Male Endurance Athletes: Examination of Energy and Carbohydrate Availability and Hormone Responses
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Energy Needs
3.2. Hormones
3.3. Energy Needs Relationship to Hormones
4. Discussion
Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Souza, M.J.; Koltun, K.J.; Williams, N.I. The role of energy availability in reproductive function in the female athlete triad and extension of its effects to men: An initial working model of a similar syndrome in male athletes. Sports Med. 2019, 49, 125–137. [Google Scholar] [CrossRef] [PubMed]
- De Souza, M.J.; Nattiv, A.; Joy, E.; Misra, M.; Williams, N.I.; Mallinson, R.J.; Gibbs, J.C.; Olmsted, M.; Goolsby, M.; Matheson, G.; et al. 2014 Female Athlete Triad Coalition Consensus Statement on treatment and return to play of the female athlete triad: 1st International Conference held in San Francisco, California, May 2012 and 2nd International Conference held in Indianapolis, Indiana, May 2013. Br. J. Sports Med. 2014, 48, 289. [Google Scholar]
- Mountjoy, M.; Sundgot-Borgen, J.; Burke, L.; Carter, S.; Constantini, N.; Lebrun, C.; Meyer, N.; Sherman, R.; Steffen, K.; Budgett, R.; et al. The IOC consensus statement: Beyond the female athlete triad—Relative Energy Deficiency in Sport (RED-S). Br. J. Sports Med. 2014, 48, 491–497. [Google Scholar] [CrossRef]
- Mountjoy, M.; Sundgot-Borgen, J.; Burke, L.; Ackerman, K.E.; Blauwet, C.; Constantini, N.; Lebrun, C.; Lundy, B.; Melin, A.; Meyer, N.; et al. International Olympic Committee (IOC) Consensus Statement on Relative Energy Deficiency in Sport (RED-S): 2018 Update. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 316–331. [Google Scholar] [CrossRef] [PubMed]
- Dolan, E.; McGoldrick, A.; Davenport, C.; Kelleher, G.; Byrne, B.; Tormey, W.; Smith, D.; Warrington, G.D. An altered hormonal profile and elevated rate of bone loss are associated with low bone mass in professional horse-racing jockeys. J. Bone Miner. Metab. 2012, 30, 534–542. [Google Scholar] [CrossRef]
- Hooper, D.R.; Kraemer, W.J.; Saenz, C.; Schill, K.E.; Focht, B.C.; Volek, J.S.; Maresh, C.M. The presence of symptoms of testosterone deficiency in the exercise-hypogonadal male condition and the role of nutrition. Eur. J. Appl. Physiol. 2017, 117, 1349–1357. [Google Scholar] [CrossRef]
- Otis, C.L.; Drinkwater, B.; Johnson, M.; Loucks, A.; Wilmore, J. American College of Sports Medicine position stand. The female athlete triad. Med. Sci. Sports Exerc. 1997, 29, 1669–1671. [Google Scholar]
- Angelidi, A.M.; Stefanakis, K.; Chou, S.H.; Valenzuela-Vallejo, L.; Dipla, K.; Boutari, C.; Ntoskas, K.; Tokmakidis, P.; Kokkinos, A.; Goulis, D.G.; et al. Relative Energy Deficiency in Sport (REDs): Endocrine Manifestations, Pathophysiology and Treatments. Endocr. Rev. 2024, 45, 676–708. [Google Scholar] [CrossRef] [PubMed]
- Tenforde, A.S.; Barrack, M.T.; Nattiv, A.; Fredericson, M. Parallels with the female athlete triad in male athletes. Sports Med. 2016, 46, 171–182. [Google Scholar] [CrossRef]
- De Souza, M.J.; Koltun, K.J.; Williams, N.I. What is the evidence for a Triad-like syndrome in exercising men? Curr. Opin. Physiol. 2019, 10, 27–34. [Google Scholar] [CrossRef]
- Nattiv, A.; De Souza, M.J.; Koltun, K.J.; Misra, M.; Kussman, A.; Williams, N.I.; Barrack, M.T.; Kraus, E.; Joy, E.; Fredericson, M. The Male Athlete Triad—A Consensus Statement From the Female and Male Athlete Triad Coalition Part 1: Definition and Scientific Basis. Clin. J. Sport Med. 2021, 31, 335–348. [Google Scholar]
