Proteins and Peptides from Food Sources with Effect on Satiety and Their Role as Anti-Obesity Agents: A Narrative Review
Abstract
:1. Introduction
2. Methods
3. Gut Hormones Related to Satiety
4. Dietary Proteins as a Source of Bioactive Peptides with Satiety Effects
5. Mechanisms of Peptides and Amino Acids in the Secretion of Anorexigenic Hormones
6. Plant Proteins and Peptides on the Hormonal Regulation of Satiety: In Vitro and In Vivo Studies
Protein Source | Peptide Sequence | Study Model | Dose | Biological Activities | Reference | |
---|---|---|---|---|---|---|
Legumes | Country bean (Dolichos lablab) | Hydrolysate (Pepsin and pronase) | STC-1 cells | 5 mg/mL solid or protein weight | Stimulates CCK secretion | [29] |
Yard long bean (Vigna sesquipedalis) | Hydrolysate (Pepsin and pronase) | STC-1 cells | 5 mg/mL solid or protein weight | Stimulates CCK secretion | [29] | |
Pea | Hydrolysate (Subtilisin) | STC-1 cells | 1 mg/mL of protein | Stimulates CCK secretion | [55] | |
Soybean | Hydrolysate (commercial) | STC-1 cells and GLUTag cells | 5–10 mg/mL | Stimulates CCK and GLP-1 secretion | [7] | |
Cereals | Maize/zein | Hydrolysate (Papain) | GLUTag cells | 5 mg/mL of hydrolysate | Stimulates GLP-1 secretion | [62] |
Wheat | Hydrolysate (Papain) | STC-1 cells | 5–20 mg/mL of hydrolysate | Stimulates GLP-1 secretion | [55] | |
Wheat | Hydrolysate (Bacterial protease) | STC-1 cells and GLUTag cells | 1 mg/mL of hydrolysate | Stimulates GLP-1 secretion | [58] | |
Wheat/gluten | Hydrolysates (commercial) | STC-1 cells | 5 and 10 mg/mL of hydrolysate | Stimulates CCK and GLP-1 secretion | [58] | |
Highland barley (Hordeum vulgare L.) | Protein digested (In vitro) | STC-1 cells | 5 mg/mL of digested | Stimulates CCK secretion | [60] | |
Wheat | Protein digested (In vitro) | STC-1 cells | 5 mg/mL of digested | Stimulates CCK secretion | [61] |
Protein Source | Proteins/Peptides | Study Model | Assessment | Dose | Biological Activities | Reference |
---|---|---|---|---|---|---|
Legumes | Soybean, Péptida, β 51–63 (VRIRLLQRFNKRS) | Male Sprague-Dawley rats | Intraduodenal infusion | 7.5 nmol = 2.5 mL of 3 μmol/L | Suppresses food intake via CCK release | [54] |
Pea, Hydrolysates (Pepsin) | Male SPF Wistar rats | Orally administered | Isocaloric meals containing 35% energy of pea-protein | Stimulates CCK, GLP-1, and PYY secretion | [56] | |
Rapeseed, Tripeptide Arg-Ile-Tyr (RIY) | Male ddY mice | Intraperitoneally administered | 50 mg/kg body weight | Stimulates CCK secretion | [53] | |
Cereals | Maize/zein, Hydrolysate (Papain) | Sprague-Dawley rats | Ileal administration, blood samples 15, 30, and 60 min after oral administration | 500 mg/2 mL of water | Stimulates GLP-1 secretion | [63] |
Maize/zein, Hydrolysate (Papain) | Sprague-Dawley and Goto Kakizaki rats | Orally administered, blood samples 15, 30, 60, 90, and 120 min after oral administration | 2 g/kg body weight | Stimulates GLP-1 secretion | [64] | |
Rice, Hydrolysates (Papain and pepsin) | Male Sprague-Dawley rats | Orally administered, blood samples 15, 30, 60, 90, and 120 min after oral administration | 2 g/kg body weight | Increases GLP-1 secretion and decreases plasma DPP-IV activity | [65] | |
Highland barley (Hordeum vulgare L.) | Male ICR mice | Oral gavage, blood samples 0, 15, 30, 60, 90, 120, and 150 min | 1 g/kg body weight | Stimulates CCK secretion | [60] | |
Wheat, Hydrolysate (Bacterial protease) | Sprague-Dawley rats | Orally administered, blood samples 15, 30, and 60 min after oral administration | 2 g/kg body weight | Stimulates GLP-1 secretion | [58] | |
Wheat, Hydrolysate (commercial) | Male Wistar/ST rats | Orally administered, blood samples 1, 2, 3, and 6 h after oral administration | 1 g/kg body weight | Stimulates CCK, GLP-1, and PYY secretion | [7] | |
Wheat, Hydrolysate | Landrace Yorkshire sows | Orally administered, blood samples on days 70 and 109 of gestation, day 0 of lactation, and the day of weaning | 15% of total dietary constituents | Increases plasma PYY and GLP-1 concentrations | [59] | |
Wheat protein | Male ICR mice | Oral gavage, blood samples at 15, 30, 60, 90, 120, and 150 min | 1 g/kg body weight (mice) | Stimulates CCK secretion | [61] | |
Pseudocereals | Quinoa and amaranth, Quinoa flour and amaranth flour | Male rats of the Wistar albino strain | Orally administered, Blood samples obtained at the end of 15 days | 20% of total dietary constituents | Stimulates CCK secretion and amaranth to a greater extent | [57] |
