Development of New Equation for Predicting State of Normometabolism from Cohort of Hospitalized Patients with Obesity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participant Selection
- Resting Energy Expenditure (REE) ≥ 90% and ≤110% of the value predicted by the Mifflin-St Jeor equation.
- Fat-free mass-specific REE (FFM Ki) between 23 and 30 kcal/kg, calculated using calorimetry and dual-energy X-ray absorptiometry (DXA).
2.2. Anthropometric, Body Composition Measurements, and Indirect Calorimetric Data
- A minimum of 5 min of steady-state data,
- Coefficients of variation for VO2 and VCO2 < 4%,
- Maintenance of steady-state conditions for at least 3 consecutive minutes.
2.3. Statistical Analysis
2.3.1. Correlation and Residual Analysis
2.3.2. Regression Analysis
2.3.3. Bland–Altman Analysis
2.3.4. Paired t-Tests
2.4. Ethical Considerations
3. Results
3.1. Baseline Characteristics of the Sample
3.2. Normality Analysis and Pearson Correlation
3.3. Regression Model Development
3.4. Bland–Altman Analysis and Paired t-Tests
4. Discussion
4.1. Accuracy and Clinical Relevance of the New Equation
4.2. Practical Implications and Applications
4.3. Limitations of the Proposed Equation and Future Direction
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lin, X.; Li, H. Obesity: Epidemiology, Pathophysiology, and Therapeutics. Front. Endocrinol. 2021, 12, 706978. [Google Scholar] [CrossRef] [PubMed]
- Lingvay, I.; Cohen, R.V.; le Roux, C.W.; Sumithran, P. Obesity in adults. Lancet 2024, 404, 972–987. [Google Scholar] [CrossRef] [PubMed]
- Madden, A.M.; Mulrooney, H.M.; Shah, S. Estimation of energy expenditure using prediction equations in overweight and obese adults: A systematic review. J. Hum. Nutr. Diet. Off. J. Br. Diet. Assoc. 2016, 29, 458–476. [Google Scholar] [CrossRef] [PubMed]
- Van Dessel, K.; Verrijken, A.; De Block, C.; Verhaegen, A.; Peiffer, F.; Van Gaal, L.; De Wachter, C.; Dirinck, E. Basal metabolic rate using indirect calorimetry among individuals living with overweight or obesity: The accuracy of predictive equations for basal metabolic rate. Clin. Nutr. ESPEN 2024, 59, 422–435. [Google Scholar] [CrossRef] [PubMed]
- Lam, Y.Y.; Ravussin, E. Indirect calorimetry: An indispensable tool to understand and predict obesity. Eur. J. Clin. Nutr. 2017, 71, 318–322. [Google Scholar] [CrossRef] [PubMed]
- Heymsfield, S.B.; Smith, B.; Dahle, J.; Kennedy, S.; Fearnbach, N.; Thomas, D.M.; Bosy-Westphal, A.; Müller, M.J. Resting Energy Expenditure: From Cellular to Whole-Body Level, a Mechanistic Historical Perspective. Obesity 2021, 29, 500–511. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.M.; Ying, Z.; Bosy-Westphal, A.; Zhang, J.; Schautz, B.; Later, W.; Heymsfield, S.B.; Müller, M.J. Specific metabolic rates of major organs and tissues across adulthood: Evaluation by mechanistic model of resting energy expenditure. Am. J. Clin. Nutr. 2010, 92, 1369–1377. [Google Scholar] [CrossRef] [PubMed]
- Singer, M.; Deutschman, C.S.; Seymour, C.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA—J. Am. Med. Assoc. 2016, 315, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Ho, D.K.N.; Liao, Y.C.; Mayasari, N.R.; Chien, M.M.; Chung, M.; Bai, C.H.; Huang, Y.L.; Chen, Y.C.; Tseng, S.H.; Chang, C.C.; et al. The effects of dietary macronutrient composition on resting energy expenditure following active weight loss: A systematic review and meta-analysis. Obes. Rev. 2024, 25, e13760. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Mean ± SD | Median (Range) |
