Mango Consumption Is Associated with Increased Insulin Sensitivity in Participants with Overweight/Obesity and Chronic Low-Grade Inflammation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics, Participants, and Study Design
2.2. Oral Glucose Tolerance Test (OGTT)
2.3. Study Interventions
2.4. Study Endpoint Analyses
2.4.1. Glucose, Insulin, hs-CRP, and Lipid Profile
2.4.2. IL-6 and TNF-α
2.4.3. RNA Extraction and q-PCR Procedure
2.5. Data Analysis
Calculations and Statistical Analysis
3. Results
3.1. Participant Demographics and Characteristics
3.2. Inflammatory Markers Assessment in Response to Mango or Control Intervention
3.3. Body Weight Response to Mango and Control Interventions
3.4. OGTT Response to Mango and Control Interventions
3.5. Fasting Glucose, Insulin, and Glucoregulatory Indices Assessments in Response to Mango and Control Interventions
3.6. Lipid Profile Assessments in Response to Mango and Control Interventions
3.7. Gene Expression: Cellular Defense, and Inflammation in Peripheral Blood Mononuclear Cells (PBMCs)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
T2DM | type 2 diabetes mellitus |
OW/OB | overweight and obese |
hs-CRP | high-sensitivity C-reactive protein |
CVD | cardiovascular disease |
NHANES | National Health and Nutrition Examination Survey |
CNRC | Clinical Nutrition Research Center |
CDC | Centers for Disease Control and Prevention |
AHA | American Heart Association |
OGTT | oral glucose tolerance test |
EDTA | ethylenediaminetetraacetic acid |
IL-6 | interleukin 6 |
TNFα | tumor necrosis factor alpha |
ELISA | enzyme-linked immunosorbent assay |
cDNA | complementary DNA |
qPCR | quantitative real-time polymerase chain reaction |
TLR | Toll-like receptor |
Nrf2 | nuclear factor erythroid 2–related factor 2 |
GAPDH | glyceraldehyde-3-phosphate dehydrogenase |
Ct | threshold cycle |
RT | reverse transcription |
HOMA-IR | Homeostasis Model Assessment of Insulin Resistance |
IGI | insulinogenic index |
DI | disposition index |
AUCs | areas under the curves |
BMI | body mass index |
RM-ANOVA | repeated-measure of analysis of variance |
ANCOVA | analysis of covariance |
LSM | least square means |
SEM | standard error of mean |
PBMCs | peripheral blood mononuclear cells |
NFкB | nuclear factor-kappa B transcription factor |
QUICKI | quantitative insulin sensitivity check index |
TAC | Total antioxidant capacity |
LDL | low-density lipoprotein |
HDL | high-density lipoprotein |
References
- Fioranelli, M.; Roccia, M.G.; Flavin, D.; Cota, L. Regulation of Inflammatory Reaction in Health and Disease. Int. J. Mol. Sci. 2021, 22, 5277. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Núñez, B.; Pruimboom, L.; Dijck-Brouwer, D.A.J.; Muskiet, F.A.J. Lifestyle and Nutritional Imbalances Associated with Western Diseases: Causes and Consequences of Chronic Systemic Low-Grade Inflammation in an Evolutionary Context. J. Nutr. Biochem. 2013, 24, 1183–1201. [Google Scholar] [CrossRef] [PubMed]
- Castro, A.M.; Macedo-de la Concha, L.E.; Pantoja-Meléndez, C.A. Low-Grade Inflammation and Its Relation to Obesity and Chronic Degenerative Diseases. Rev. Médica Hosp. Gen. México 2017, 80, 101–105. [Google Scholar] [CrossRef]
