The Dietary Inflammatory Index and Sarcopenia in Older Adults in Four Chinese Provinces: A Cross-Sectional Study
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Questionnaire and Assessment of DII
2.3. Anthropometric Measures
2.4. Measurement and Diagnosis of Indicators Related to Sarcopenia
2.4.1. Muscle Mass
2.4.2. Muscle Strength
2.4.3. Physical Performance
2.5. Statistical Analysis
3. Results
3.1. Characteristics of the Subjects
3.2. Food Consumption of Four DII Groups
3.3. Sarcopenia Symptomology
3.4. Associations Between DII and Sarcopenia
3.5. Association of DII with Muscle Mass, Grip Strength and Physical Performance
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Su, Y.C.; Chang, S.F.; Tsai, H.C. The Relationship between Sarcopenia and Injury Events: A Systematic Review and Meta-Analysis of 98,754 Older Adults. J. Clin. Med. 2022, 11, 6474. [Google Scholar] [CrossRef]
- Aslam, M.A.; Ma, E.B.; Huh, J.Y. Pathophysiology of sarcopenia: Genetic factors and their interplay with environmental factors. Metabolism 2023, 149, 155711. [Google Scholar] [CrossRef]
- Papadopoulou, S.K.; Papadimitriou, K.; Voulgaridou, G.; Georgaki, E.; Tsotidou, E.; Zantidou, O.; Papandreou, D. Exercise and Nutrition Impact on Osteoporosis and Sarcopenia-The Incidence of Osteosarcopenia: A Narrative Review. Nutrients 2021, 13, 4499. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.; Xie, W.; Fu, X.; Lu, W.; Jin, H.; Lai, J.; Zhang, A.; Yu, Y.; Li, Y.; Xiao, W. Inflammation and sarcopenia: A focus on circulating inflammatory cytokines. Exp. Gerontol. 2021, 154, 111544. [Google Scholar] [CrossRef] [PubMed]
- Franceschi, C.; Garagnani, P.; Parini, P.; Giuliani, C.; Santoro, A. Inflammaging: A new immune-metabolic viewpoint for age-related diseases. Nat. Rev. Endocrinol. 2018, 14, 576–590. [Google Scholar] [CrossRef]
- Lontchi-Yimagou, E.; Sobngwi, E.; Matsha, T.E.; Kengne, A.P. Diabetes mellitus and inflammation. Curr. Diab. Rep. 2013, 13, 435–444. [Google Scholar] [CrossRef]
- Gorelick, P.B. Role of inflammation in cognitive impairment: Results of observational epidemiological studies and clinical trials. Ann. New York Acad. Sci. 2010, 1207, 155–162. [Google Scholar] [CrossRef]
- Ferrucci, L.; Fabbri, E. Inflammageing: Chronic inflammation in ageing, cardiovascular disease, and frailty. Nat. Rev. Cardiol. 2018, 15, 505–522. [Google Scholar] [CrossRef]
- Dalle, S.; Rossmeislova, L.; Koppo, K. The Role of Inflammation in Age-Related Sarcopenia. Front. Physiol. 2017, 8, 1045. [Google Scholar] [CrossRef]
- Gill, P.A.; Inniss, S.; Kumagai, T.; Rahman, F.Z.; Smith, A.M. The Role of Diet and Gut Microbiota in Regulating Gastrointestinal and Inflammatory Disease. Front. Immunol. 2022, 13, 866059. [Google Scholar] [CrossRef] [PubMed]