---|---|---|
Total sample | ||
Age (years) | 61.7 ± 11.8 | 63.0 (24.0–80.0) |
Weight (kg) | 104.3 ± 17.9 | 103.6 (69.8–151.5) |
Height (m) | 1.60 ± 0.10 | 1.58 (1.41–1.80) |
BMI (kg/m2) | 40.85 ± 6.48 | 40.30 (29.61–58.40) |
Waist circumference (cm) | 123.9 ± 13.1 | 123.0 (94.0–160.0) |
Hip circumference (cm) | 125.7 ± 12.9 | 125.5 (101.5–155.0) |
FFM (kg) | 51.2 ± 9.6 | 48.7 (35.9–76.3) |
FM (kg) | 49.2 ± 11.3 | 48.7 (28.1–72.4) |
Male | ||
Age (years) | 61.4 ± 14.6 | 62.0 (22.0–83.0) |
Weight (kg) | 114.1 ± 18.8 | 117.7 (81.2–151.5) |
Height (m) | 1.69 ± 0.07 | 1.70 (1.53–1.80) |
BMI (kg/m2) | 39.7 ± 5.5 | 40.5 (29.6–50.5) |
Waist circumference (cm) | 129.9 ± 12.6 | 131.0 (105.0–160.0) |
Hip circumference (cm) | 119.2 ± 11.5 | 119.0 (101.5–141.0) |
FFM (kg) | 62.0 ± 7.8 | 63.2 (47.7–76.3) |
FM (kg) | 47.2 ± 12.6 | 48.7 (28.1–72.4) |
Female | ||
Age (years) | 64.1 ± 10.9 | 66.0 (31.0–80.0) |
Weight (kg) | 99.9 ± 15.8 | 97.0 (69.8–144.0) |
Height (m) | 1.56 ± 0.08 | 1.56 (1.41–1.79) |
BMI (kg/m2) | 41.4 ± 6.9 | 40.1 (31.1–58.4) |
Waist circumference (cm) | 121.1 ± 12.5 | 120.3 (94.0–150.0) |
Hip circumference (cm) | 128.5 ± 12.6 | 128.0 (108.5–155.0) |
FFM (kg) | 46.3 ± 5.3 | 46.3 (35.9–60.9) |
FM (kg) | 50.1 ± 10.7 | 47.2 (32.5–72.2) |
Variable | Shapiro–Wilk Statistic | p-Value |
---|---|---|
RMR Calorimetry (kcal/day) | 0.948 | 0.001 |
Height (m) | 0.967 | 0.022 |
Weight Kg | 0.981 | 0.224 |
Arm cm | 0.966 | 0.029 |
Calf cm | 0.953 | 0.005 |
Waist cm | 0.992 | 0.901 |
Hips (cm) | 0.977 | 0.214 |
FFM (g) | 0.937 | <0.001 |
FM (g) | 0.972 | 0.054 |
VAT (g) | 0.939 | 0.002 |
BMI | 0.967 | 0.023 |
Variable | RMR Calorimetry T0 (kcal/day) | FM T0 (g) | FFM T0 (g) | Entry Hips | Waist T0 | Age (Years) | Gender |
---|---|---|---|---|---|---|---|
1. REE (kcal/day) | Pearson’s r | — | 0.441 *** | 0.924 *** | 0.081 | 0.661 *** | −0.375 *** |
p-value | — | <0.001 | <0.001 | 0.506 | <0.001 | <0.001 | |
Spearman’s rho | — | 0.466 *** | 0.898 *** | 0.137 | 0.659 *** | −0.368 *** | |
p-value | — | <0.001 | <0.001 | 0.258 | <0.001 | <0.001 | |
2. FM (g) | Pearson’s r | 0.441 *** | — | 0.238 * | 0.820 *** | 0.734 *** | −0.105 |
p-value | <0.001 | — | 0.024 | <0.001 | <0.001 | 0.329 | |
Spearman’s rho | 0.466 *** | — | 0.306 ** | 0.808 *** | 0.748 *** | −0.146 | |
p-value | <0.001 | — | 0.004 | <0.001 | <0.001 | 0.172 | |
3. FFM (g) | Pearson’s r | 0.924 *** | 0.238 * | — | −0.047 | 0.550 *** | −0.388 *** |
p-value | <0.001 | 0.024 | — | 0.697 | <0.001 | <0.001 | |
Spearman’s rho | 0.898 *** | 0.306 ** | — | −7.352 × 10−4 | 0.585 *** | −0.369 *** | |
p-value | <0.001 | 0.004 | — | 0.995 | <0.001 | <0.001 | |
4. Hip (cm) | Pearson’s r | 0.081 | 0.820 *** | −0.047 | — | 0.632 *** | 0.101 |
p-value | 0.506 | <0.001 | 0.697 | — | <0.001 | 0.404 | |
Spearman’s rho | 0.137 | 0.808 *** | −7.352 × 10−4 | — | 0.607 *** | 0.048 | |
p-value | 0.258 | <0.001 | 0.995 | — | <0.001 | 0.673 | |
5. Waist (cm) | Pearson’s r | 0.661 *** | 0.734 *** | 0.550 *** | 0.632 *** | — | −0.023 |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | — | 0.826 | |
Spearman’s rho | 0.659 *** | 0.748 *** | 0.585 *** | 0.607 *** | — | −0.038 | |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | — | 0.712 | |
6. Age (years) | Pearson’s r | −0.375 *** | −0.105 | −0.388 *** | 0.101 | −0.023 | — |