- Custodero, C.; Mankowski, R.T.; Lee, S.A.; Chen, Z.; Wu, S.; Manini, T.M.; Hincapie Echeverri, J.; Sabbà, C.; Beavers, D.P.; Cauley, J.A.; et al. Evidence-Based Nutritional and Pharmacological Interventions Targeting Chronic Low-Grade Inflammation in Middle-Age and Older Adults: A Systematic Review and Meta-Analysis. Ageing Res. Rev. 2018, 46, 42–59. [Google Scholar] [CrossRef]
- Khanna, D.; Khanna, S.; Khanna, P.; Kahar, P.; Patel, B.M. Obesity: A Chronic Low-Grade Inflammation and Its Markers. Cureus 2022, 14, e22711. [Google Scholar] [CrossRef]
- Minihane, A.M.; Vinoy, S.; Russell, W.R.; Baka, A.; Roche, H.M.; Tuohy, K.M.; Teeling, J.L.; Blaak, E.E.; Fenech, M.; Vauzour, D.; et al. Low-Grade Inflammation, Diet Composition and Health: Current Research Evidence and Its Translation. Br. J. Nutr. 2015, 114, 999–1012. [Google Scholar] [CrossRef]
- Van der Meer, I.M.; De Maat, M.P.M.; Kiliaan, A.J.; Van der Kuip, D.A.M.; Hofman, A.; Witteman, J.C.M. The Value of C-Reactive Protein in Cardiovascular Risk Prediction: The Rotterdam Study. Arch. Intern. Med. 2003, 163, 1323–1328. [Google Scholar] [CrossRef]
- Welsh, A.; Hammad, M.; Piña, I.L.; Kulinski, J. Obesity and Cardiovascular Health. Eur. J. Prev. Cardiol. 2024, 31, 1026–1035. [Google Scholar] [CrossRef]
- Bhupathiraju, S.N.; Hu, F.B. Epidemiology of Obesity and Diabetes and Their Cardiovascular Complications. Circ. Res. 2016, 118, 1723–1735. [Google Scholar] [CrossRef]
- Shinde, S.A. Global Prevalence of Prediabetes. Diabetes Care 2023, 46, 1388–1394. [Google Scholar]
- Ryan, D.H.; Yockey, S.R. Weight Loss and Improvement in Comorbidity: Differences at 5%, 10%, 15%, and Over. Curr. Obes. Rep. 2017, 6, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Clemente-Suárez, V.J.; Martín-Rodríguez, A.; Redondo-Flórez, L.; López-Mora, C.; Yáñez-Sepúlveda, R.; Tornero-Aguilera, J.F. New Insights and Potential Therapeutic Interventions in Metabolic Diseases. Int. J. Mol. Sci. 2023, 24, 10672. [Google Scholar] [CrossRef] [PubMed]
- Afshin, A.; Sur, P.J.; Fay, K.A.; Cornaby, L.; Ferrara, G.; Salama, J.S.; Mullany, E.C.; Abate, K.H.; Abbafati, C.; Abebe, Z.; et al. Health Effects of Dietary Risks in 195 Countries, 1990–2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet 2019, 393, 1958–1972. [Google Scholar] [CrossRef]
- Burton-Freeman, B.M.; Sandhu, A.K.; Edirisinghe, I. Mangos and Their Bioactive Components: Adding Variety to the Fruit Plate for Health. Food Funct. 2017, 8, 3010–3032. [Google Scholar] [CrossRef]
- Papanikolaou, Y.; Fulgoni, V.L. Mango Consumption Is Associated with Improved Nutrient Intakes, Diet Quality, and Weight-Related Health Outcomes. Nutrients 2022, 14, 59. [Google Scholar] [CrossRef]
- Rosas, M.; Pinneo, S.; O’Mealy, C.; Tsang, M.; Liu, C.; Kern, M.; Hooshmand, S.; Hong, M.Y. Effects of Fresh Mango Consumption on Cardiometabolic Risk Factors in Overweight and Obese Adults. Nutr. Metab. Cardiovasc. Dis. 2022, 32, 494–503. [Google Scholar] [CrossRef]
- O’Hara, C.; Ojo, B.; Simenson, A.; Hermann, J.; Payton, M.; Smith, B.; Lucas, E. The Effects of Acute Freeze-Dried Mango Consumption with a High-Fat Meal on Post-Prandial Responses in Healthy Young Adult Males. FASEB J. 2017, 31, 166.3. [Google Scholar] [CrossRef]