- Lewis, E.D.; Meydani, S.N.; Wu, D. Regulatory role of vitamin E in the immune system and inflammation. IUBMB Life 2019, 71, 487–494. [Google Scholar] [CrossRef]
- Grosso, G.; Laudisio, D.; Frias-Toral, E.; Barrea, L.; Muscogiuri, G.; Savastano, S.; Colao, A. Anti-Inflammatory Nutrients and Obesity-Associated Metabolic-Inflammation: State of the Art and Future Direction. Nutrients 2022, 14, 1137. [Google Scholar] [CrossRef]
- Combet, E.; Gray, S.R. Nutrient-nutrient interactions: Competition, bioavailability, mechanism and function in health and diseases. Proc. Nutr. Soc. 2019, 78, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.R.; Moraes, B.P.T.; Gonçalves-de-Albuquerque, C.F. Mediterranean Diet: Lipids, Inflammation, and Malaria Infection. Int. J. Mol. Sci. 2020, 21, 4489. [Google Scholar] [CrossRef] [PubMed]
- Malesza, I.J.; Malesza, M.; Walkowiak, J.; Mussin, N.; Walkowiak, D.; Aringazina, R.; Bartkowiak-Wieczorek, J.; Mądry, E. High-Fat, Western-Style Diet, Systemic Inflammation, and Gut Microbiota: A Narrative Review. Cells 2021, 10, 3164. [Google Scholar] [CrossRef]
- Chen, J.; Yang, Y.; Kong, W. Cross Talk between Inflammation and Metabolic Disorders. Mediat. Inflamm. 2022, 2022, 9821506. [Google Scholar] [CrossRef] [PubMed]
- Cavicchia, P.P.; Steck, S.E.; Hurley, T.G.; Hussey, J.R.; Ma, Y.; Ockene, I.S.; Hébert, J.R. A new dietary inflammatory index predicts interval changes in serum high-sensitivity C-reactive protein. J. Nutr. 2009, 139, 2365–2372. [Google Scholar] [CrossRef] [PubMed]
- Shivappa, N.; Steck, S.E.; Hurley, T.G.; Hussey, J.R.; Hébert, J.R. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014, 17, 1689–1696. [Google Scholar] [CrossRef] [PubMed]
- Corley, J.; Shivappa, N.; Hébert, J.R.; Starr, J.M.; Deary, I.J. Associations between Dietary Inflammatory Index Scores and Inflammatory Biomarkers among Older Adults in the Lothian Birth Cohort 1936 Study. J. Nutr. Health Aging 2019, 23, 628–636. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.; Weng, J.; Xie, Q.; Wu, L.; Xuan, Y.; Zhang, J.; Han, J. Association between dietary inflammatory index and Stroke in the US population: Evidence from NHANES 1999–2018. BMC Public Health 2024, 24, 50. [Google Scholar] [CrossRef]
- Chen, X.; Hou, C.; Yao, L.; Li, J.; Gui, M.; Wang, M.; Zhou, X.; Lu, B.; Fu, D. Dietary inflammation index is associated with dyslipidemia: Evidence from national health and nutrition examination survey, 1999–2019. Lipids Health Dis. 2023, 22, 149. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Tan, X.; Su, Z.; Manzi, H.P.; Su, L.; Tang, Z.; Zhang, Y. The Relationship between the Dietary Inflammatory Index (DII) and Metabolic Syndrome (MetS) in Middle-Aged and Elderly Individuals in the United States. Nutrients 2023, 15, 1857. [Google Scholar] [CrossRef] [PubMed]
