Effect of Different Dietary Patterns on Cardiometabolic Risk Factors: An Umbrella Review of Systematic Reviews and Meta-Analyses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search—Data Extraction
2.2. Inclusion/Exclusion Criteria
2.3. Quality Assessment
2.4. Statistical Analysis
3. Results
3.1. Main Results
3.1.1. Mediterranean Diet
3.1.2. Low-Carbohydrate Diet—LCD
3.1.3. Low-Glycemic Index (GI) Diet
3.1.4. Ketogenic Diet
3.1.5. High-Protein Diet
3.1.6. DASH Diet
3.1.7. Portfolio Dietary Pattern
3.1.8. Nordic Diet
3.1.9. Vegetarian/Vegan Diet
4. Discussion
4.1. Mediterranean Diet
4.2. Low-Carbohydrate Diet—LCD
4.3. Low-Glycemic Index (GI) Diet
4.4. Ketogenic Diet
4.5. High-Protein Diet
4.6. DASH Diet
4.7. Portfolio Dietary Pattern
4.8. Nordic Diet
4.9. Vegetarian Diet
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lari, A.; Sohouli, M.H.; Fatahi, S.; Cerqueira, H.S.; Santos, H.O.; Pourrajab, B.; Rezaei, M.; Saneie, S.; Rahideh, S.T. The effects of the Dietary Approaches to Stop Hypertension (DASH) diet on metabolic risk factors in patients with chronic disease: A systematic review and meta-analysis of randomized controlled trials. Nutr. Metab. Cardiovasc. Dis. NMCD 2021, 31, 2766–2778. [Google Scholar] [CrossRef] [PubMed]
- Dong, T.; Guo, M.; Zhang, P.; Sun, G.; Chen, B. The effects of low-carbohydrate diets on cardiovascular risk factors: A meta-analysis. PLoS ONE 2020, 15, e0225348. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Zheng, J.; Yang, B.; Jiang, J.; Fu, Y.; Li, D. Effects of Vegetarian Diets on Blood Lipids: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Am. Heart Assoc. 2015, 4, e002408. [Google Scholar] [CrossRef] [PubMed]
- Kastorini, C.M.; Milionis, H.J.; Esposito, K.; Giugliano, D.; Goudevenos, J.A.; Panagiotakos, D.B. The effect of Mediterranean diet on metabolic syndrome and its components: A meta-analysis of 50 studies and 534,906 individuals. J. Am. Coll. Cardiol. 2011, 57, 1299–1313. [Google Scholar] [CrossRef]
- Ojo, O.; Ojo, O.O.; Wang, X.H.; Adegboye, A.R.A. The Effects of a Low GI Diet on Cardiometabolic and Inflammatory Parameters in Patients with Type 2 and Gestational Diabetes: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. Nutrients 2019, 11, 1584. [Google Scholar] [CrossRef]
- Zhao, W.T.; Luo, Y.; Zhang, Y.; Zhou, Y.; Zhao, T.T. High protein diet is of benefit for patients with type 2 diabetes: An updated meta-analysis. Medicine 2018, 97, e13149. [Google Scholar] [CrossRef]
- Huo, R.; Du, T.; Xu, Y.; Xu, W.; Chen, X.; Sun, K.; Yu, X. Effects of Mediterranean-style diet on glycemic control, weight loss and cardiovascular risk factors among type 2 diabetes individuals: A meta-analysis. Eur. J. Clin. Nutr. 2015, 69, 1200–1208. [Google Scholar] [CrossRef]
- Mantzouranis, E.; Kakargia, E.; Kakargias, F.; Lazaros, G.; Tsioufis, K. The Impact of High Protein Diets on Cardiovascular Outcomes: A Systematic Review and Meta-Analysis of Prospective Cohort Studies. Nutrients 2023, 15, 1372. [Google Scholar] [CrossRef]
- Fusar-Poli, P.; Radua, J. Ten simple rules for conducting umbrella reviews. Evid. Based Ment. Health 2018, 21, 95–100. [Google Scholar] [CrossRef]
- Belbasis, L.; Mavrogiannis, M.C.; Emfietzoglou, M.; Evangelou, E. Environmental factors, serum biomarkers and risk of atrial fibrillation: An exposure-wide umbrella review of meta-analyses. Eur. J. Epidemiol. 2020, 35, 223–239. [Google Scholar] [CrossRef]
- Aljuraiban, G.S.; Gibson, R.; Chan, D.S.; Van Horn, L.; Chan, Q. The Role of Diet in the Prevention of Hypertension and Management of Blood Pressure: An Umbrella Review of Meta-Analyses of Interventional and Observational Studies. Adv. Nutr. 2024, 15, 100123. [Google Scholar] [CrossRef] [PubMed]
- Churuangsuk, C.; Hall, J.; Reynolds, A.; Griffin, S.J.; Combet, E.; Lean, M.E.J. Diets for weight management in adults with type 2 diabetes: An umbrella review of published meta-analyses and systematic review of trials of diets for diabetes remission. Diabetologia 2022, 65, 14–36. [Google Scholar] [CrossRef] [PubMed]