- Keathley, J.; Kearney, M.; Garneau, V.; de Toro-Martín, J.; Varin, T.V.; Pilon, G.; Couture, P.; Marette, A.; Vohl, M.C.; Couillard, C. Changes in Systolic Blood Pressure, Postprandial Glucose, and Gut Microbial Composition Following Mango Consumption in Individuals with Overweight and Obesity. Appl. Physiol. Nutr. Metab. 2022, 47, 565–574. [Google Scholar] [CrossRef]
- Pinneo, S.; Omealy, C.; Rosas, M.; Tsang, M.; Liu, C.; Kern, M.; Hooshmand, S.; Hong, M.Y. Fresh Mango Consumption Promotes Greater Satiety and Improves Postprandial Glucose and Insulin Responses in Healthy Overweight and Obese Adults. J. Med. Food 2022, 25, 381–388. [Google Scholar] [CrossRef]
- Fang, C.; Kim, H.; Barnes, R.C.; Talcott, S.T.; Mertens-Talcott, S.U. Obesity-Associated Diseases Biomarkers Are Differently Modulated in Lean and Obese Individuals and Inversely Correlated to Plasma Polyphenolic Metabolites After 6 Weeks of Mango (Mangifera indica L.) Consumption. Mol. Nutr. Food Res. 2018, 62, e1800129. [Google Scholar] [CrossRef]
- Liu, H.; Wang, K.; Tang, Y.; Sun, Z.; Jian, L.; Li, Z.; Wu, B.; Huang, C. Structure Elucidation of in Vivo and in Vitro Metabolites of Mangiferin. J. Pharm. Biomed. Anal. 2011, 55, 1075–1082. [Google Scholar] [CrossRef] [PubMed]
- Natal, D.I.G.; de Castro Moreira, M.E.; Milião, M.S.; dos Anjos Benjamin, L.; de Souza Dantas, M.I.; Ribeiro, S.M.R.; Martino, H.S.D. Ubá Mango Juices Intake Decreases Adiposity and Inflammation in High-Fat Diet-Induced Obese Wistar Rats. Nutrition 2016, 32, 1011–1018. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Banerjee, N.; Barnes, R.C.; Pfent, C.M.; Talcott, S.T.; Dashwood, R.H.; Mertens-Talcott, S.U. Mango Polyphenolics Reduce Inflammation in Intestinal Colitis—Involvement of the MiR-126/PI3K/AKT/MTOR Axis in Vitro and in Vivo. Mol. Carcinog. 2017, 56, 197–207. [Google Scholar] [CrossRef]
- Kim, H.; Banerjee, N.; Ivanov, I.; Pfent, C.M.; Prudhomme, K.R.; Bisson, W.H.; Dashwood, R.H.; Talcott, S.T.; Mertens-Talcott, S.U. Comparison of Anti-Inflammatory Mechanisms of Mango (Mangifera Indica L.) and Pomegranate (Punica Granatum L.) in a Preclinical Model of Colitis. Mol. Nutr. Food Res. 2016, 60, 1912–1923. [Google Scholar] [CrossRef]
- Ruiz-Canizales, J.; Domínguez-Avila, J.A.; Wall-Medrano, A.; Ayala-Zavala, J.F.; González-Córdova, A.F.; Vallejo-Córdoba, B.; Salazar-López, N.J.; González-Aguilar, G.A. Fiber and Phenolic Compounds Contribution to the Hepatoprotective Effects of Mango Diets in Rats Fed High Cholesterol/Sodium Cholate. Phytother. Res. 2019, 33, 2996–3007. [Google Scholar] [CrossRef]
- Castro, R.J.; Pedroza, K.; Hong, M.Y. The Effects of Mango Consumption on Vascular Health and Immune Function. Metabol. Open 2023, 20, 100260. [Google Scholar] [CrossRef]
- Keathley, J.; de Toro-Martín, J.; Kearney, M.; Garneau, V.; Pilon, G.; Couture, P.; Marette, A.; Vohl, M.C.; Couillard, C. Gene Expression Signatures and Cardiometabolic Outcomes Following 8-Week Mango Consumption in Individuals with Overweight/Obesity. Front. Nutr. 2022, 9, 918844. [Google Scholar] [CrossRef]
- Pearson, T.A.; Mensah, G.A.; Alexander, R.W.; Anderson, J.L.; Cannon, R.O.; Criqui, M.; Fadl, Y.Y.; Fortmann, S.P.; Hong, Y.; Myers, G.L.; et al. Markers of Inflammation and Cardiovascular Disease: Application to Clinical and Public Health Practice: A Statement for Healthcare Professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation 2003, 107, 499–511. [Google Scholar] [CrossRef]