- Geng, J.; Deng, L.; Qiu, S.; Bian, H.; Cai, B.; Jin, K.; Zheng, X.; Li, J.; Liao, X.; Li, Y.; et al. Dietary inflammatory potential and risk of sarcopenia: Data from national health and nutrition examination surveys. Aging 2020, 13, 1913–1928. [Google Scholar] [CrossRef]
- Diao, H.; Yan, F.; He, Q.; Li, M.; Zheng, Q.; Zhu, Q.; Fang, F.; Cui, W. Association between Dietary Inflammatory Index and Sarcopenia: A Meta-Analysis. Nutrients 2023, 15, 219. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Wang, H.; Wu, Z.; Li, W.; Liu, Y.; Wang, N. The association of dietary inflammatory potential with skeletal muscle strength, mass, and sarcopenia: A meta-analysis. Front. Nutr. 2023, 10, 1100918. [Google Scholar] [CrossRef] [PubMed]
- Bian, D.; Xuan, C.; Li, X.; Zhou, W.; Lu, Y.; Ding, T.; Shen, J.; Shi, Y.; Li, G. The association of dietary inflammatory potential with sarcopenia in Chinese community-dwelling older adults. BMC Geriatr. 2023, 23, 281. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Yeung, S.S.Y.; Chen, Y.M.; Leung, J.C.S.; Kwok, T.C.Y. The Associations of Dietary Inflammatory Potential With Musculoskeletal Health in Chinese Community-Dwelling Older People: The Mr. OS and Ms. OS (Hong Kong) Cohort Study. J. Bone Miner. Res. 2022, 37, 1179–1187. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y. China Food Composition; Peking University Medical Press: Beijing, China, 2019; p. 429. [Google Scholar]
- Chen, L.K.; Woo, J.; Assantachai, P.; Auyeung, T.W.; Chou, M.Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S.; et al. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J. Am. Med. Dir. Assoc. 2020, 21, 300–307.e2. [Google Scholar] [CrossRef]
- Petermann-Rocha, F.; Balntzi, V.; Gray, S.R.; Lara, J.; Ho, F.K.; Pell, J.P.; Celis-Morales, C. Global prevalence of sarcopenia and severe sarcopenia: A systematic review and meta-analysis. J. Cachexia Sarcopenia Muscle 2022, 13, 86–99. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Zhang, X.; He, Q.; Du, L.; Chen, K.; Chen, S.; Pan, Y. Prevalence of sarcopenia in Chinese community-dwelling elderly: A systematic review. BMC Public Health 2022, 22, 1702. [Google Scholar] [CrossRef] [PubMed]
- Cao, M.; Lian, J.; Lin, X.; Liu, J.; Chen, C.; Xu, S.; Ma, S.; Wang, F.; Zhang, N.; Qi, X.; et al. Prevalence of sarcopenia under different diagnostic criteria and the changes in muscle mass, muscle strength, and physical function with age in Chinese old adults. BMC Geriatr. 2022, 22, 889. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Huang, W.Y.; Zhao, Y. Efficacy of Exercise on Muscle Function and Physical Performance in Older Adults with Sarcopenia: An Updated Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2022, 19, 8212. [Google Scholar] [CrossRef] [PubMed]