- Patikorn, C.; Roubal, K.; Veettil, S.K.; Chandran, V.; Pham, T.; Lee, Y.Y.; Giovannucci, E.L.; Varady, K.A.; Chaiyakunapruk, N. Intermittent Fasting and Obesity-Related Health Outcomes: An Umbrella Review of Meta-analyses of Randomized Clinical Trials. JAMA Netw. Open 2021, 4, e2139558. [Google Scholar] [CrossRef] [PubMed]
- Patikorn, C.; Saidoung, P.; Pham, T.; Phisalprapa, P.; Lee, Y.Y.; Varady, K.A.; Veettil, S.K.; Chaiyakunapruk, N. Effects of ketogenic diet on health outcomes: An umbrella review of meta-analyses of randomized clinical trials. BMC Med. 2023, 21, 196. [Google Scholar] [CrossRef] [PubMed]
- Ocagli, H.; Berti, G.; Rango, D.; Norbiato, F.; Chiaruttini, M.V.; Lorenzoni, G.; Gregori, D. Association of Vegetarian and Vegan Diets with Cardiovascular Health: An Umbrella Review of Meta-Analysis of Observational Studies and Randomized Trials. Nutrients 2023, 15, 4103. [Google Scholar] [CrossRef]
- Hareer, L.W.; Lau, Y.Y.; Mole, F.; Reidlinger, D.P.; O’Neill, H.M.; Mayr, H.L.; Greenwood, H.; Albarqouni, L. The effectiveness of the Mediterranean Diet for primary and secondary prevention of cardiovascular disease: An umbrella review. Nutr. Diet. J. Dietit. Assoc. Aust. 2024, 1–34. [Google Scholar] [CrossRef]
- Gates, M.; Gates, A.; Pieper, D.; Fernandes, R.M.; Tricco, A.C.; Moher, D.; Brennan, S.E.; Li, T.; Pollock, M.; Lunny, C.; et al. Reporting guideline for overviews of reviews of healthcare interventions: Development of the PRIOR statement. BMJ 2022, 378, e070849. [Google Scholar] [CrossRef]
- Shea, B.J.; Reeves, B.C.; Wells, G.; Thuku, M.; Hamel, C.; Moran, J.; Moher, D.; Tugwell, P.; Welch, V.; Kristjansson, E.; et al. AMSTAR 2: A critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ 2017, 358, j4008. [Google Scholar] [CrossRef]
- Papatheodorou, S.I.; Evangelou, E. Umbrella Reviews: What They Are and Why We Need Them. Methods Mol. Biol. 2022, 2345, 135–146. [Google Scholar]
- Higgins, J.P.T.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef]
- Markozannes, G.; Aretouli, E.; Rintou, E.; Dragioti, E.; Damigos, D.; Ntzani, E.; Evangelou, E.; Tsilidis, K.K. An umbrella review of the literature on the effectiveness of psychological interventions for pain reduction. BMC Psychol. 2017, 5, 31. [Google Scholar] [CrossRef] [PubMed]
- Chiavaroli, L.; Nishi, S.K.; Khan, T.A.; Braunstein, C.R.; Glenn, A.J.; Mejia, S.B.; Rahelić, D.; Kahleová, H.; Salas-Salvadó, J.; Jenkins, D.J.; et al. Portfolio Dietary Pattern and Cardiovascular Disease: A Systematic Review and Meta-analysis of Controlled Trials. Prog. Cardiovasc. Dis. 2018, 61, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Ajala, O.; English, P.; Pinkney, J. Systematic review and meta-analysis of different dietary approaches to the management of type 2 diabetes. Am. J. Clin. Nutr. 2013, 97, 505–516. [Google Scholar] [CrossRef] [PubMed]
- Massara, P.; Zurbau, A.; Glenn, A.J.; Chiavaroli, L.; Khan, T.A.; Viguiliouk, E.; Mejia, S.B.; Comelli, E.M.; Chen, V.; Schwab, U.; et al. Nordic dietary patterns and cardiometabolic outcomes: A systematic review and meta-analysis of prospective cohort studies and randomised controlled trials. Diabetologia 2022, 65, 2011–2031. [Google Scholar] [CrossRef]
- Amini, M.R.; Askarpour, M.; Ghalandari, H.; Gholizadeh, M.; Pouraram, H. Effect of ketogenic diet on blood pressure: A GRADE-Assessed systematic review and meta-analysis of randomized controlled trials. Nutr. Metab. Cardiovasc. Dis. 2024, 34, 823–837. [Google Scholar] [CrossRef]
- Choy, K.Y.C.; Louie, J.C.Y. The effects of the ketogenic diet for the management of type 2 diabetes mellitus: A systematic review and meta-analysis of recent studies. Diabetes Metab. Syndr. 2023, 17, 102905. [Google Scholar] [CrossRef]