- Fredericson, M.; Kussman, A.; Misra, M.; Barrack, M.T.; De Souza, M.J.; Kraus, E.; Koltun, K.J.; Williams, N.I.; Joy, E.; Nattiv, A. The male athlete triad—A consensus statement from the Female and Male Athlete Triad Coalition part II: Diagnosis, treatment, and return-to-play. Clin. J. Sport Med. 2021, 31, 349–366. [Google Scholar] [CrossRef] [PubMed]
- Mountjoy, M.; Ackerman, K.E.; Bailey, D.M.; Burke, L.M.; Constantini, N.; Hackney, A.C.; Heikura, I.A.; Melin, A.; Pensgaard, A.M.; Stellingwerff, T.; et al. 2023 International Olympic Committee’s (IOC) consensus statement on relative energy deficiency in sport (REDs). Br. J. Sports Med. 2023, 57, 1073–1097. [Google Scholar] [CrossRef] [PubMed]
- De Souza, M.J.; Williams, N.I.; Nattiv, A.; Joy, E.; Misra, M.; Loucks, A.B.; Matheson, G.; Olmsted, M.P.; Barrack, M.; Mallinson, R.J.; et al. Misunderstanding the female athlete triad: Refuting the IOC consensus statement on Relative Energy Deficiency in Sport (RED-S). Br. J. Sports Med. 2014, 48, 1461–1465. [Google Scholar] [CrossRef] [PubMed]
- Koehler, K.; Hoerner, N.R.; Gibbs, J.C.; Zinner, C.; Braun, H.; De Souza, M.J.; Schaenzer, W. Low energy availability in exercising men is associated with reduced leptin and insulin but not with changes in other metabolic hormones. J. Sports Sci. 2016, 34, 1921–1929. [Google Scholar] [CrossRef]
- McGuire, A.; Warrington, G.; Walsh, A.; Byrne, T.; Doyle, L. Measurement of energy availability in highly trained male endurance athletes and examination of its associations with bone health and endocrine function. Eur. J. Nutr. 2024, 63, 2655–2665. [Google Scholar] [CrossRef]
- Öniz, M.; Sarıtaş, N.; Şentürk, M. Effects of short-term high-intensity interval training on growth hormone, cortisol, and leptin levels. J. Men’s Health 2024, 20, 51–61. [Google Scholar]
- Moore, E.M.; Drenowatz, C.; Stodden, D.F.; Pritchett, K.; Brodrick, T.C.; Williams, B.T.; Goins, J.M.; Torres-McGehee, T.M. Examination of athlete triad symptoms among endurance-trained male athletes: A field study. Front. Nutr. 2021, 8, 737777. [Google Scholar] [CrossRef] [PubMed]
- Friedl, K.E.; Moore, R.J.; Hoyt, R.W.; Marchitelli, L.J. Endocrine markers of semistarvation in healthy lean men in a multistressor environment. J. Appl. Physiol. 2000, 88, 1820–1830. [Google Scholar] [CrossRef]
- Hagmar, M.; Berglund, B.; Brismar, K.; Hirschberg, A.L. Body composition and endocrine profile of male Olympic athletes striving for leanness. Clin. J. Sport Med. 2013, 23, 197–201. [Google Scholar] [CrossRef]
- Hagmar, M. Special attention to the weight-control strategies. Clin. J. Sport Med. 2008, 18, 5–9. [Google Scholar] [CrossRef]
- Areta, J.L.; Taylor, H.L.; Koehler, K. Low energy availability: History, definition and evidence of its endocrine, metabolic and physiological effects in prospective studies in females and males. Eur. J. Appl. Physiol. 2020, 121, 1–21. [Google Scholar] [CrossRef]
- Kyröläinen, H.; Karinkanta, J.; Santtila, M.; Koski, H.; Mäntysaari, M.; Pullinen, T. Hormonal responses during a prolonged military field exercise with variable exercise intensity. Eur. J. Appl. Physiol. 2008, 102, 539–546. [Google Scholar] [CrossRef]
- Dolan, E.; Crabtree, N.; McGoldrick, A.; Ashley, D.T.; McCaffrey, N.; Warrington, G.D. Weight regulation and bone mass: A comparison between professional jockeys, elite amateur boxers, and age, gender and BMI matched controls. J. Bone Miner. Metab. 2012, 30, 164–170. [Google Scholar] [CrossRef]