- Jimenez-Gutierrez, G.E.; Martínez-Gómez, L.E.; Martínez-Armenta, C.; Pineda, C.; Martínez-Nava, G.A.; Lopez-Reyes, A. Molecular Mechanisms of Inflammation in Sarcopenia: Diagnosis and Therapeutic Update. Cells 2022, 11, 2359. [Google Scholar] [CrossRef] [PubMed]
- Tuttle, C.S.L.; Thang, L.A.N.; Maier, A.B. Markers of inflammation and their association with muscle strength and mass: A systematic review and meta-analysis. Ageing Res. Rev. 2020, 64, 101185. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, H.; He, M.; Wang, J.; Wu, Y.; Li, Y. Immune system and sarcopenia: Presented relationship and future perspective. Exp. Gerontol. 2022, 164, 111823. [Google Scholar] [CrossRef]
- Huang, N.; Kny, M.; Riediger, F.; Busch, K.; Schmidt, S.; Luft, F.C.; Slevogt, H.; Fielitz, J. Deletion of Nlrp3 protects from inflammation-induced skeletal muscle atrophy. Intensive Care Med. Exp. 2017, 5, 3. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Baos, S.; Prieto-Potin, I.; Román-Blas, J.A.; Sánchez-Pernaute, O.; Largo, R.; Herrero-Beaumont, G. Mediators and Patterns of Muscle Loss in Chronic Systemic Inflammation. Front. Physiol. 2018, 9, 409. [Google Scholar] [CrossRef] [PubMed]
- Lécuyer, L.; Laouali, N.; Viallon, V.; Artaud, F.; Hébert, J.R.; Shivappa, N.; Agudo, A.; Tjønneland, A.; Mellemkjær, L.; Kaaks, R.; et al. Associations between dietary inflammatory scores and biomarkers of inflammation in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. Clin. Nutr. 2023, 42, 1115–1125. [Google Scholar] [CrossRef] [PubMed]
- Petermann-Rocha, F.; Wirth, M.D.; Boonpor, J.; Parra-Soto, S.; Zhou, Z.; Mathers, J.C.; Livingstone, K.; Forrest, E.; Pell, J.P.; Ho, F.K.; et al. Associations between an inflammatory diet index and severe non-alcoholic fatty liver disease: A prospective study of 171,544 UK Biobank participants. BMC Med. 2023, 21, 123. [Google Scholar] [CrossRef]
- Christ, A.; Lauterbach, M.; Latz, E. Western Diet and the Immune System: An Inflammatory Connection. Immunity 2019, 51, 794–811. [Google Scholar] [CrossRef]
- Linton, C.; Wright, H.H.; Wadsworth, D.P.; Schaumberg, M.A. Dietary Inflammatory Index and Associations with Sarcopenia Symptomology in Community-Dwelling Older Adults. Nutrients 2022, 14, 5319. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Zeng, L.; Zheng, C.; Song, B.; Li, F.; Kong, X.; Xu, K. Inflammatory Links Between High Fat Diets and Diseases. Front. Immunol. 2018, 9, 2649. [Google Scholar] [CrossRef] [PubMed]