Protein Source | Participant (n) | Study | Assessment | Dose | Duration | Biological Activities | Reference | |
---|---|---|---|---|---|---|---|---|
Legumes | Pea | 32 males, 20–35 years | Single-blind, randomized, crossover | Visual Analogue Scales at 10 min intervals after preload | 20 g of pea protein | 1 day: 30 min before and after ad libitum meal for 2 h | Food intake was lower, and satiety was higher | [66] |
Pea | 10 lean males, mean age of 25 years, and 10 obese males, mean age of 41 years | Single-blind, randomized controlled crossover | Nasodudenal catheter, blood samples | 250 mg/kg body weight | 4 weeks: 1 experiment per week | Reduced food intake for both lean and obese subjects and CCK levels increased at 10 and 20 min after protein administration in obese subjects | [67] | |
Yellow pea | 20 male, 20–30 years | Single-blind, randomized | Visual Analogue Scales for motivation to eat | 20 g of yellow pea protein | 1 week | Food intake was lower after 30 min, and post-meal blood glucose was suppressed compared to the control | [68] | |
Pea | 22 females and 11 males, 18–65 years | Double-blind, randomized, placebo-controlled, crossover | Visual Analogue Scales, blood samples | 15 g and 30 g of pea protein isolate (NUTRALYS®) | 4 weeks | Reduced caloric intake. Thirty grams of pea protein led to an increase in perceived levels of satiety | [69] | |
Cereals | Wheat | 27 moderately overweight males with a mean age of 25 years | A single-blinded crossover study | Visual Analogue Scales, blood samples | Wheat protein hydrolysate (2 g) + L-arginine (3.2 g) | 1 day: after an overnight fast | Reduced caloric intake. Increases plasma serotonin levels | [70] |
7. Animal Proteins and Peptides on the Hormonal Regulation of Satiety: In Vitro and In Vivo Studies
Protein Source | Proteins/Peptides | Study Model | Dose | Biological Activities | Reference |
---|---|---|---|---|---|
Egg | Egg white hydrolysates (commercial) | STC-1 cells | 1 mg/mL | Stimulates CCK and GLP-1 secretion | [55] |
Lysozyme, VAWRRNRCKGTD, WRNRCKGTD, WIRGCRL, IRGCRL, RGCRL | STC-1 cells | 0.250 and 1 mM | Stimulates CCK and GLP-1 secretion | [77] | |
Ovalbumin, LGAKDSTRT | STC-1 cells | 0.250 and 1 mM | Stimulates CCK and GLP-1 secretion | [77] | |
Marine | Blue whiting muscle (Micromesistius poutassou) hydrolysate | STC-1 cells | 1% wt/vol | Stimulates CCK secretion | [71] |
Brown shrimp (Penaeus aztecus) hydrolysate | STC-1 cells | 1% wt/vol | Stimulates CCK secretion | [71] | |
Codfish protein hydrolysates | STC-1 cells | 1 mg/mL | Stimulates CCK and GLP-1 secretion | [55] | |
Blue whiting muscle hydrolysate | STC-1 cells | 0.2–1.0% w/v | Stimulates CCK and GLP-1 secretion | [72] | |
Cuttlefish (Sepia officinalis) hydrolysate | STC-1 cells | 1.3% w/v | Stimulates CCK and GLP-1 secretion | [74] | |
Blue whiting hydrolysate | STC-1 cells | 1.0% w/v dw | Stimulates GLP-1 secretion | [78] | |
Others | Bovine hemoglobin, ANVST, TKAVEH, KAAVT | STC-1 cells | 1 g/L dry matter | Stimulates GLP-1 secretion | [15] |
Irish cheddar cheeses | STC-1 cells | 10 mg/mL | Stimulates GLP-1 secretion | [79] |
8. Satiety Potential of Dairy Proteins and Peptides
8.1. Caseins
Protein Source | Proteins/Peptides | Study Model | Dose | Biological Activities | Reference |
---|---|---|---|---|---|
Casein | β-casomorphin-7 | STC-1 cells | 1000, 500, 250, and 125 μM | Stimulates CCK secretion | [49] |
Intact whole casein, α-casein, and β-casein | STC-1 cells | 0.3125–10 mg/mL | Stimulates GLP-1 secretion | [80] | |
Sodium caseinate (LFC25) | STC-1 cells | 10 mg/mL | Stimulates GLP-1 secretion | [35] | |
In vitro digests and human jejunal effluents | STC-1 cells | 0.250, 1, and 4 mg/mL | Stimulates CCK and GLP-1 secretion | [82] | |
β-casein, GPVRGPFPIIV | STC-1 cells | 5 mM | Stimulates GLP-1 secretion | [45] | |
αs1-casein, RPKHPIKHQGLPG, RYLGYLE, RYLGY, RYLG, KYLGY, RALG | STC-1 cells | 0.250 and 1 mM | Stimulates CCK and GLP-1 secretion | [77] | |
κ-casein, SRYPS, RPS | STC-1 cells | 0.250 and 1 mM | Stimulates CCK and GLP-1 secretion | [77] | |
Micellar and hydrolysate casein | STC-1 | 2 mg/mL | Stimulates CCK and GLP-1 secretion | [83] | |
Whey | Commercially intact whey protein | STC-1 cells | 1 mg/mL | Stimulates GLP-1 secretion | [84] |