- Drenowatz, C.; Eisenmann, J.C.; Pivarnik, J.M.; Pfeiffer, K.A.; Carlson, J.J. Differences in energy expenditure between high-and low-volume training. Eur. J. Sport Sci. 2013, 13, 422–430. [Google Scholar] [CrossRef]
- Loucks, A.B.; Stachenfeld, N.S.; DiPietro, L. The female athlete triad: Do female athletes need to take special care to avoid low energy availability? Med. Sci. Sports Exerc. 2006, 38, 1694. [Google Scholar] [CrossRef]
- Warrington, G.; Dolan, E.; McGoldrick, A.; McEvoy, J.; Macmanus, C.; Griffin, M.; Lyons, D. Chronic weight control impacts on physiological function and bone health in elite jockeys. J. Sports Sci. 2009, 27, 543–550. [Google Scholar] [CrossRef]
- Heyward, V.H. Advance Fitness Assessment & Exercise Prescription; The Physical Fitness Specialist Certification Manual; The Cooper Institute for Aerobics Research: Dallas, TX, USA, 1998; p. 48. [Google Scholar]
- American College of Sports Medicine. ACSM’s Resource Manual for Guidelines for Exercise Testing and Prescription; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2016. [Google Scholar]
- Berntsen, S.; Hageberg, R.; Aandstad, A.; Mowinckel, P.; Anderssen, S.A.; Carlsen, K.H.; Andersen, L.B. Validity of physical activity monitors in adults participating in free-living activities. Br. J. Sports Med. 2010, 44, 657–664. [Google Scholar] [CrossRef]
- O’Neill, J.E.R.; Corish, C.A.; Horner, K. Accuracy of resting metabolic rate prediction equations in athletes: A systematic review with meta-analysis. Sports Med. 2023, 53, 2373–2398. [Google Scholar] [CrossRef]
- Strock, N.C.; Koltun, K.J.; Southmayd, E.A.; Williams, N.I.; De Souza, M.J. Indices of resting metabolic rate accurately reflect energy deficiency in exercising women. Int. J. Sport Nutr. Exerc. Metab. 2020, 30, 14–24. [Google Scholar] [CrossRef]
- Stenqvist, T.B.; Melin, A.K.; Garthe, I.; Slater, G.; Paulsen, G.; Iraki, J.; Areta, J.; Torstveit, M.K. Prevalence of Surrogate markers of relative energy deficiency in male Norwegian Olympic-level athletes. Int. J. Sport Nutr. Exerc. Metab. 2021, 31, 497–506. [Google Scholar] [CrossRef]
- McKeown, N.M.; Day, N.E.; Welch, A.A.; Runswick, S.A.; Luben, R.N.; Mulligan, A.A.; McTaggart, A.; Bingham, S.A. Use of biological markers to validate self-reported dietary intake in a random sample of the European Prospective Investigation into Cancer United Kingdom Norfolk cohort. Am. J. Clin. Nutr. 2001, 74, 188–196. [Google Scholar] [CrossRef]
- Engvall, E. Enzyme immunoassay ELISA and EMIT. Methods Enzymol. 1980, 70, 419–439. [Google Scholar]
- Davis, C.D. High and Low Testosterone Levels in Men. 2016. Available online: http://www.medicinenet.com/high_and_low_testosterone_levels_in_men/views.htm (accessed on 4 August 2016).
- Charbek, E. Luteinizing Hormone. Medscape 2015. Available online: https://emedicine.medscape.com/article/2089268-overview?form=fpf (accessed on 4 August 2016).
- Buppajarntham, S. Insulin 2014. Available online: http://emedicine.medscape.com/article/2089224-overview. (accessed on 4 August 2016).
- Clinic, C. Leptin & Leptin Resistance 2022. Available online: https://my.clevelandclinic.org/health/articles/22446-leptin (accessed on 4 August 2016).
- Mayo Clinic Laboratories, Rochester 2018 Test Catolog. 2018. Available online: https://www.mayomedicallaboratories.com/test-catalog/pod/MayoTestCatalog-Rochester-LaboratoryReferenceEdition-SortedByTestName-duplex.pdf (accessed on 12 March 2018).
