholar] [CrossRef]
- Balcombe, J.P.; Barnard, N.D.; Sandusky, C. Laboratory routines cause animal stress. Contemp. Top. Lab. Anim. Sci. 2004, 43, 42–51. [Google Scholar]
- Meidenbauer, J.J.; Mukherjee, P.; Seyfried, T.N. The glucose ketone index calculator: A simple tool to monitor therapeutic efficacy for metabolic management of brain cancer. Nutr. Metab. 2015, 12, 12. [Google Scholar] [CrossRef]
- Schreiber, R.A.; Yeh, Y.Y. Temporal changes in plasma levels and metabolism of ketone bodies by liver and brain after ethanol and/or starvation in C57BL/6J mice. Drug Alcohol. Depend. 1984, 13, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Koutnik, A.P.; Poff, A.M.; Ward, N.P.; DeBlasi, J.M.; Soliven, M.A.; Romero, M.A.; Roberson, P.A.; Fox, C.D.; Roberts, M.D.; D’Agostino, D.P. Ketone Bodies Attenuate Wasting in Models of Atrophy. J. Cachexia Sarcopenia Muscle 2020, 11, 973–996. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Bi, D.; Zhang, Y.; Kong, C.; Du, J.; Wu, X.; Wei, Q.; Qin, H. Ketogenic diet for human diseases: The underlying mechanisms and potential for clinical implementations. Signal Transduct. Target. Ther. 2022, 7, 11. [Google Scholar] [CrossRef]
- van der Louw, E.; van den Hurk, D.; Neal, E.; Leiendecker, B.; Fitzsimmon, G.; Dority, L.; Thompson, L.; Marchio, M.; Dudzinska, M.; Dressler, A.; et al. Ketogenic diet guidelines for infants with refractory epilepsy. Eur. J. Paediatr. Neurol. 2016, 20, 798–809. [Google Scholar] [CrossRef] [PubMed]
- Ari, C.; Kovacs, Z.; Juhasz, G.; Murdun, C.; Goldhagen, C.R.; Koutnik, A.P.; Poff, A.M.; Kesl, S.L.; D’Agostino, D.P. Exogenous Ketone Supplements Reduce Anxiety-Related Behavior in Sprague-Dawley and Wistar Albino Glaxo/Rijswijk Rats. Front. Mol. Neurosci. 2016, 9, 137. [Google Scholar] [CrossRef]
- Gambardella, I.; Ascione, R.; D’Agostino, D.P.; Ari, C.; Worku, B.; Tranbaugh, R.F.; Ivascu, N.; Villena-Vargas, J.; Girardi, L.N. Systematic Review—Neuroprotection of ketosis in acute injury of the mammalian central nervous system: A meta-analysis. J. Neurochem. 2021, 158, 105–118. [Google Scholar] [CrossRef]
- Kovacs, Z.; D’Agostino, D.P.; Diamond, D.; Kindy, M.S.; Rogers, C.; Ari, C. Therapeutic Potential of Exogenous Ketone Supplement Induced Ketosis in the Treatment of Psychiatric Disorders: Review of Current Literature. Front. Psychiatry 2019, 10, 363. [Google Scholar] [CrossRef]
- Ari, C.; Murdun, C.; Koutnik, A.P.; Goldhagen, C.R.; Rogers, C.; Park, C.; Bharwani, S.; Diamond, D.M.; Kindy, M.S.; D’Agostino, D.P.; et al. Exogenous Ketones Lower Blood Glucose Level in Rested and Exercised Rodent Models. Nutrients 2019, 11, 2330. [Google Scholar] [CrossRef]
- Kesl, S.L.; Poff, A.M.; Ward, N.P.; Fiorelli, T.N.; Ari, C.; Van Putten, A.J.; Sherwood, J.W.; Arnold, P.; D’Agostino, D.P. Effects of exogenous ketone supplementation on blood ketone, glucose, triglyceride, and lipoprotein levels in Sprague-Dawley rats. Nutr. Metab. 2016, 13, 9. [Google Scholar] [CrossRef]
- Monteyne, A.J.; Falkenhain, K.; Whelehan, G.; Neudorf, H.; Abdelrahman, D.R.; Murton, A.J.; Wall, B.T.; Stephens, F.B.; Little, J.P. A ketone monoester drink reduces postprandial blood glucose concentrations in adults with type 2 diabetes: A randomised controlled trial. Diabetologia 2024, 67, 1107–1113. [Google Scholar] [CrossRef]
- Falkenhain, K.; Daraei, A.; Forbes, S.C.; Little, J.P. Effects of Exogenous Ketone Supplementation on Blood Glucose: A Systematic Review and Meta-analysis. Adv. Nutr. 2022, 13, 1697–1714. [Google Scholar] [CrossRef] [PubMed]
- Dolan, L.C.; Karikachery, A.R.; Thipe, V.C.; Arceneaux, B.G.; Katti, K.K.; Katti, K.V.; Chesne, A.M. Toxicity Investigations of (R)-3-Hydroxybutyrate Glycerides In Vitro and in Male and Female Rats. Nutrients 2022, 14, 4426. [Google Scholar] [CrossRef] [PubMed]
Exp # | Duration (h) | Doses Used (mg/g) | Food Restriction Relative to Gavage (h) | Outcome Method and Measurements |
---|---|---|---|---|
1 | 24 | 2.5, 5, 7.5 | 2 pre- to 5 post- | Strips, glucose, and BHB |
2 | 24 | 7.5 | 2 pre- to 24 post- | Strips, glucose, and BHB |
3 | 4 | 7.5 | 2 pre- to 4 post- | LCMS, BHB, and AcAc |
4 | 24 | 7.5 | n/a | Strips, glucose, and BHB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soliven, M.A.; Rogers, C.Q.; Williams, M.S.; Thomas, N.N.; Turos, E.; D’Agostino, D.P. Oral Administration of a Novel, Synthetic Ketogenic Compound Elevates Blood β-Hydroxybutyrate Levels in Mice in Both Fasted and Fed Conditions. Nutrients 2024, 16, 3526. https://doi.org/10.3390/nu16203526
Soliven MA, Rogers CQ, Williams MS, Thomas NN, Turos E, D’Agostino DP. Oral Administration of a Novel, Synthetic Ketogenic Compound Elevates Blood β-Hydroxybutyrate Levels in Mice in Both Fasted and Fed Conditions. Nutrients. 2024; 16(20):3526. https://doi.org/10.3390/nu16203526
Chicago/Turabian StyleSoliven, Maricel A., Christopher Q. Rogers, Michael S. Williams, Natalya N. Thomas, Edward Turos, and Dominic P. D’Agostino. 2024. "Oral Administration of a Novel, Synthetic Ketogenic Compound Elevates Blood β-Hydroxybutyrate Levels in Mice in Both Fasted and Fed Conditions" Nutrients 16, no. 20: 3526. https://doi.org/10.3390/nu16203526
APA StyleSoliven, M. A., Rogers, C. Q., Williams, M. S., Thomas, N. N., Turos, E., & D’Agostino, D. P. (2024). Oral Administration of a Novel, Synthetic Ketogenic Compound Elevates Blood β-Hydroxybutyrate Levels in Mice in Both Fasted and Fed Conditions. Nutrients, 16(20), 3526. https://doi.org/10.3390/nu16203526