α-Lactalbumin | STC-1 cells | 10 mg/mL | Stimulates GLP-1 secretion | [85] | |
β-Lactoglobulin hydrolysates, ALPMH | STC-1 cells | 2 mM | Stimulates CCK secretion | [51] | |
Whey protein digests | STC-1 cells | 0.250, 1, and 4 mg/mL | Stimulates CCK and GLP-1 secretion | [82] | |
Whey from cow, sheep, and goat milk and a mixture thereof | STC-1 cells | 1% | Goat serum further stimulates GLP-1 secretion; the mixture better stimulates CCK secretion | [86] | |
Bovine serum, β-Lactoglobulin, α-Lactalbumin, and albumin | STC-1 cells | 10 mg/mL | α-Lactalbumin stimulates increased GLP-1 secretion | [85] | |
β-Lactoglobulin, LIVTQTM, IPAVFK | STC-1 cells | 0.250 and 1 mM | Stimulates CCK and GLP-1 secretion | [77] |
8.2. Whey
9. Protein-Enriched Food Products
10. Limitations and Future Prospects
11. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
α-LA | α-Lactalbumin |
α-MSH | α-Melanocyte-stimulating hormone |
β-LG | β-Lactoglobulin |
AgRP | Agouti-related peptide |
BMI | Body Mass Index |
BSA | Bovine serum albumin |
CaSR | Calcium-sensing receptor |
CCK | Cholecystokinin |
ERK | Extracellularly regulated kinases |
GLP-1 | Glucagon-like peptide type 1 |
GPCRs | G protein-coupled receptors |
GPR | G protein-coupled receptors |
GPR39 | G-protein coupled receptor 39 |
GPR93 | G-protein coupled receptor 93 |
GPRC6A | G protein-coupled receptor family C group 6 member A |
LPAR5 | Lysophosphatidic acid receptor 5 |
MAPK | Mitogen-activated protein kinase |
NPY | Neuropeptide Y |
PEPT | Peptide Transporters |
POMC | Proopiomelanocortin |
PYY | Peptide tyrosine-tyrosine |
SANRA | Scale for the quality assessment of narrative review articles |
T1R | Taste receptor type 1 |
Y2R | Neuropeptide Y receptor type 2 |
References
- Apovian, C.M. Obesity: Definition, Comorbidities, Causes, and Burden. Am. J. Manag. CARE 2016, 22, s176–s185. [Google Scholar]
- Skelton, J.A.; Irby, M.B.; Grzywacz, J.G.; Miller, G. Etiologies of Obesity in Children: Nature and Nurture. Pediatr. Clin. N. Am. 2011, 58, 1333–1354. [Google Scholar] [CrossRef] [PubMed]
- Kumar, U.; Singh, S. Role of Somatostatin in the Regulation of Central and Peripheral Factors of Satiety and Obesity. Int. J. Mol. Sci. 2020, 21, 2568. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.S.; Bloom, S.R. The Regulation of Food Intake by the Gut-Brain Axis: Implications for Obesity. Int. J. Obes. 2013, 37, 625–633. [Google Scholar] [CrossRef] [PubMed]
- Karhunen, L.J.; Juvonen, K.R.; Huotari, A.; Purhonen, A.K.; Herzig, K.H. Effect of Protein, Fat, Carbohydrate and Fibre on Gastrointestinal Peptide Release in Humans. Regul. Pept. 2008, 149, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Kondrashina, A.; Brodkorb, A.; Giblin, L. Dairy-Derived Peptides for Satiety. J. Funct. Foods 2020, 66, 103801. [Google Scholar] [CrossRef]
- Chen, W.; Hira, T.; Nakajima, S.; Hara, H. Wheat Gluten Hydrolysate Potently Stimulates Peptide-YY Secretion and Suppresses Food Intake in Rats. Biosci. Biotechnol. Biochem. 2018, 82, 1992–1999. [Google Scholar] [CrossRef]
- Lejeune, M.P.; Westerterp, K.R.; Adam, T.C.; Luscombe-Marsh, N.D.; Westerterp-Plantenga, M.S. Ghrelin and Glucagon-like Peptide 1 Concentrations, 24-h Satiety, and Energy and Substrate Metabolism during a High-Protein Diet and Measured in a Respiration Chamber. Am. J. Clin. Nutr. 2006, 83, 89–94. [Google Scholar] [CrossRef]
- Rigamonti, A.E.; Leoncini, R.; Casnici, C.; Marelli, O.; Col, A.D.; Tamini, S.; Lucchetti, E.; Cicolini, S.; Abbruzzese, L.; Cella, S.G.; et al. Whey Proteins Reduce Appetite, Stimulate Anorexigenic Gastrointestinal Peptides and Improve Glucometabolic Homeostasis in Young Obese Women. Nutrients 2019, 11, 247. [Google Scholar] [CrossRef]
- Munekata, P.E.S.; Pérez-Álvarez, J.Á.; Pateiro, M.; Viuda-Matos, M.; Fernández-López, J.; Lorenzo, J.M. Satiety from Healthier and Functional Foods. Trends Food Sci. Technol. 2021, 113, 397–410. [Google Scholar] [CrossRef]
- Santos-Hernández, M.; Amigo, L.; Recio, I. Induction of CCK and GLP-1 Release in Enteroendocrine Cells by Egg White Peptides Generated during Gastrointestinal Digestion. Food Chem. 2020, 329, 127188. [Google Scholar] [CrossRef] [PubMed]
- Fromentin, G.; Darcel, N.; Chaumontet, C.; Marsset-Baglieri, A.; Nadkarni, N.; Tomé, D. Peripheral and Central Mechanisms Involved in the Control of Food Intake by Dietary Amino Acids and Proteins. Nutr. Res. Rev. 2012, 25, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.-P.; Raybould, H.E. Estrogen and Gut Satiety Hormones in Vagus-Hindbrain Axis. Peptides 2020, 133, 170389. [Google Scholar] [CrossRef] [PubMed]