- Loucks, A.; Verdun, M.; Heath, E. Low energy availability, not stress of exercise, alters LH pulsatility in exercising women. J. Appl. Physiol. 1998, 84, 37–46. [Google Scholar] [CrossRef]
- Papageorgiou, M.; Elliott-Sale, K.J.; Parsons, A.; Tang, J.C.Y.; Greeves, J.P.; Fraser, W.D.; Sale, C. Effects of reduced energy availability on bone metabolism in women and men. Bone 2017, 105, 191–199. [Google Scholar] [CrossRef]
- McCormack, W.P.; Shoepe, T.C.; LaBrie, J.; Almstedt, H.C. Bone mineral density, energy availability, and dietary restraint in collegiate cross-country runners and non-running controls. Eur. J. Appl. Physiol. 2019, 119, 1747–1756. [Google Scholar] [CrossRef]
- Lane, A.R.; Hackney, A.C.; Smith-Ryan, A.; Kucera, K.; Registar-Mihalik, J.; Ondrak, K. Prevalence of low energy availability in competitively trained male endurance athletes. Medicina 2019, 55, 665. [Google Scholar] [CrossRef]
- Lane, A.R.; Hackney, A.C.; Smith-Ryan, A.E.; Kucera, K.; Register-Mihalik, J.K.; Ondrak, K. Energy Availability and RED-S Risk Factors in Competitive, Non-elite Male Endurance Athletes. Transl. Med. Exerc. Prescr. 2021, 1, 25. [Google Scholar] [CrossRef]
- Jesus, F.; Castela, I.; Silva, A.M.; Branco, P.A.; Sousa, M. Risk of Low Energy Availability among Female and Male Elite Runners Competing at the 26th European Cross-Country Championships. Nutrients 2021, 13, 873. [Google Scholar] [CrossRef]
- Loucks, A.B.; Thuma, J.R. Luteinizing hormone pulsatility is disrupted at a threshold of energy availability in regularly menstruating women. J. Clin. Endocrinol. Metab. 2003, 88, 297–311. [Google Scholar] [CrossRef]
- Lodge, M.T.; Ward-Ritacco, C.L.; Melanson, K.J. Considerations of Low Carbohydrate Availability (LCA) to Relative Energy Deficiency in Sport (RED-S) in Female Endurance Athletes: A Narrative Review. Nutrients 2023, 15, 4457. [Google Scholar] [CrossRef] [PubMed]
- Hackney, A.C. Endurance training and testosterone levels. Sports Med. 1989, 8, 117–127. [Google Scholar] [CrossRef] [PubMed]
- De Souza, M.; Arce, J.C.; Pescatello, L.S.; Scherzer, H.S.; Luciano, A.A. Gonadal hormones and semen quality in male runners. Int. J. Sports Med. 1994, 15, 383–391. [Google Scholar] [CrossRef] [PubMed]
- Vingren, J.L.; Kraemer, W.J.; Ratamess, N.A.; Anderson, J.M.; Volek, J.S.; Maresh, C.M. Testosterone physiology in resistance exercise and training. Sports Med. 2010, 40, 1037–1053. [Google Scholar] [CrossRef] [PubMed]
- Kuoppasalmi, K.; Näveri, H.; Härkönen, M.; Adlercreutz, H. Plasma cortisol, androstenedione, testosterone and luteinizing hormone in running exercise of different intensities. Scand. J. Clin. Lab. Investig. 1980, 40, 403–409. [Google Scholar] [CrossRef]
- MacConnie, S.E.; Barkan, A.; Lampman, R.M.; Schork, M.A.; Beitins, I.Z. Decreased hypothalamic gonadotropin-releasing hormone secretion in male marathon runners. N. Engl. J. Med. 1986, 315, 411–417. [Google Scholar] [CrossRef]