p-value | <0.001 | 0.329 | <0.001 | 0.404 | 0.826 | — | |
Spearman’s rho | −0.368 *** | −0.146 | −0.369 *** | 0.082 | −0.038 | — | |
p-value | <0.001 | 0.172 | <0.001 | 0.501 | 0.712 | — | |
7. Gender | Pearson’s r | 0.704 *** | −0.120 | 0.766 *** | −0.332 ** | 0.314 ** | −0.105 |
p-value | <0.001 | 0.265 | <0.001 | 0.005 | 0.003 | 0.327 | |
Spearman’s rho | 0.663 *** | −0.110 | 0.720 *** | −0.325 ** | 0.300 ** | −0.074 | |
p-value | <0.001 | 0.304 | <0.001 | 0.006 | 0.005 | 0.488 |
Model | Predictors Included | R2 | Adjusted R2 | RMSE | Sum of Squares | df | Mean Square | F | p |
---|---|---|---|---|---|---|---|---|---|
M1 | Weight (Kg) | 0.704 | 0.701 | 157.922 | 5.168 × 10⁶ | 1 | 5.168 × 10⁶ | 207.226 | <0.001 |
M2 | Weight (Kg), Gender | 0.884 | 0.882 | 99.279 | 6.490 × 10⁶ | 2 | 3.245 × 10⁶ | 329.243 | <0.001 |
M3 | Weight (Kg), Gender, Height (m) | 0.918 | 0.915 | 84.218 | 6.735 × 10⁶ | 3 | 2.245 × 10⁶ | 316.519 | <0.001 |
M4 | Weight (Kg), Gender, Height (m), Age (years) | 0.923 | 0.920 | 81.872 | 6.775 × 10⁶ | 4 | 1.694 × 10⁶ | 252.678 | <0.001 |
Coefficients for Model (M4). | |||||||||
Predictor | t | p | |||||||
(Intercept) | −1.332 | 0.187 | |||||||
Weight (Kg) | 16.292 | <0.001 | |||||||
Gender | 8.651 | <0.001 | |||||||
Height (m) | 4.780 | <0.001 | |||||||
Age (years) | −2.438 | 0.017 |
Equation | Mean Bias (kcal/day) | 95% Limits of Agreement (kcal/day) |
---|---|---|
Equation from M4 model | −0.054 | −156.834 to 156.725 |
Mifflin-St Jeor | −8.452 | −187.390 to 170.486 |
Bernstein | +191.846 | −64.022 to 447.714 |
Harris–Benedict | −98.838 | −320.722 to 123.046 |
Henry | −74.547 | −241.460 to 92.366 |
Ravussin | +33.705 | −225.842 to 293.253 |
Cunningham | −17.942 | −260.408 to 224.523 |
Owen | −69.786 | −296.256 to 156.684 |
Equation | p-Value (Bias vs. Measured REE) |
---|---|
Mifflin-St Jeor | 0.414 |
Bernstein | <0.001 |
Harris–Benedict | <0.001 |
Henry | <0.001 |
Ravussin | 0.008 |
Cunningham | 0.161 |
Owen | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazzola, G.; Rondanelli, M.; Cattaneo, C.; Lazzarotti, A.; Gasparri, C.; Barrile, G.C.; Moroni, A.; Mansueto, F.; Minonne, L.; Perna, S. Development of New Equation for Predicting State of Normometabolism from Cohort of Hospitalized Patients with Obesity. Nutrients 2025, 17, 482. https://doi.org/10.3390/nu17030482
Mazzola G, Rondanelli M, Cattaneo C, Lazzarotti A, Gasparri C, Barrile GC, Moroni A, Mansueto F, Minonne L, Perna S. Development of New Equation for Predicting State of Normometabolism from Cohort of Hospitalized Patients with Obesity. Nutrients. 2025; 17(3):482. https://doi.org/10.3390/nu17030482
Chicago/Turabian StyleMazzola, Giuseppe, Mariangela Rondanelli, Carlo Cattaneo, Alessandro Lazzarotti, Clara Gasparri, Gaetan Claude Barrile, Alessia Moroni, Francesca Mansueto, Leonardo Minonne, and Simone Perna. 2025. "Development of New Equation for Predicting State of Normometabolism from Cohort of Hospitalized Patients with Obesity" Nutrients 17, no. 3: 482. https://doi.org/10.3390/nu17030482
APA StyleMazzola, G., Rondanelli, M., Cattaneo, C., Lazzarotti, A., Gasparri, C., Barrile, G. C., Moroni, A., Mansueto, F., Minonne, L., & Perna, S. (2025). Development of New Equation for Predicting State of Normometabolism from Cohort of Hospitalized Patients with Obesity. Nutrients, 17(3), 482. https://doi.org/10.3390/nu17030482