- Veldhorst, M.; Smeets, A.; Soenen, S.; Hochstenbach-Waelen, A.; Hursel, R.; Diepvens, K.; Lejeune, M.; Luscombe-Marsh, N.; Westerterp-Plantenga, M. Protein-Induced Satiety: Effects and Mechanisms of Different Proteins. Physiol. Behav. 2008, 94, 300–307. [Google Scholar] [CrossRef]
- Caron, J.; Cudennec, B.; Domenger, D.; Belguesmia, Y.; Flahaut, C.; Kouach, M.; Lesage, J.; Goossens, J.-F.; Dhulster, P.; Ravallec, R. Simulated GI Digestion of Dietary Protein: Release of New Bioactive Peptides Involved in Gut Hormone Secretion. Food Res. Int. 2016, 89, 382–390. [Google Scholar] [CrossRef]
- Chungchunlam, S.M.S.; Henare, S.J.; Ganesh, S.; Moughan, P.J. Effects of Whey Protein and Its Two Major Protein Components on Satiety and Food Intake in Normal-Weight Women. Physiol. Behav. 2017, 175, 113–118. [Google Scholar] [CrossRef]
- Chelliah, R.; Wei, S.; Daliri, E.B.-M.; Elahi, F.; Yeon, S.-J.; Tyagi, A.; Liu, S.; Madar, I.H.; Sultan, G.; Oh, D.-H. The Role of Bioactive Peptides in Diabetes and Obesity. Foods 2021, 10, 2220. [Google Scholar] [CrossRef]
- Guo, Q.; Chen, P.; Chen, X. Bioactive Peptides Derived from Fermented Foods: Preparation and Biological Activities. J. Funct. Foods 2023, 101, 105422. [Google Scholar] [CrossRef]
- Suryaningtyas, I.T.; Je, J.-Y. Bioactive Peptides from Food Proteins as Potential Anti-Obesity Agents: Mechanisms of Action and Future Perspectives. Trends Food Sci. Technol. 2023, 138, 141–152. [Google Scholar] [CrossRef]
- Latorre, R.; Sternini, C.; De Giorgio, R.; Greenwood-Van Meerveld, B. Enteroendocrine Cells: A Review of Their Role in Brain–Gut Communication. Neurogastroenterol. Motil. 2016, 28, 620–630. [Google Scholar] [CrossRef]
- Wellendorph, P.; Johansen, L.D.; Bräuner-Osborne, H. Molecular Pharmacology of Promiscuous Seven Transmembrane Receptors Sensing Organic Nutrients. Mol. Pharmacol. 2009, 76, 453–465. [Google Scholar] [CrossRef] [PubMed]
- Wauson, E.M.; Lorente-Rodríguez, A.; Cobb, M.H. Minireview: Nutrient Sensing by G Protein-Coupled Receptors. Mol. Endocrinol. 2013, 27, 1188–1197. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Yu, K.; Zhu, W. Amino Acid Sensing in the Gut and Its Mediation in Gut-Brain Signal Transduction. Anim. Nutr. 2016, 2, 69–73. [Google Scholar] [CrossRef] [PubMed]
- Waterson, M.J.; Horvath, T.L. Neuronal Regulation of Energy Homeostasis: Beyond the Hypothalamus and Feeding. Cell Metab. 2015, 22, 962–970. [Google Scholar] [CrossRef] [PubMed]
- Baethge, C.; Goldbeck-Wood, S.; Mertens, S. SANRA—A Scale for the Quality Assessment of Narrative Review Articles. Res. Integr. Peer Rev. 2019, 4, 5. [Google Scholar] [CrossRef]
- Carabotti, M.; Scirocco, A.; Maselli, M.A.; Severi, C. The Gut-Brain Axis: Interactions between Enteric Microbiota, Central and Enteric Nervous Systems. Ann. Gastroenterol. 2015, 28, 203–209. [Google Scholar]
- Wachsmuth, H.R.; Weninger, S.N.; Duca, F.A. Role of the Gut–Brain Axis in Energy and Glucose Metabolism. Exp. Mol. Med. 2022, 54, 377–392. [Google Scholar] [CrossRef]
- Barakat, G.M.; Ramadan, W.; Assi, G.; Khoury, N.B.E. Satiety: A Gut–Brain–Relationship. J. Physiol. Sci. 2024, 74, 11. [Google Scholar] [CrossRef]
- Sufian, M.K.N.B.; Hira, T.; Asano, K.; Hara, H. Peptides Derived from Dolicholin, a Phaseolin-like Protein in Country Beans (Dolichos lablab), Potently Stimulate Cholecystokinin Secretion from Enteroendocrine STC-1 Cells. J. Agric. Food Chem. 2007, 55, 8980–8986. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, S.; Zhang, H.; Li, Y.; Wu, W.; Zhang, H. Gut Satiety Hormones Cholecystokinin and Glucagon-like Peptide-17-36 Amide Mediate Anorexia Induction by Trichothecenes T-2 Toxin, HT-2 Toxin, Diacetoxyscirpenol and Neosolaniol. Toxicol. Appl. Pharmacol. 2017, 335, 49–55. [Google Scholar] [CrossRef]
- Darcel, N.P.; Liou, A.P.; Tomé, D.; Raybould, H.E. Activation of Vagal Afferents in the Rat Duodenum by Protein Digests Requires PepT1. J. Nutr. 2005, 135, 1491–1495. [Google Scholar] [CrossRef] [PubMed]
- Morell, P.; Fiszman, S. Revisiting the Role of Protein-Induced Satiation and Satiety. Food Hydrocoll. 2017, 68, 199–210. [Google Scholar] [CrossRef]