- Jalili, C.; Talebi, S.; Bagheri, R.; Ghanavati, M.; Camera, D.M.; Amirian, P.; Zarpoosh, M.; Dizaji, M.K.; Kermani, M.A.H.; Moradi, S. The Association between Dietary Inflammatory Index and Aging Biomarkers/Conditions: A Systematic Review and Dose-response Meta-analysis. J. Nutr. Health Aging 2023, 27, 378–390. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Y.S.; Chai, Y.H.; Gong, H.J.; Zhuldyz, Z.; Stehouwer, C.D.A.; Zhou, J.B.; Simó, R. The Association Between Diabetes Mellitus and Risk of Sarcopenia: Accumulated Evidences From Observational Studies. Front. Endocrinol. 2021, 12, 782391. [Google Scholar] [CrossRef] [PubMed]
- Shahinfar, H.; Shahavandi, M.; Tijani, A.J.; Jafari, A.; Davarzani, S.; Djafarian, K.; Clark, C.C.T.; Shab-Bidar, S. The association between dietary inflammatory index, muscle strength, muscle endurance, and body composition in Iranian adults. Eat. Weight Disord.-Stud. Anorex. Bulim. Obes. 2022, 27, 463–472. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.M.; Park, Y.J.; Kim, H.; Kwon, O.; Ko, K.S.; Kim, Y.; Kim, Y.; Park, H.; Jung, S. Associations of Food Insecurity with Dietary Inflammatory Potential and Risk of Low Muscle Strength. Nutrients 2023, 15, 1120. [Google Scholar] [CrossRef] [PubMed]
- Zheng, G.; Xia, H.; Lai, Z.; Shi, H.; Zhang, J.; Wang, C.; Tian, F.; Lin, H. Dietary Inflammatory Index and Dietary Diversity Score Associated with Sarcopenia and Its Components: Findings from a Nationwide Cross-Sectional Study. Nutrients 2024, 16, 1038. [Google Scholar] [CrossRef] [PubMed]
- McLester, C.N.; Nickerson, B.S.; Kliszczewicz, B.M.; McLester, J.R. Reliability and Agreement of Various InBody Body Composition Analyzers as Compared to Dual-Energy X-Ray Absorptiometry in Healthy Men and Women. J. Clin. Densitom. 2020, 23, 443–450. [Google Scholar] [CrossRef]
ALL (n = 993) | Sarcopenia (n = 201) | Non-Sarcopenia (n = 792) | χ2/t | p | |
---|---|---|---|---|---|
DII | 0.99 ± 0.1 | 1.37 ± 1.63 | 0.90 ± 1.75 | −3.48 | <0.01 |
Gender | <0.01 | 0.99 | |||
Male | 469 (47.2) | 95 (20.3) | 374 (79.7) | ||
Female | 524 (52.8) | 106 (20.2) | 418 (79.8) | ||
Age | 73.16 | <0.01 | |||
<70 | 448 (45.1) | 50 (11.2) | 398 (88.8) | ||
70~79 | 475 (47.8) | 114 (24.0) | 361 (76.0) | ||
80~ | 70 (7.1) | 37 (52.9) | 33 (4.2) | ||
Education | 5.79 | 0.06 | |||
Primary school | 629 (63.4) | 142 (22.6) | 487 (77.4) | ||
Junior Secondary | 203 (20.4) | 33 (16.3) | 170 (83.7) | ||
Senior Secondary | 161 (16.2) | 26 (16.2) | 135 (83.8) | ||
Marital Status | 4.37 | 0.22 | |||
Married | 772 (77.7) | 139 (18.0) | 633 (82.0) | ||
Single or divorced | 221 (22.3) | 62 (28.0) | 159 (72.0) | ||
Smoking | 3.07 | 0.08 | |||
No | 758 (76.3) | 144 (19.0) | 614 (81.0) | ||
Yes | 235 (23.7) | 57 (24.3) | 58 (75.7) | ||
Drinking | 2.47 | 0.11 | |||
No | 722 (72.7) | 155 (21.5) | 567 (78.5) | ||
Yes | 271 (27.3) | 46 (17.0) | 225 (83.0) | ||