- Luo, W.; Zhang, J.; Xu, D.; Zhou, Y.; Qu, Z.; Yang, Q.; Lv, Q. Low carbohydrate ketogenic diets reduce cardiovascular risk factor levels in obese or overweight patients with T2DM: A meta-analysis of randomized controlled trials. Front. Nutr. 2022, 9, 1092031. [Google Scholar] [CrossRef]
- Rafiullah, M.; Musambil, M.; David, S.K. Effect of a very low-carbohydrate ketogenic diet vs recommended diets in patients with type 2 diabetes: A meta-analysis. Nutr. Rev. 2022, 80, 488–502. [Google Scholar] [CrossRef]
- Termannsen, A.; Clemmensen, K.K.B.; Thomsen, J.M.; Nørgaard, O.; Díaz, L.J.; Torekov, S.S.; Quist, J.S.; Færch, K. Effects of vegan diets on cardiometabolic health: A systematic review and meta-analysis of randomized controlled trials. Obes. Rev. 2022, 23, e13462. [Google Scholar] [CrossRef]
- Chiavaroli, L.; Lee, D.; Ahmed, A.; Cheung, A.; Khan, T.A.; Blanco, S.; Mirrahimi, A.; Jenkins, D.J.; Livesey, G.; Wolever, T.M.; et al. Effect of low glycaemic index or load dietary patterns on glycaemic control and cardiometabolic risk factors in diabetes: Systematic review and meta-analysis of randomised controlled trials. BMJ 2021, 374, n1651. [Google Scholar] [CrossRef]
- López-Espinoza, M.Á.; Chacón-Moscoso, S.; Sanduvete-Chaves, S.; Ortega-Maureira, M.J.; Barrientos-Bravo, T. Effect of a Ketogenic Diet on the Nutritional Parameters of Obese Patients: A Systematic Review and Meta-Analysis. Nutrients 2021, 13, 2946. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.S.; Smith, H.A.; Betts, J.A.; Gonzalez, J.T.; Atkinson, G. A Systematic Review and Meta-Analysis Comparing Heterogeneity in Body Mass Responses Between Low-Carbohydrate and Low-Fat Diets. Obes. Silver 2020, 28, 1833–1842. [Google Scholar] [CrossRef] [PubMed]
- Ramezani-Jolfaie, N.; Mohammadi, M.; Salehi-Abargouei, A. The effect of healthy Nordic diet on cardio-metabolic markers: A systematic review and meta-analysis of randomized controlled clinical trials. Eur. J. Nutr. 2019, 58, 2159–2174. [Google Scholar] [CrossRef] [PubMed]
- Sainsbury, E.; Kizirian, N.V.; Partridge, S.R.; Gill, T.; Colagiuri, S.; Gibson, A.A. Effect of dietary carbohydrate restriction on glycemic control in adults with diabetes: A systematic review and meta-analysis. Diabetes Res. Clin. Pract. 2018, 139, 239–252. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Bai, H.; Wang, S.; Li, Z.; Wang, Q.; Chen, L. Efficacy of low carbohydrate diet for type 2 diabetes mellitus management: A systematic review and meta-analysis of randomized controlled trials. Diabetes Res. Clin. Pract. 2017, 131, 124–131. [Google Scholar] [CrossRef]
- Ndanuko, R.N.; Tapsell, L.C.; Charlton, K.E.; Neale, E.P.; Batterham, M.J. Dietary Patterns and Blood Pressure in Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Adv. Nutr. 2016, 7, 76–89. [Google Scholar] [CrossRef]
- Nissensohn, M.; Román-Viñas, B.; Sánchez-Villegas, A.; Piscopo, S.; Serra-Majem, L. The Effect of the Mediterranean Diet on Hypertension: A Systematic Review and Meta-Analysis. J. Nutr. Educ. Behav. 2016, 48, 42–53.e1. [Google Scholar] [CrossRef]
- Bueno, N.B.; de Melo, I.S.V.; de Oliveira, S.L.; da Rocha Ataide, T. Very-low-carbohydrate ketogenic diet v. low-fat diet for long-term weight loss: A meta-analysis of randomised controlled trials. Br. J. Nutr. 2013, 110, 1178–1187. [Google Scholar] [CrossRef]
- Schwingshackl, L.; Hoffmann, G. Long-term effects of low-fat diets either low or high in protein on cardiovascular and metabolic risk factors: A systematic review and meta-analysis. Nutr. J. 2013, 12, 48. [Google Scholar] [CrossRef]
- Fleming, P.; Godwin, M. Low-glycaemic index diets in the management of blood lipids: A systematic review and meta-analysis. Fam. Pract. 2013, 30, 485–491. [Google Scholar] [CrossRef]
- Santos, F.L.; Esteves, S.S.; da Costa Pereira, A.; Yancy, W.S.; Nunes, J.P.L. Systematic review and meta-analysis of clinical trials of the effects of low carbohydrate diets on cardiovascular risk factors. Obes. Rev. Off. J. Int. Assoc. Study Obes. 2012, 13, 1048–1066. [Google Scholar] [CrossRef] [PubMed]