- Chaudhri, O.; Small, C.; Bloom, S. Gastrointestinal Hormones Regulating Appetite. Philos. Trans. R. Soc. B Biol. Sci. 2006, 361, 1187–1209. [Google Scholar] [CrossRef] [PubMed]
- Pathak, V.; Flatt, P.R.; Irwin, N. Cholecystokinin (CCK) and Related Adjunct Peptide Therapies for the Treatment of Obesity and Type 2 Diabetes. Peptides 2018, 100, 229–235. [Google Scholar] [CrossRef]
- O’Halloran, F.; Bruen, C.; McGrath, B.; Schellekens, H.; Murray, B.; Cryan, J.F.; Kelly, A.L.; McSweeney, P.L.H.; Giblin, L. A Casein Hydrolysate Increases GLP-1 Secretion and Reduces Food Intake. Food Chem. 2018, 252, 303–310. [Google Scholar] [CrossRef]
- Holst, J.J. The Physiology of Glucagon-like Peptide 1. Physiol. Rev. 2007, 87, 1409–1439. [Google Scholar] [CrossRef]
- Valassi, E.; Scacchi, M.; Cavagnini, F. Neuroendocrine Control of Food Intake. Nutr. Metab. Cardiovasc. Dis. 2008, 18, 158–168. [Google Scholar] [CrossRef]
- Prinz, P.; Stengel, A. Control of Food Intake by Gastrointestinal Peptides: Mechanisms of Action and Possible Modulation in the Treatment of Obesity. J. Neurogastroenterol. Motil. 2017, 23, 180–196. [Google Scholar] [CrossRef]
- Cruz-Huerta, E. Hunger Regulation. Available online: www.BioRender.com/c06o057 (accessed on 5 October 2024).
- Van Der Klaauw, A.A.; Keogh, J.M.; Henning, E.; Trowse, V.M.; Dhillo, W.S.; Ghatei, M.A.; Farooqi, I.S. High Protein Intake Stimulates Postprandial GLP1 and PYY Release. Obesity 2013, 21, 1602–1607. [Google Scholar] [CrossRef]
- Cruz-Huerta, E. Appetite and Satiety Regulation by Dietary Proteins. Available online: www.BioRender.com/r82o119 (accessed on 5 October 2024).
- Sangle, G.V.; Lauffer, L.M.; Grieco, A.; Trivedi, S.; Iakoubov, R.; Brubaker, P.L. Novel Biological Action of the Dipeptidylpeptidase-IV Inhibitor, Sitagliptin, as a Glucagon-Like Peptide-1 Secretagogue. Endocrinology 2012, 153, 564–573. [Google Scholar] [CrossRef]
- Bao, X.; Wu, J. Impact of Food-Derived Bioactive Peptides on Gut Function and Health. Food Res. Int. 2021, 147, 110485. [Google Scholar] [CrossRef] [PubMed]
- Reimer, R.A. Meat Hydrolysate and Essential Amino Acid-Induced Glucagon-like Peptide-1 Secretion, in the Human NCI-H716 Enteroendocrine Cell Line, Is Regulated by Extracellular Signal-Regulated Kinase1/2 and P38 Mitogen-Activated Protein Kinases. J. Endocrinol. 2006, 191, 159–170. [Google Scholar] [CrossRef] [PubMed]
- Komatsu, Y.; Wada, Y.; Izumi, H.; Shimizu, T.; Takeda, Y.; Hira, T.; Hara, H. Casein Materials Show Different Digestion Patterns Using an in Vitro Gastrointestinal Model and Different Release of Glucagon-like Peptide-1 by Enteroendocrine GLUTag Cells. Food Chem. 2019, 277, 423–431. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Huerta, E. Possible Mechanisms by Which Amino Acids and Peptides Induce the Secretion of Anorexigenic Hormones in Enteroendocrine Cells. Available online: www.BioRender.com/i16z936 (accessed on 5 October 2024).
- Symonds, E.L.; Peiris, M.; Page, A.J.; Chia, B.; Dogra, H.; Masding, A.; Galanakis, V.; Atiba, M.; Bulmer, D.; Young, R.L.; et al. Mechanisms of Activation of Mouse and Human Enteroendocrine Cells by Nutrients. Gut 2015, 64, 618–626. [Google Scholar] [CrossRef]
- Foltz, M.; Ansems, P.; Schwarz, J.; Tasker, M.C.; Lourbakos, A.; Gerhardt, C.C. Protein Hydrolysates Induce CCK Release from Enteroendocrine Cells and Act as Partial Agonists of the CCK 1 Receptor. J. Agric. Food Chem. 2008, 56, 837–843. [Google Scholar] [CrossRef]
- Osborne, S.; Chen, W.; Addepalli, R.; Colgrave, M.; Singh, T.; Tran, C.; Day, L. In Vitro Transport and Satiety of a Beta-Lactoglobulin Dipeptide and Beta-Casomorphin-7 and Its Metabolites. Food Funct 2014, 5, 2706–2718. [Google Scholar] [CrossRef]
- Yang, J.; Bai, W.; Zeng, X.; Cui, C. γ-[Glu] (n=1,2)-Phe/-Met/-Val Stimulates Gastrointestinal Hormone (CCK and GLP-1) Secretion by Activating the Calcium-Sensing Receptor. Food Funct. 2019, 10, 4071–4080. [Google Scholar] [CrossRef]
- Tulipano, G.; Faggi, L.; Cacciamali, A.; Caroli, A.M. Whey Protein-Derived Peptide Sensing by Enteroendocrine Cells Compared with Osteoblast-like Cells: Role of Peptide Length and Peptide Composition, Focussing on Products of β-Lactoglobulin Hydrolysis. Int. Dairy J. 2017, 72, 55–62. [Google Scholar] [CrossRef]
- Cruz-Huerta, E. Protein Sources from Animal and Plant Origins with Potential Impact on Satiety. Available online: www.BioRender.com/c23m884 (accessed on 5 October 2024).