BMI | 135.59 | <0.01 | |||
Low | 57 (5.7) | 34 (59.6) | 23 (40.4) | ||
Normal | 476 (47.9) | 139 (29.2) | 337 (70.8) | ||
Overweight | 343 (34.6) | 21 (6.1) | 322 (93.9) | ||
Obesity | 117 (11.8) | 7 (6.0) | 110 (94.0) | ||
Central obesity | 87.9 | <0.01 | |||
No | 586 (59.0) | 177 (30.2) | 409 (69.8) | ||
Yes | 407 (41.0) | 24 (5.9) | 383 (94.1) | ||
NCDs | |||||
Diabetes | 199 (20.0) | 34 (17.1) | 165 (82.9) | 1.54 | 0.22 |
Hypertension | 482 (48.5) | 96 (19.9) | 386 (80.1) | 0.06 | 0.80 |
Dyslipidemia | 505 (50.9) | 87 (17.2) | 418 (82.8) | 5.78 | 0.02 |
Exercise activity (min/week) | 7.23 | <0.01 | |||
Less than 150 | 844 (85.0) | 183 (21.7) | 661 (78.3) | ||
More than 150 | 149 (15.0) | 18 (12.1) | 131 (87.9) | ||
Sleeping time | 0.01 | 0.93 | |||
<7 h | 299 (30.1) | 60 (20.1) | 239 (79.9) | ||
≥7 h | 694 (69.9) | 141 (20.3) | 553 (79.7) | ||
Sedentary time | 1.41 | 0.24 | |||
<5 h | 427 (43.0) | 79 (18.5) | 348 (81.5) | ||
≥5 h | 566 (57.0) | 122 (21.6) | 444 (78.4) |
Food Group | Q1 | Q2 | Q3 | Q4 | F | p |
---|---|---|---|---|---|---|
Rice | 136.8 ± 82.8 | 134.2 ± 87.2 | 132.5 ± 82.4 | 96.3 ± 76.0 | 13.53 | <0.01 |
Wheat | 78.7 ± 74.6 | 82.0 ± 82.4 | 65.3 ± 74.6 | 58.7 ± 65.6 | 5.42 | <0.01 |
Coarse cereals | 40.1 ± 57.9 | 23.7 ± 38.4 | 19.9 ± 35.1 | 16.7 ± 34.5 | 14.77 | <0.01 |
Tubers | 13.5 ± 25.4 | 10.1 ± 26.6 | 3.8 ± 13.4 | 1.3 ± 3.7 | 20.22 | <0.01 |
Soybean and products | 22.0 ± 37.6 | 14.5 ± 15.6 | 10.2 ± 10.1 | 6.3 ± 7.7 | 24.70 | <0.01 |
Legumes | 39.8 ± 60.4 | 40.1 ± 65.1 | 32.1 ± 55.9 | 26.1 ± 33.7 | 3.68 | 0.01 |
Vegetable | 765.1 ± 427.5 | 501.8 ± 235.6 | 364.8 ± 192.0 | 210.1 ± 146.2 | 185.60 | <0.01 |
Fruits | 163.8 ± 154.4 | 122.2 ± 107.6 | 89.1 ± 90.3 | 59.5 ± 63.4 | 41.91 | <0.01 |
Mushrooms and fungi | 31.7 ± 57.9 | 14.1 ± 22.4 | 9.3 ± 12.4 | 5.4 ± 7.9 | 32.72 | <0.01 |
Pork | 56.9 ± 62.1 | 59.2 ± 73.6 | 38.9 ± 41.7 | 39.6 ± 45.9 | 8.95 | <0.01 |
Livestock meats | 12.4 ± 29.6 | 15.3 ± 39.5 | 11.8 ± 25.3 | 10.1 ± 20.4 | 1.33 | 0.26 |
Poultry | 25.2 ± 41.1 | 19.7 ± 42.3 | 13.2 ± 30.2 | 12.8 ± 25.0 | 6.91 | <0.01 |
Animal viscera | 1.8 ± 5.8 | 1.4 ± 3.9 | 0.9 ± 3.4 | 0.5 ± 1.6 | 4.94 | <0.01 |
Fish and seafood | 73.8 ± 82.4 | 52.4 ± 85.9 | 26.6 ± 30.8 | 19.1 ± 27.2 | 39.14 | <0.01 |
Egg | 51.5 ± 50.1 | 47.0 ± 45.8 | 41.9 ± 40.4 | 40.3 ± 29.8 | 3.62 | 0.01 |
Milk | 123.9 ± 186.8 | 99.4 ± 140.2 | 75.9 ± 128.1 | 49.8 ± 83.1 | 12.84 | <0.01 |
Soft drinks | 87.3 ± 274.8 | 7.2 ± 30.7 | 6.5 ± 22.5 | 8.0 ± 41.2 | 20.25 | <0.01 |
Snacks | 39.9 ± 61.0 | 29.1 ± 42.8 | 23.5 ± 32.2 | 15.4 ± 25.7 | 14.41 | <0.01 |
Alcoholic beverages | 47.8 ± 176.2 | 55.1 ± 169.8 | 37.6 ± 153.5 | 7.3 ± 47.5 | 5.12 | <0.01 |
Animal oil | 1.9 ± 6.1 | 6.1 ± 12.0 | 7.0 ± 14.0 | 10.9 ± 19.2 | 17.94 | <0.01 |