- Minari, T.P.; Tácito, L.H.B.; Yugar, L.B.T.; Ferreira-Melo, S.E.; Manzano, C.F.; Pires, A.C.; Moreno, H.; Vilela-Martin, J.F.; Cosenso-Martin, L.N.; Yugar-Toledo, J.C. Nutritional Strategies for the Management of Type 2 Diabetes Mellitus: A Narrative Review. Nutrients 2023, 15, 5096. [Google Scholar] [CrossRef] [PubMed]
- Romero-Cabrera, J.L.; García-Ríos, A.; Sotos-Prieto, M.; Quintana-Navarro, G.; Alcalá-Díaz, J.F.; Martín-Piedra, L.; Torres-Peña, J.D.; Luque, R.M.; Yubero-Serrano, E.M.; Delgado-Lista, J.; et al. Adherence to a Mediterranean lifestyle improves metabolic status in coronary heart disease patients: A prospective analysis from the CORDIOPREV study. J. Intern. Med. 2023, 293, 574–588. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Martínez, P.; Mikhailidis, D.P.; Athyros, V.G.; Bullo, M.; Couture, P.; Covas, M.I.; de Koning, L.; Delgado-Lista, J.; Diaz-Lopez, A.; Drevon, C.A.; et al. Lifestyle recommendations for the prevention and management of metabolic syndrome: An international panel recommendation. Nutr. Rev. 2017, 75, 307–326. [Google Scholar] [CrossRef] [PubMed]
- Katsiki, N.; Stoian, A.P.; Rizzo, M. Dietary patterns in non-alcoholic fatty liver disease (NAFLD): Stay on the straight and narrow path! Clin. Investig. Arterioscler. Publ. Soc. Esp. Arterioscler. 2022, 34 (Suppl. S1), S24–S31. [Google Scholar]
- Gomez-Delgado, F.; Katsiki, N.; Lopez-Miranda, J.; Perez-Martinez, P. Dietary habits, lipoprotein metabolism and cardiovascular disease: From individual foods to dietary patterns. Crit. Rev. Food Sci. Nutr. 2021, 61, 1651–1669. [Google Scholar] [CrossRef]
- Katsiki, N.; Td, F.; Vlachopoulos, C.; Panagiotakos, D.; Milionis, H.; Tselepis, A.; Garoufi, A.; Rallidis, L.; Richter, D.; Nomikos, T.; et al. Executive summary of the Hellenic Atherosclerosis Society guidelines for the diagnosis and treatment of dyslipidemias—2023. Atheroscler. Plus 2024, 55, 74–92. [Google Scholar] [CrossRef]
- Muscogiuri, G.; Verde, L.; Sulu, C.; Katsiki, N.; Hassapidou, M.; Frias-Toral, E.; Cucalón, G.; Pazderska, A.; Yumuk, V.D.; Colao, A.; et al. Mediterranean Diet and Obesity-related Disorders: What is the Evidence? Curr. Obes. Rep. 2022, 11, 287–304. [Google Scholar] [CrossRef]
- Ashtary-Larky, D.; Bagheri, R.; Bavi, H.; Baker, J.S.; Moro, T.; Mancin, L.; Paoli, A. Ketogenic diets, physical activity and body composition: A review. Br. J. Nutr. 2022, 127, 1898–1920. [Google Scholar] [CrossRef]
- Dyńka, D.; Kowalcze, K.; Charuta, A.; Paziewska, A. The Ketogenic Diet and Cardiovascular Diseases. Nutrients 2023, 15, 3368. [Google Scholar] [CrossRef]
- Mateo-Gallego, R.; Marco-Benedí, V.; Perez-Calahorra, S.; Bea, A.M.; Baila-Rueda, L.; Lamiquiz-Moneo, I.; de Castro-Orós, I.; Cenarro, A.; Civeira, F. Energy-restricted, high-protein diets more effectively impact cardiometabolic profile in overweight and obese women than lower-protein diets. Clin. Nutr. 2017, 36, 371–379. [Google Scholar] [CrossRef] [PubMed]
- Visseren, F.L.J.; Mach, F.; Smulders, Y.M.; Carballo, D.; Koskinas, K.C.; Bäck, M.; Benetos, A.; Biffi, A.; Boavida, J.-M.; Capodanno, D.; et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur. Heart J. 2021, 42, 3227–3337. [Google Scholar] [CrossRef] [PubMed]
- Filippou, C.; Tatakis, F.; Polyzos, D.; Manta, E.; Thomopoulos, C.; Nihoyannopoulos, P.; Tousoulis, D.; Tsioufis, K. Overview of salt restriction in the Dietary Approaches to Stop Hypertension (DASH) and the Mediterranean diet for blood pressure reduction. Rev. Cardiovasc. Med. 2022, 23, 36. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.G.M.; Adas, S.; de Jesus, J.; Farmer, N.; Fisher, R.; Pratt, C.A. Bridging the Gap: The Need to Implement Dietary Guidance to Address Cardiovascular Health. Nutrients 2024, 16, 2125. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA). Scientific Opinion on establishing Food-Based Dietary Guidelines. EFSA J. 2010, 8, 1460. [Google Scholar]