- Marczak, E.D.; Ohinata, K.; Lipkowski, A.W.; Yoshikawa, M. Arg-Ile-Tyr (RIY) Derived from Rapeseed Protein Decreases Food Intake and Gastric Emptying after Oral Administration in Mice. Peptides 2006, 27, 2065–2068. [Google Scholar] [CrossRef]
- Nishi, T.; Hara, H.; Asano, K.; Tomita, F. The Soybean β-Conglycinin β 51–63 Fragment Suppresses Appetite by Stimulating Cholecystokinin Release in Rats. J. Nutr. 2003, 133, 2537–2542. [Google Scholar] [CrossRef]
- Geraedts, M.C.P.; Troost, F.J.; Fischer, M.A.J.G.; Edens, L.; Saris, W.H.M. Direct Induction of CCK and GLP-1 Release from Murine Endocrine Cells by Intact Dietary Proteins. Mol. Nutr. Food Res. 2011, 55, 476–484. [Google Scholar] [CrossRef] [PubMed]
- Overduin, J.; Guérin-Deremaux, L.; Wils, D.; Lambers, T.T. NUTRALYS ® Pea Protein: Characterization of in Vitro Gastric Digestion and in Vivo Gastrointestinal Peptide Responses Relevant to Satiety. Food Nutr. Res. 2015, 59, 25622. [Google Scholar] [CrossRef] [PubMed]
- Mithila, M.V.; Khanum, F. Effectual Comparison of Quinoa and Amaranth Supplemented Diets in Controlling Appetite; a Biochemical Study in Rats. J. Food Sci. Technol. 2015, 52, 6735–6741. [Google Scholar] [CrossRef] [PubMed]
- Kato, M.; Nakanishi, T.; Tani, T.; Tsuda, T. Low-Molecular Fraction of Wheat Protein Hydrolysate Stimulates Glucagon-like Peptide-1 Secretion in an Enteroendocrine L Cell Line and Improves Glucose Tolerance in Rats. Nutr. Res. 2017, 37, 37–45. [Google Scholar] [CrossRef]
- Deng, J.; Cheng, C.; Yu, H.; Huang, S.; Hao, X.; Chen, J.; Yao, J.; Zuo, J.; Tan, C. Inclusion of Wheat Aleurone in Gestation Diets Improves Postprandial Satiety, Stress Status and Stillbirth Rate of Sows. Anim. Nutr. 2021, 7, 412–420. [Google Scholar] [CrossRef]
- Huang, K.; Wang, Q.; Song, H.; Cao, H.; Guan, X. In vitro Gastrointestinal Digestion of Highland Barley Protein: Identification and Characterization of Novel Bioactive Peptides Involved in Gut Cholecystokinin Secretion. J. Sci. Food Agric. 2023, 103, 7869–7876. [Google Scholar] [CrossRef]
- Song, H.; Wang, Q.; Shao, Z.; Wang, X.; Cao, H.; Huang, K.; Guan, X. Identification and Target of Action of Cholecystokinin-releasing Peptides from Simulated Digestion Hydrolysate of Wheat Protein. J. Sci. Food Agric. 2024, 104, 295–302. [Google Scholar] [CrossRef]
- Hira, T.; Mochida, T.; Miyashita, K.; Hara, H. GLP-1 Secretion Is Enhanced Directly in the Ileum but Indirectly in the Duodenum by a Newly Identified Potent Stimulator, Zein Hydrolysate, in Rats. Am. J. Physiol.-Gastrointest. Liver Physiol. 2009, 297, G663–G671. [Google Scholar] [CrossRef]
- Mochida, T.; Hira, T.; Hara, H. The Corn Protein, Zein Hydrolysate, Administered into the Ileum Attenuates Hyperglycemia via Its Dual Action on Glucagon-Like Peptide-1 Secretion and Dipeptidyl Peptidase-IV Activity in Rats. Endocrinology 2010, 151, 3095–3104. [Google Scholar] [CrossRef]
- Higuchi, N.; Hira, T.; Yamada, N.; Hara, H. Oral Administration of Corn Zein Hydrolysate Stimulates GLP-1 and GIP Secretion and Improves Glucose Tolerance in Male Normal Rats and Goto-Kakizaki Rats. Endocrinology 2013, 154, 3089–3098. [Google Scholar] [CrossRef]
- Ishikawa, Y.; Hira, T.; Inoue, D.; Harada, Y.; Hashimoto, H.; Fujii, M.; Kadowaki, M.; Hara, H. Rice Protein Hydrolysates Stimulate GLP-1 Secretion, Reduce GLP-1 Degradation, and Lower the Glycemic Response in Rats. Food Funct. 2015, 6, 2525–2534. [Google Scholar] [CrossRef] [PubMed]
- Abou-Samra, R.; Keersmaekers, L.; Brienza, D.; Mukherjee, R.; Macé, K. Effect of Different Protein Sources on Satiation and Short-Term Satiety When Consumed as a Starter. Nutr. J. 2011, 10, 139. [Google Scholar] [CrossRef] [PubMed]