- Ebeling, P.; Bourey, R.; Koranyi, L.; Tuominen, J.A.; Groop, L.C.; Henriksson, J.; Mueckler, M.; Sovijärvi, A.; Koivisto, V.A. Mechanism of enhanced insulin sensitivity in athletes. Increased blood flow, muscle glucose transport protein (GLUT-4) concentration, and glycogen synthase activity. J. Clin. Investig. 1993, 92, 1623–1631. [Google Scholar] [CrossRef]
- Leal-Cerro, A.; Garcia-Luna, P.P.; Astorga, R.; Parejo, J.; Peino, R.; Dieguez, C.; Casanueva, F.F. Serum leptin levels in male marathon athletes before and after the marathon run. J. Clin. Endocrinol. Metab. 1998, 83, 2376–2379. [Google Scholar] [CrossRef]
- Klok, M.D.; Jakobsdottir, S.; Drent, M.L. The role of leptin and ghrelin in the regulation of food intake and body weight in humans: A review. Obes. Rev. 2007, 8, 21–34. [Google Scholar] [CrossRef]
- Chan, J.L.; Heist, K.; DePaoli, A.M.; Veldhuis, J.D.; Mantzoros, C.S. The role of falling leptin levels in the neuroendocrine and metabolic adaptation to short-term starvation in healthy men. J. Clin. Investig. 2003, 111, 1409–1421. [Google Scholar] [CrossRef]
- Hill, E.; Zack, E.; Battaglini, C.; Viru, M.; Viru, A.; Hackney, A.C. Exercise and circulating cortisol levels: The intensity threshold effect. J. Endocrinol. Investig. 2008, 31, 587–591. [Google Scholar] [CrossRef] [PubMed]
- Ostrowski, K.; Rohde, T.; Asp, S.; Schjerling, P.; Pedersen, B.K. Pro- and anti-inflammatory cytokine balance in strenuous exercise in humans. J. Physiol. 1999, 515, 287–291. [Google Scholar] [CrossRef] [PubMed]
- Starkie, R.; Rolland, J.; Angus, D.J.; Anderson, M.J.; Febbraio, M.A. Circulating monocytes are not the source of elevations in plasma IL-6 and TNF-α levels after prolonged running. Am. J. Physiol. Cell Physiol. 2001, 280, C769–C774. [Google Scholar] [CrossRef] [PubMed]
- Fischer, C.P.; Plomgaard, P.; Hansen, A.K.; Pilegaard, H.; Saltin, B.; Pedersen, B.K. Endurance training reduces the contraction-induced interleukin-6 mRNA expression in human skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 2004, 287, E1189–E1194. [Google Scholar] [CrossRef]
- Sterringer, T.; Larson-Meyer, D.E. RMR ratio as a surrogate marker for low energy availability. Curr. Nutr. Rep. 2022, 11, 263–272. [Google Scholar] [CrossRef]
Basic Demographics | ALL | |
---|---|---|
M | SD | |
Age (years) | 26.08 | 4.27 |
Height (cm) | 179.91 | 4.19 |
Weight (kg) | 70.86 | 6.53 |
BMI (kg/m2) | 22.02 | 1.77 |
Ethnicity | N | % |
African American | 2 | 15.4 |
Caucasian | 10 | 76.9 |
Middle Eastern/Kurd | 1 | 7.7 |
Education Level | N | % |
High School Diploma/GED | 1 | 7.7 |
Attained some College | 4 | 30.8 |
Bachelor’s Degree | 3 | 23.1 |
Master’s Degree | 4 | 30.8 |
Clinical Doctorate | 1 | 7.7 |
Inclusion Criterion | M | SD |
VO2max (mL/kg/min) | 62.74 | 6.96 |
Free Fat Mass (kg) | 65.88 | 5.60 |
BIA BFP (%) | 6.97 | 2.19 |
DXA BFP (%) | 13.39 | 3.56 |
RMR (kcal) | 1785.4 | 568.8 |
RMR Ratio | .96 | .248 |
Energy Intake | HV M ± SD | LV M ± SD | p-Value |
---|---|---|---|
Calories (kcal) | 2724. 7 ± 903.4 | 2919.9 ± 912.7 | 0.16 |