Vegetable oil | 31.4 ± 26.4 | 28.2 ± 21.8 | 29.6 ± 21.4 | 18.2 ± 16.5 | 18.47 | <0.01 |
Q1 | Q2 | Q3 | Q4 | F | p | |
---|---|---|---|---|---|---|
Handgrip strength | 28.93 ± 8.75 | 26.33 ± 7.86 | 25.90 ± 9.09 | 23.34 ± 8.60 | 17.64 | <0.01 |
Step speed | 1.07 ± 0.47 | 1.03 ± 0.23 | 0.98 ± 0.23 | 0.92 ± 0.25 | 11.09 | <0.01 |
Upper limb muscle mass | 4.42 ± 1.12 | 4.36 ± 1.15 | 4.22 ± 1.12 | 4.06 ± 1.09 | 5.11 | <0.01 |
Trunk muscle mass | 19.26 ± 3.47 | 19.02 ± 3.57 | 18.53 ± 3.49 | 17.99 ± 3.40 | 6.51 | <0.01 |
Lower limb muscle mass | 12.91 ± 2.85 | 12.65 ± 3.02 | 12.25 ± 2.89 | 11.86 ± 2.72 | 6.37 | <0.01 |
SMI | 6.66 ± 0.95 | 6.61 ± 1.01 | 6.54 ± 1.00 | 6.37 ± 0.99 | 4.03 | 0.01 |
Model Ⅰ | Model Ⅱ | Model Ⅲ | ||||
---|---|---|---|---|---|---|
DII | ORs (95% CI) | p | ORs (95% CI) | p | ORs (95% CI) | p |
<0.01 | 0.02 | 0.10 | ||||
Q1 | 1.00 | 1.00 | 1.00 | |||
Q2 | 0.97 (0.60, 1.56) | 0.89 | 1.02 (0.62, 1.69) | 0.93 | 1.06 (0.62, 1.82) | 0.83 |
Q3 | 1.28 (0.81, 2.01) | 0.30 | 1.23 (0.76, 2.01) | 0.40 | 1.25 (0.73, 2.12) | 0.42 |
Q4 | 1.99 (1.29, 3.07) | <0.01 | 1.66 (1.04, 2.66) | 0.03 | 1.49 (0.89, 2.50) | 0.13 |
Muscle Mass | Grip Strength | Physical Performance | ||||
---|---|---|---|---|---|---|
DII | ORs (95% CI) | p | ORs (95% CI) | p | ORs (95% CI) | p |
0.57 | 0.04 | 0.15 | ||||
Q1 | 1.00 | 1.00 | 1.00 | |||
Q2 | 1.25 (0.79, 1.99) | 0.34 | 1.39 (0.87, 2.22) | 0.17 | 0.69 (0.47, 1.03) | 0.07 |
Q3 | 1.04 (0.65, 1.67) | 0.87 | 1.52 (0.96, 2.41) | 0.07 | 0.94 (0.64, 1.38) | 0.76 |
Q4 | 1.23 (0.76, 2.00) | 0.39 | 1.65 (1.04, 2.61) | 0.03 | 1.20 (0.81, 1.78) | 0.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pu, R.; Man, Q.; Song, S.; Jia, S.; Liu, Z.; Zhang, X.; Zhang, J.; Song, P. The Dietary Inflammatory Index and Sarcopenia in Older Adults in Four Chinese Provinces: A Cross-Sectional Study. Nutrients 2025, 17, 478. https://doi.org/10.3390/nu17030478
Pu R, Man Q, Song S, Jia S, Liu Z, Zhang X, Zhang J, Song P. The Dietary Inflammatory Index and Sarcopenia in Older Adults in Four Chinese Provinces: A Cross-Sectional Study. Nutrients. 2025; 17(3):478. https://doi.org/10.3390/nu17030478
Chicago/Turabian StylePu, Rongchang, Qingqing Man, Shuang Song, Shanshan Jia, Zhen Liu, Xiaona Zhang, Jian Zhang, and Pengkun Song. 2025. "The Dietary Inflammatory Index and Sarcopenia in Older Adults in Four Chinese Provinces: A Cross-Sectional Study" Nutrients 17, no. 3: 478. https://doi.org/10.3390/nu17030478
APA StylePu, R., Man, Q., Song, S., Jia, S., Liu, Z., Zhang, X., Zhang, J., & Song, P. (2025). The Dietary Inflammatory Index and Sarcopenia in Older Adults in Four Chinese Provinces: A Cross-Sectional Study. Nutrients, 17(3), 478. https://doi.org/10.3390/nu17030478