- Geraedts, M.C.P.; Troost, F.J.; Munsters, M.J.M.; Stegen, J.H.C.H.; De Ridder, R.J.; Conchillo, J.M.; Kruimel, J.W.; Masclee, A.A.M.; Saris, W.H.M. Intraduodenal Administration of Intact Pea Protein Effectively Reduces Food Intake in Both Lean and Obese Male Subjects. PLoS ONE 2011, 6, e24878. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.E.; Mollard, R.C.; Luhovyy, B.L.; Anderson, G.H. The Effect of Yellow Pea Protein and Fibre on Short-Term Food Intake, Subjective Appetite and Glycaemic Response in Healthy Young Men. Br. J. Nutr. 2012, 108, S74–S80. [Google Scholar] [CrossRef] [PubMed]
- Lefranc-Millot, C.; Czank, C.; Re, R.; Pombo, S.; Calame, W.; Wickham, M.; Guérin-Deremaux, L. Impact of the Vegetable Pea Protein NUTRALYS® on Satiety, Food Intake and Gut Hormones in Humans. Ann. Nutr. Metab. 2015, 67, 433. [Google Scholar]
- Stoeger, V.; Lieder, B.; Riedel, J.; Schweiger, K.; Hoi, J.; Ruzsanyi, V.; Klieber, M.; Rust, P.; Hans, J.; Ley, J.P.; et al. Wheat Protein Hydrolysate Fortified with l -Arginine Enhances Satiation Induced by the Capsaicinoid Nonivamide in Moderately Overweight Male Subjects. Mol. Nutr. Food Res. 2019, 63, 1900133. [Google Scholar] [CrossRef]
- Cudennec, B.; Ravallec-Plé, R.; Courois, E.; Fouchereau-Peron, M. Peptides from Fish and Crustacean By-Products Hydrolysates Stimulate Cholecystokinin Release in STC-1 Cells. Food Chem. 2008, 111, 970–975. [Google Scholar] [CrossRef]
- Cudennec, B.; Fouchereau-Peron, M.; Ferry, F.; Duclos, E.; Ravallec, R. In Vitro and in Vivo Evidence for a Satiating Effect of Fish Protein Hydrolysate Obtained from Blue Whiting (Micromesistius Poutassou) Muscle. J. Funct. Foods 2012, 4, 271–277. [Google Scholar] [CrossRef]
- Nobile, V.; Duclos, E.; Michelotti, A.; Bizzaro, G.; Negro, M.; Soisson, F. Supplementation with a Fish Protein Hydrolysate (Micromesistius poutassou): Effects on Body Weight, Body Composition, and CCK/GLP-1 Secretion. Food Nutr. Res. 2016, 60, 29857. [Google Scholar] [CrossRef]
- Cudennec, B.; Balti, R.; Ravallec, R.; Caron, J.; Bougatef, A.; Dhulster, P.; Nedjar, N. In Vitro Evidence for Gut Hormone Stimulation Release and Dipeptidyl-Peptidase IV Inhibitory Activity of Protein Hydrolysate Obtained from Cuttlefish (Sepia Officinalis) Viscera. Food Res. Int. 2015, 78, 238–245. [Google Scholar] [CrossRef]
- Wang, T.-Y.; Hsieh, C.-H.; Hung, C.-C.; Jao, C.-L.; Chen, M.-C.; Hsu, K.-C. Fish Skin Gelatin Hydrolysates as Dipeptidyl Peptidase IV Inhibitors and Glucagon-like Peptide-1 Stimulators Improve Glycaemic Control in Diabetic Rats: A Comparison between Warm- and Cold-Water Fish. J. Funct. Foods 2015, 19, 330–340. [Google Scholar] [CrossRef]
- Wu, J.Y.; Tso, R.; Yong, Y.N.; Lim, S.P.S.; Wheeler, T.; Nag, A.; Cheng, L.; Talukder, M.M.R.; Huffman, L.; Quek, S.Y.; et al. Effects of the Consumption of Algal Biomass versus Protein Concentrate on Postprandial Satiety and Metabolism. Future Foods 2024, 10, 100436. [Google Scholar] [CrossRef]
- Santos-Hernández, M.; Vivanco-Maroto, S.M.; Miralles, B.; Recio, I. Food Peptides as Inducers of CCK and GLP-1 Secretion and GPCRs Involved in Enteroendocrine Cell Signalling. Food Chem. 2023, 402, 134225. [Google Scholar] [CrossRef] [PubMed]
- Heffernan, S.; Nunn, L.; Harnedy-Rothwell, P.A.; Gite, S.; Whooley, J.; Giblin, L.; FitzGerald, R.J.; O’Brien, N.M. Blue Whiting (Micromesistius Poutassou) Protein Hydrolysates Increase GLP-1 Secretion and Proglucagon Production in STC-1 Cells Whilst Maintaining Caco-2/HT29-MTX Co-Culture Integrity. Mar. Drugs 2022, 20, 112. [Google Scholar] [CrossRef]
- Kondrashina, A.; Seratlic, S.; Kandil, D.; Treguier, N.; Kilcawley, K.; Schellekens, H.; Beresford, T.; Giblin, L. Irish Cheddar Cheese Increases Glucagon-like Peptide-1 Secretion in Vitro but Bioactivity Is Lost during Gut Transit. Food Chem. 2018, 265, 9–17. [Google Scholar] [CrossRef]
- Gillespie, A.L.; Green, B.D. The Bioactive Effects of Casein Proteins on Enteroendocrine Cell Health, Proliferation and Incretin Hormone Secretion. Food Chem. 2016, 211, 148–159. [Google Scholar] [CrossRef]