Protein (g) | 126.5 ± 44.7 | 134.5 ± 50.6 | 0.34 |
CHO (g) | 363.0 ± 130.3 | 346.3 ± 124.0 | 0.52 |
CHO (g/kg) | 5.5 ± 1.8 | 5.3 ± 1.8 | 0.58 |
FAT (kcal) | 113.7 ± 57.0 | 105.5 ± 40.1 | 0.43 |
Energy Expenditure | |||
EEE (kcal) | 897.7 ± 601.1 | 669.4 ± 480.6 | 0.01 |
TDEE (kcal) | 3117.2 ± 619.2 | 2920.1 ± 496.3 | 0.03 |
Training Volume | |||
Training Volume (minutes) | 409.9 ± 325.0 | 238.6 ± 155.7 | <.001 |
Distance (milage in km) | 103.2± 166.4 | 58.9 ± 75.3 | 0.08 |
Energy Calculations | |||
EA (kcal/kg FFM) | 25.7 ± 13.4 | 30.8 ± 11.1 | 0.13 |
EB (kcal) | −392.5 ± 863.0 | −249.7 ± 917.7 | 0.27 |
Hormones | HV M ± SD | LV M ± SD | p-Value |
---|---|---|---|
Testosterone (ng/dL) | 1652.11 ±1441.30 | 1909. 99 ± 1903.96 | 0.17 |
LH (mlU/L) | 785.77 ± 393.64 | 841.63 ± 234.65 | 0.44 |
Insulin (ulU/mL) | 7.12 ± 1.07 | 8.29 ± 3.63 | 0.27 |
Leptin (ng/mL) | 0.82 ± 0.61 | 0.67 ± 0.60 | 0.13 |
Cortisol (ug/dL) | 12.72 ± 2.79 | 13.50 ± 2.78 | 0.25 |
IL6 (pg/mL) | 0.83 ± 0.82 | 0.56 ± 0.30 | 0.34 |
LEA High Volume Training Week | N, Percentage | Chi-Square | p-Value |
---|---|---|---|
Low Leptin | 23.1%, n = 3 | χ2 (2) = 4.55 | 0.10 |
Low IL6 | 46.2%, n = 6 | ||
High T | 30.8%, n = 4 | χ2 (2) = 2.30 | 0.32 |
High LH | 46.2%, n = 6 | ||
LCA High-Volume Training Week | |||
Low Leptin | 30.8%, n = 4 | χ2 (1) = 3.34 | 0.07 |
Low IL6 | 53.8%, n = 7 | ||
High T | 30.8%, n = 4 | χ2 (1) = 0.07 | 0.80 |
High LH | 53.8%, n = 7 | ||
LEA Low-Volume Training Week | |||
Low Leptin | 15.4%, n = 2 | χ2 (2) = 3.01 | 0.22 |
High T | 30.8%, n = 4 | χ2 (2) = 2.30 | 0.32 |
High LH | 38.5%, n = 5 | ||
LCA Low-Volume Training Week | |||
Low Leptin | 53.8%, n = 7 | χ2 (1) = 1.051 | 0.31 |
High T | 38.5%, n = 5 | χ2 (1) = 0.442 | 0.51 |
High Insulin | 15.4%, n = 2 | χ2 (1) = 1.051 | 0.31 |
High LH | 69.2%, n = 9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moore, E.M.; Drenowatz, C.; Williams, B.T.; Brodrick, T.C.; Stodden, D.F.; Torres-McGehee, T.M. Male Endurance Athletes: Examination of Energy and Carbohydrate Availability and Hormone Responses. Nutrients 2024, 16, 3729. https://doi.org/10.3390/nu16213729
Moore EM, Drenowatz C, Williams BT, Brodrick TC, Stodden DF, Torres-McGehee TM. Male Endurance Athletes: Examination of Energy and Carbohydrate Availability and Hormone Responses. Nutrients. 2024; 16(21):3729. https://doi.org/10.3390/nu16213729
Chicago/Turabian StyleMoore, Erin M., Clemens Drenowatz, Brittany T. Williams, Thaddeus C. Brodrick, David F. Stodden, and Toni M. Torres-McGehee. 2024. "Male Endurance Athletes: Examination of Energy and Carbohydrate Availability and Hormone Responses" Nutrients 16, no. 21: 3729. https://doi.org/10.3390/nu16213729
APA StyleMoore, E. M., Drenowatz, C., Williams, B. T., Brodrick, T. C., Stodden, D. F., & Torres-McGehee, T. M. (2024). Male Endurance Athletes: Examination of Energy and Carbohydrate Availability and Hormone Responses. Nutrients, 16(21), 3729. https://doi.org/10.3390/nu16213729