- Kahleova, H.; Salas-Salvadó, J.; Rahelić, D.; Kendall, C.W.; Rembert, E.; Sievenpiper, J.L. Dietary Patterns and Cardiometabolic Outcomes in Diabetes: A Summary of Systematic Reviews and Meta-Analyses. Nutrients 2019, 11, 2209. [Google Scholar] [CrossRef]
- Viroli, G.; Kalmpourtzidou, A.; Cena, H. Exploring Benefits and Barriers of Plant-Based Diets: Health, Environmental Impact, Food Accessibility and Acceptability. Nutrients 2023, 15, 4723. [Google Scholar] [CrossRef]
Author, Year | Country/Region | Design of Included Studies | Intervention | Comparison | Outcomes | Population | Total Sample (N) | Age (Years) | Duration/Follow-Up | Quality Assessment AMSTAR 2 |
---|---|---|---|---|---|---|---|---|---|---|
Amini et al. (2024) [25] | USA, Israel, Swede, Australia, New Zealand, Canada, Italy, Netherlands, Spain, Norway, Japan | RCTs | Ketogenic diet (≥45% daily intake from fat and ≤50g carbohydrate daily intake) | Any diet | SBP DBP | Adult males and females with at least one cardiovascular risk factor | 1664 M: ΝA F: ΝA | 25–63 (mean age) | - | Low |
Choy and Louie (2023) [26] | Australia, USA, UK, South Africa, Spain, Israel, Germany | RCTs | Ketogenic diet | Any diet | TC, HDL-C, LDL-C, TG HbA1c, FPG BW, BMI, WC, FPI, HOMA SBP, DBP | Adult males and females with T2D | 541 M: ΝA F: ΝA | 51–65 (mean ages) | -/3–52 weeks | Critically low |
Luo et al. (2022) [27] | USA, Norway, Greece, Spain, Italy, Columbia, China, UK, Serbia | RCTs | Ketogenic diet | Non-HP diet | TC, HDL-C, LDL-C, TG BW, BMI WC, Body Fat Volume HbA1c, FPG, FPI, HOMA SBP, DBP Uric acid Creatinine | Adult males and females overweight or obese with or without T2D | 1074 M: ΝA F: ΝA | 21–65 (mean ages) | -/0.6–48 weeks | Low |
Massara et al. (2022) [24] | Denmark, Sweden, Iceland, Finland | RCTs or prospective cohort studies | Nordic diet | Usual diet | CV mortality CVD/CHD/Stroke incidence HDL-C, LDL-C, Non-HDL-C, TG, Apo B WC, BW, BMI HbA1c, FPG, FPI, SBP, DBP CRP | Adult males and females: a. diabetes, no CVD b. no diabetes c. diabetes or risk factors for diabetes | 1774 M: ΝA F: ΝA | 49–57 (prospective); 48–54 (RCTs) | -/14–18 years (prospective), 12–48 weeks (RCTs) | Critically low |
Rafiullah et al. (2022) [28] | USA, Spain, Australia, Israel | RCTs | LCD | Usual diet | HbA1c, BW, TG, LDL-c | Adult males and females with T2D | 797 M: 352 F: 445 | 53–99.7 (mean ages) | 3–24 months/- | Low |
Termannsen et al. (2022) [29] | USA, Canada, Korea, New Zealand | RCTs | Vegan (no foods from animal sources) diet | Omnivorous diet | TC, HDL-C, LDL-C, TG BW, BMI HbA1c SBP, DBP | Adult males and females overweight or T2D, or prediabetes | 1510 M: 386 F: 1124 | 48–61 (mean ages) | 12–26 weeks/- | Critically low |
Chiavaroli et al. (2021) [30] | Canada, Australia, France, USA, Israel, Mexico, and other European and Asian countries | RCTs | Low-GI diet | Usual diet | HDL-C, LDL-C, Non-HDL-C, TG, Apo B BW, WC, BMI SBP, DBP FPI, HbA1c, FPG, CRP | Adult males and females with T2D or T1D | 1617 M: ΝA F: ΝA- | 54–59 (mean ages) | - | Low |
Espinoza-Lopez et al. (2021) [31] | Spain, UK, Australia, Germany, Norway | RCTs | Ketogenic diet | Low energy or LFD | BMI, TG, TC, HDL-c, LDL-c | Adult males and females obese | 943 M: ΝA F: ΝA | 43–60 (mean ages) | 4–24 months/- | Critically low |
Lari et al. (2021) [1] | USA, Poland, China, Pakistan, Mexico, Greece, Iran, Australia, Croatia, Korea, Iran, Brazil | RCTs | DASH diet | Other dietary patterns | TC, HDL-C, LDL-C, VLDL-C, TG BW, BMI, WC FPG, FPI,, HOMA SBP, DBP CRP | Adult males and females, with at least one cardiovascular risk factor | 9488 M: NA F: NA | 23–65 (mean ages) | 2–52 weeks/- | Low |
Smith et al. (2020) [32] | NA | RCTs | Ketogenic diet | Low energy or LFD | BW | Adult males and females with at least one cardiometabolic risk factor | 3340 M: ΝA F: ΝA | - | 3–24 months/3–24 months | Critically low |