- Le Roux, C.W.; Engström, M.; Björnfot, N.; Fändriks, L.; Docherty, N.G. Equivalent Increases in Circulating GLP-1 Following Jejunal Delivery of Intact and Hydrolysed Casein: Relevance to Satiety Induction Following Bariatric Surgery. Obes. Surg. 2016, 26, 1851–1858. [Google Scholar] [CrossRef]
- Santos-Hernández, M.; Tomé, D.; Gaudichon, C.; Recio, I. Stimulation of CCK and GLP-1 Secretion and Expression in STC-1 Cells by Human Jejunal Contents and in Vitro Gastrointestinal Digests from Casein and Whey Proteins. Food Funct. 2018, 9, 4702–4713. [Google Scholar] [CrossRef]
- Vivanco-Maroto, S.M.; Gallo, V.; Miralles, B.; Recio, I. CCK and GLP-1 Response on Enteroendocrine Cells of Semi-Dynamic Digests of Hydrolyzed and Intact Casein. Food Res. Int. 2023, 171, 113047. [Google Scholar] [CrossRef]
- Power-Grant, O.; Bruen, C.; Brennan, L.; Giblin, L.; Jakeman, P.; FitzGerald, R.J. In Vitro Bioactive Properties of Intact and Enzymatically Hydrolysed Whey Protein: Targeting the Enteroinsular Axis. Food Funct. 2015, 6, 972–980. [Google Scholar] [CrossRef]
- Gillespie, A.L.; Calderwood, D.; Hobson, L.; Green, B.D. Whey Proteins Have Beneficial Effects on Intestinal Enteroendocrine Cells Stimulating Cell Growth and Increasing the Production and Secretion of Incretin Hormones. Food Chem. 2015, 189, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Moya, T.; Planes-Muñoz, D.; Frontela-Saseta, C.; Ros-Berruezo, G.; López-Nicolás, R. Milk Whey from Different Animal Species Stimulates the in Vitro Release of CCK and GLP-1 through a Whole Simulated Intestinal Digestion. Food Funct. 2020, 11, 7208–7216. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Chen, N.; Ashaolu, T.J. Whey Proteins and Peptides in Health-Promoting Functions—A Review. Int. Dairy J. 2022, 126, 105269. [Google Scholar] [CrossRef]
- Aoki, H.; Nakato, J.; Mizushige, T.; Iwakura, H.; Sato, M.; Suzuki, H.; Kanamoto, R.; Ohinata, K. Lacto-ghrestatin, a Novel Bovine Milk-derived Peptide, Suppresses Ghrelin Secretion. FEBS Lett. 2017, 591, 2121–2130. [Google Scholar] [CrossRef]
- Ghazzawi, H.A.; Mustafa, S. Effect of High-Protein Breakfast Meal on within-Day Appetite Hormones: Peptide YY, Glucagon like Peptide-1 in Adults. Clin. Nutr. Exp. 2019, 28, 111–122. [Google Scholar] [CrossRef]
- Hassanzadeh-Rostami, Z.; Abbasi, A.; Faghih, S. Effects of Biscuit Fortified with Whey Protein Isolate and Wheat Bran on Weight Loss, Energy Intake, Appetite Score, and Appetite Regulating Hormones among Overweight or Obese Adults. J. Funct. Foods 2020, 70, 103743. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ignot-Gutiérrez, A.; Serena-Romero, G.; Guajardo-Flores, D.; Alvarado-Olivarez, M.; Martínez, A.J.; Cruz-Huerta, E. Proteins and Peptides from Food Sources with Effect on Satiety and Their Role as Anti-Obesity Agents: A Narrative Review. Nutrients 2024, 16, 3560. https://doi.org/10.3390/nu16203560
Ignot-Gutiérrez A, Serena-Romero G, Guajardo-Flores D, Alvarado-Olivarez M, Martínez AJ, Cruz-Huerta E. Proteins and Peptides from Food Sources with Effect on Satiety and Their Role as Anti-Obesity Agents: A Narrative Review. Nutrients. 2024; 16(20):3560. https://doi.org/10.3390/nu16203560
Chicago/Turabian StyleIgnot-Gutiérrez, Anaís, Gloricel Serena-Romero, Daniel Guajardo-Flores, Mayvi Alvarado-Olivarez, Armando J. Martínez, and Elvia Cruz-Huerta. 2024. "Proteins and Peptides from Food Sources with Effect on Satiety and Their Role as Anti-Obesity Agents: A Narrative Review" Nutrients 16, no. 20: 3560. https://doi.org/10.3390/nu16203560
APA StyleIgnot-Gutiérrez, A., Serena-Romero, G., Guajardo-Flores, D., Alvarado-Olivarez, M., Martínez, A. J., & Cruz-Huerta, E. (2024). Proteins and Peptides from Food Sources with Effect on Satiety and Their Role as Anti-Obesity Agents: A Narrative Review. Nutrients, 16(20), 3560. https://doi.org/10.3390/nu16203560