Ojo et al. (2019) [5] | Brazil, Canada, China, USA, Malaysia, Greece | RCTs | Low-GI diet | High-GI diet | TC, HDL-C, LDL-C, TG | Adult T2D males and females OR females with gestational diabetes | 782 M: NA F: NA | 30–63 (mean ages) | - | Critically low |
Ramezani-Jolfaie et al. (2019) [33] | Europe | RCTs | Nordic diet | Usual diet | TC, LDL-C, HDL-C, TG SBP, DBP | Adult males and females with at least one cardiovascular risk factor | 513 M: ΝA F: ΝA | 39–60 (mean ages) | 2 weeks–6 months/- | Low |
Chiavaroli et al. (2018) [22] | Canada | Randomized or non-randomized controlled trials | Portfolio dietary pattern | Any dietary pattern not providing components of the Portfolio diet | CHD risk TC, HDL-C, LDL-C, Non-HDL-C, TG, Apo B BW SBP, DBP CRP | Adult males and females, with hyperlipidemia | 439 M: 192 F: 247 | 55–65 (mean ages) | -/2–24 weeks | Critically low |
Sainsbury et al. (2018) [34] | UK, USA, Australia, Sweden, Israel, Japan, New Zealand, Czech Republic, Austria, Canada | RCTs | LCD | HCD | HbA1c | Adult males and females withT1D or T2D | 2405 M: ΝA F: ΝA | 38–54 | -/3–24 months | Critically low |
Zhao et al. (2018) [6] | Australia, USA, New Zealand, Greece, Sweden, UK | RCTs | HP diet | Low-protein diet | TC, HDL-C, LDL-C, TG BW, BMI Fat Mass, Free-fat Mass HbA1c FPG, FPI, SBP, DBP | Adult males and females with diabetes | 1099 M: ΝA F: ΝA | 47–64 (mean ages) | 2–24 weeks/- | Critically low |
Meng et al. (2017) [35] | Australia, USA, Sweden, UK, Israel, Japan | RCTs | LCD (≤26% daily carbohydrate intake) diet | Usual diet | TC, HDL-C, LDL-C, TG BW HbA1c, FPG | Adult T2D males and females | 734 M: ΝA F: ΝA | - | -/3–24 months | Critically low |
Ndanuko et al. (2016) [36] | USA, Italy, Brazil, Iceland, Sweden, Denmark, Finland, Australia, France, Spain, Iran, Germany | RCTs | Mediterranean diet LCD DASH Nordic diet | Usual diet | SBP, DBP, HbA1c | Adult males and females with at least one cardiometabolic risk factor | 1957 M: ΝA F: ΝA | 18–80 | - | Critically low |
Nissensohn et al. (2016) [37] | Italy, Israel, Spain, North America | RCTs | Mediterranean diet | Usual diet | SBP, DBP | Adult males and females with at least one cardiometabolic risk factor | 7987 Μ: ΝA F: ΝA | 20–80 | 24–48 months/- | Critically low |
Wang et al. (2015) [3] | USA, Finland, Sweden, Czech Republic, Australia | RCTs | Vegetarian diet | Omnivorous diet | TC, LDL-C | Adult males and females with at least one cardiovascular risk factor | 832 M: 200 F: 632 | 28–56 (mean age) | 3 weeks–19 months/- | Critically low |
Huo et al. (2015) [7] | USA, Greece, Israel, Italy, Spain, Australia | RCTs | Mediterranean diet | Usual diet | HDL-C, LDL-C, TC, TG BMI, BW HbA1c, FPI | Adult T2D males and females | 1178 M: ΝA F: ΝA | 26–77 (range) | 4 weeks–4 years/- | Critically low |
Ajala et al. (2013) [23] | ΝA | RCTs and systematic reviews | Mediterranean diet, LCD, Low-GI diet, and High-protein diet | Other dietary patterns | HbA1c | Adult T2D males and females | 3073 M: ΝA F: ΝA | - | 6 months–4 years/- | Critically low |
Bueno et al. (2013) [38] | Australia, Israel, USA, UK, New Zealand | RCTs | LCD | LFD | BW, TAG, HDL-c, LDL-c, SBP, DBP | Adult males and females overweight or obese | 1577 M: ΝA F: ΝA | 39–53 (mean ages) | 12–24 months/- | Critically low |
Schwingshackl and Hoffmann (2013) [39] | ΝA | RCTs | HP diet | Low-protein diet | HDL-C FPI | Adult males and females with or without T2D | 1990 M: ΝA F: ΝA | 35–60 (mean ages) | 12–24 months/- | Low |
Fleming and Codwin (2013) [40] | ΝA | RCTs | Low-GI diet | High-GI diet | TC, LDL-C, TG | Adult males and females with or without diabetes | 224 M: 51 F: 173 | 18–60 (range) | - | Critically low |
Santos et al. (2012) [41] | ΝA | RCTs | LCD (≤26% daily carbohydrate intake) diet | Usual diet | HDL-C, LDL-C, TG SBP, DBP BW, BMI, WC FPI, HbA1c, FPG, CRP | Adult obese males and females | 3647 M: ΝA F: ΝA | - | -/12 weeks–12 months | Critically low |
Dietary Pattern | Dietary Pattern Food Characteristics | Overall Outcomes |
---|---|---|
Mediterranean Diet | Olives, olive oil, fruits, vegetables, whole grain cereals, legumes, fish, poultry, low-fat dairy products nuts, wine and red meat | HDL-c, LDL-c, TC, TG, BMI, BW, HbA1c, FPI |
LCD | Low carbohydrate (especially refined) intake | HDL-c, LDL-c, TC, TG, BW, HbA1c, FPG, SBP, DBP, BMI, WC, FPI, CRP |
Low-GI Diet | Meat, vegetables, legumes, grain cereals, dairy products and most fruits | HDL-c, LDL-c, non-HDL-c, TG, Apo B, BW, WC, BMI, SBP, DBP, FPI, HbA1c, FPG, CRP, TC |
Ketogenic Diet | Tuna, sardine, prawns, shrimps, lobster, salmon, kababs, sausages, minced, ham, chicken, eggs, full-fat cheese, mozzarella cheese, cheddar cheese, non-starchy and green-leafy vegetables (e.g., spinach, watercress, eggplant, parsley, mulberry, coriander, mint, artichoke, okra, cabbage, mushroom, avocado, leek, carrot, radish, celery, cauliflower, green pepper, lettuce, cucumber, tomato, olives, lemon, strawberry, avocado, berries | SBP, DBP, TC, HDL-c, LDL-c, TG, HbA11c, FPG, BW, BMI, WC, FPI, HOMA, Body Fat Volume, Uric Acid, Creatinine |
HP Diet | Daily protein (animal and plant origin) intake of 1.2–1.6 g per kg of body weight | TC, HCL-c, LDL-c, TG, BW, BMI, HbA1c, FPG, FPI, SBP, DBP, Fat Mass, Free Fat Mass |
DASH DIET | Carbohydrates, low-fat dairy products, lean red meat, vegetables, fruits, nuts, and seeds | TC, HDL-c, LDL-c, VLDL-c, TG, BW, BMI, WC, FPG, FPI, HOMA, SBP, DBP, CRP |
Portfolio Diet | Tree nuts or peanuts, plant protein (soy products or dietary pulses such as beans and peas), viscous soluble fiber (oats, barley, eggplant, apples, oranges, berries), plant sterols from a plant sterol-enriched margarine | TC, HDL-c, LDL-c, non-HDL-c, TG, Apo B, BW, SBP, DBP, CRP, CHD risk |
Nordic Diet | Whole grain cereals, fruits (mostly berries but also apples and pears), vegetables, legumes (such as oat and barley), rapeseed oil, fatty fish (such as salmon), shellfish, seaweed, low-fat meat choices (such as poultry and game), low-fat dairy products and restriction of salt and sugar | HDL-c, LDL- c, non-HDL-c, TC, TG, Apo B, WC, BV, BMI, HbA1c, FPG, FPI, SBP, DBP, CRP, CV mortality, CVD/CHD/stroke incidence |
Vegetarian Diet | Excludes all animal flesh and/or animal products. Rich in fibers, magnesium, folic acid, vitamins A and E, omega-6 polyunsaturated fatty acids and antioxidants, but low in total fat and saturated fatty acids, EPA, omega-3 polyunsaturated fatty acids, sodium, zinc, and vitamin B12 | TC, HDL-c, LDL-c, TG, BW, BMI, HbA1c, SBP, DBP |
Author | Year | Intervention | Outcome | Meta-Analysis Metric | Random Effect | Prediction Intervals | Egger’s Test |
---|---|---|---|---|---|---|---|
Strong evidence (grade 500) | |||||||
Chiavaroli et al. [30] | 2021 | Low-GI diet | BW (T2D) | SMD | −0.66 (−0.90, −0.43) | −0.91, −0.41 | 0.709 |
Meng et al. [35] | 2017 | LCD (≤26% daily carbohydrate intake) | TG | WMD | −5.81 (−7.96, −3.66) | −8.40, −3.21 | 0.540 |
Santos et al. [41] | 2012 | LCD (≤26% daily carbohydrate intake) | BW, 24 months | MD | −4.79 (−5.85, −3.72) | −8.57, −1.00 | 0.709 |
Santos et al. [41] | 2012 | LCD (≤26% daily carbohydrate intake) | SBP, 6 months | MD | −6.38 (−7.84, −4.93) | −10.04, −2.73 | 0.018 |
Santos et al. [41] | 2012 | LCD (≤26% daily carbohydrate intake) | FPI, 6–11 months | MD | −15.35 (−19.58, −11.12) | −24.64, −6.06 | 0.597 |
Highly suggestive evidence (grade 500) | |||||||
Chiavaroli at al. [30] | 2021 | Low-GI diet | Glucose (T2D) | SMD | −5.86 (−8.10, −3.62) | −12.48, 0.76 | 0.004 |
Santos et al. [41] | 2012 | LCD (≤26% daily carbohydrate intake) | BW, 6 months | MD | −5.76 (−7.10, −4.41) | −10.69, −0.83 | 0.472 |
Santos et al. [41] | 2012 | LCD (≤26% daily carbohydrate intake) | BW, 6–11 months | MD | −7.44 (−9.07, −5.81) | −13.42, −1.46 | 0.073 |
Santos et al. [41] | 2012 | LCD (≤26% daily carbohydrate intake) | BW, 12–23 months | MD | −6.45 (−8.73, −4.16) | −14.58, 1.69 | 0.999 |
Santos et al. [41] | 2012 | LCD (≤26% daily carbohydrate intake) | BMI, 6 months | MD | −1.72 (−2.28, −1.15) | −8.88, 5.45 | 0.039 |
Santos et al. [41] | 2012 | LCD (≤26% daily carbohydrate intake) | BMI, 6–11 months | MD | −2.03 (−2.62, −1.45) | −4.67, 0.61 | 0.822 |
Santos et al. [41] | 2012 | LCD (≤26% daily carbohydrate intake) | Waist circumference, 6 months | MD | −4.94 (−6.82, −3.05) | −27.75, 17.88 | 0.129 |
Santos et al. [41] | 2012 | LCD (≤26% daily carbohydrate intake) | Waist circumference, 6–11 months | MD | −6.58 (−8.14, −5.02) | −12.35, −0.80 | 0.628 |
Santos et al. [41] | 2012 | LCD (≤26% daily carbohydrate intake) | SBP, 6–11 months | MD | −5.54 (−7.50, −3.57) | −11.88, 0.81 | 0.594 |
Santos et al. [41] | 2012 | LCD (≤26% daily carbohydrate intake) | DBP, 6 months | MD | −3.96 (−5.31, −2.60) | −8.14, 0.22 | 0.425 |
Santos et al. [41] | 2012 | LCD (≤26% daily carbohydrate intake) | DBP, 6–11 months | MD | −3.56 (−4.78, −2.34) | −7.50, 0.38 | 0.380 |
Santos et al. [41] | 2012 | LCD (≤26% daily carbohydrate intake) | HDL-C, 24 months | MD | 6.71 (4.80, 8.61) | NA | NA |
Santos et al. [41] | 2012 | LCD (≤26% daily carbohydrate intake) | TG, 6 months | MD | −38.85 (−48.27, −29.43) | −74.41, −3.28 | 0.756 |
Santos et al. [41] | 2012 | LCD (≤26% daily carbohydrate intake) | TG, 6–11 months | MD | −27.61 (−37.38, −17.83) | −60.19, 4.98 | 0.613 |
Lari et al. [1] | 2021 | DASH diet | SBP | MD | −3.94 (−5.24, −2.64) | −9.41, 1.53 | 0.106 |
Chiavaroli et al. [22] | 2018 | Portfolio dietary pattern | LDL-C | SMD | −13.05 (−16.04, −10.06) | −22.01, −4.09 | 0.006 |
Chiavaroli et al. [22] | 2018 | Portfolio dietary pattern | Non-HDL-C | SMD | −14.99 (−18.43, −11.55) | −24.92, −5.06 | 0.018 |
Chiavaroli et al. [22] | 2018 | Portfolio dietary pattern | ApoB | SMD | −18.13 (−22.74, −13.51) | −30.99, −5.27 | 0.091 |
Massara et al. [24] | 2022 | Nordic diet | Stroke incidence (extreme quintiles) | MD | 0.87 (0.78, 0.96) | 0.68, 1.07 | 0.148 |
Massara et al. [24] | 2022 | Nordic diet | T2D (extreme quintiles) | MD | 0.95 (0.85, 1.05) | 0.67, 1.23 | 0.221 |
Massara et al. [24] | 2022 | Nordic diet | CVD mortality (extreme quintiles) | MD | 0.80 (0.70, 0.90) | 0.56, 1.04 | 0.815 |
Wang et al. [3] | 2015 | Vegetarian vs. omnivorous diet | HDL-C | WMD | −1.84 (−2.41, −1.28) | −2.52, −1.16 | 0.999 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chatzi, C.A.; Basios, A.; Markozannes, G.; Ntzani, E.E.; Tsilidis, K.K.; Kazakos, K.; Agouridis, A.P.; Barkas, F.; Pappa, M.; Katsiki, N.; et al. Effect of Different Dietary Patterns on Cardiometabolic Risk Factors: An Umbrella Review of Systematic Reviews and Meta-Analyses. Nutrients 2024, 16, 3873. https://doi.org/10.3390/nu16223873
Chatzi CA, Basios A, Markozannes G, Ntzani EE, Tsilidis KK, Kazakos K, Agouridis AP, Barkas F, Pappa M, Katsiki N, et al. Effect of Different Dietary Patterns on Cardiometabolic Risk Factors: An Umbrella Review of Systematic Reviews and Meta-Analyses. Nutrients. 2024; 16(22):3873. https://doi.org/10.3390/nu16223873
Chicago/Turabian StyleChatzi, Christina A., Athanasios Basios, Georgios Markozannes, Evangelia E. Ntzani, Konstantinos K. Tsilidis, Kyriakos Kazakos, Aris P. Agouridis, Fotios Barkas, Maria Pappa, Niki Katsiki, and et al. 2024. "Effect of Different Dietary Patterns on Cardiometabolic Risk Factors: An Umbrella Review of Systematic Reviews and Meta-Analyses" Nutrients 16, no. 22: 3873. https://doi.org/10.3390/nu16223873
APA StyleChatzi, C. A., Basios, A., Markozannes, G., Ntzani, E. E., Tsilidis, K. K., Kazakos, K., Agouridis, A. P., Barkas, F., Pappa, M., Katsiki, N., & Rizos, E. C. (2024). Effect of Different Dietary Patterns on Cardiometabolic Risk Factors: An Umbrella Review of Systematic Reviews and Meta-Analyses. Nutrients, 16(22), 3873. https://doi.org/10.3390/nu16223873