- Andrade, M.I.S.D.; Oliveira, J.S.; Leal, V.S.; Lima, N.M.S.D.; Costa, E.C.; Aquino, N.B.D.; Lira, P.I.C.D. Identification of Cutoff Points for Homeostatic Model Assessment for Insulin Resistance Index in Adolescents: Systematic Review. Rev. Paul. Pediatr. 2016, 34, 234–242. [Google Scholar] [CrossRef]
- Retnakaran, R.; Qi, Y.; Goran, M.I.; Hamilton, J.K. Evaluation of Proposed Oral Disposition Index Measures in Relation to the Actual Disposition Index. Diabet. Med. 2009, 26, 1198–1203. [Google Scholar] [CrossRef]
- Matsuda, M.; DeFronzo, R.A. Insulin Sensitivity Indices Obtained from Oral Glucose Tolerance Testing: Comparison with the Euglycemic Insulin Clamp. Diabetes Care 1999, 22, 1462–1470. [Google Scholar] [CrossRef] [PubMed]
- Tse, A.H.W. Book Review: Pharmacokinetic and Pharmacodynamic Data Analysis—Concepts and Applications (5th Edition). Anaesth. Intensive Care 2016, 44, 792. [Google Scholar] [CrossRef]
- Edirisinghe, I.; Banaszewski, K.; Cappozzo, J.; Sandhya, K.; Ellis, C.L.; Tadapaneni, R.; Kappagoda, C.T.; Burton-Freeman, B.M. Strawberry Anthocyanin and Its Association with Postprandial Inflammation and Insulin. Br. J. Nutr. 2011, 106, 913–922. [Google Scholar] [CrossRef]
- Ellis, C.L.; Edirisinghe, I.; Kappagoda, T.; Burton-Freeman, B. Attenuation of Meal-Induced Inflammatory and Thrombotic Responses in Overweight Men and Women after 6-Week Daily Strawberry (Fragaria) Intake. A Randomized Placebo-Controlled Trial. J. Atheroscler. Thromb. 2011, 18, 318–327. [Google Scholar] [CrossRef]
- Petersen, M.C.; Shulman, G.I. Mechanisms of Insulin Action and Insulin Resistance. Physiol. Rev. 2018, 98, 2133–2223. [Google Scholar] [CrossRef]
- Park, S.Y.; Gautier, J.F.; Chon, S. Assessment of Insulin Secretion and Insulin Resistance in Human. Diabetes Metab. J. 2021, 45, 641–654. [Google Scholar] [CrossRef] [PubMed]
- Stamper, C.; Safadi, S.; Gehr, A.; Asuncion, P.; Hong, M.Y. Effects of Fresh vs Dried Mango Consumption on Satiety and Postprandial Glucose in Healthy Adults. Metabol. Open 2023, 19, 100253. [Google Scholar] [CrossRef]
- Evans, S.F.; Meister, M.; Mahmood, M.; Eldoumi, H.; Peterson, S.; Perkins-Veazie, P.; Clarke, S.L.; Payton, M.; Smith, B.J.; Lucas, E.A. Mango Supplementation Improves Blood Glucose in Obese Individuals. Nutr. Metab. Insights 2014, 7, 77–84. [Google Scholar] [CrossRef]
- Heo, J.Y.; Seo, Y.B.; Kim, E.J.; Lee, J.; Kim, Y.R.; Yoon, J.G.; Noh, J.Y.; Cheong, H.J.; Kim, W.J.; Yoon, S.Y.; et al. COVID-19 Vaccine Type-Dependent Differences in Immunogenicity and Inflammatory Response: BNT162b2 and ChAdOx1 NCoV-19. Front. Immunol. 2022, 13, 975363. [Google Scholar] [CrossRef]
- Kawai, T.; Akira, S. Signaling to NF-ΚB by Toll-like Receptors. Trends Mol. Med. 2007, 13, 460–469. [Google Scholar] [CrossRef]
- Ngo, V.; Duennwald, M.L. Nrf2 and Oxidative Stress: A General Overview of Mechanisms and Implications in Human Disease. Antioxidants 2022, 11, 2345. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Eguchi, N.; Lau, H.; Ichii, H. The Role of the Nrf2 Signaling in Obesity and Insulin Resistance. Int. J. Mol. Sci. 2020, 21, 6973. [Google Scholar] [CrossRef] [PubMed]
Mango Intervention | Control Intervention | |
---|---|---|
Serving size (g) | 230 | 221.6 |
Kent mango (g) | 126.9 g | 0 |
Keitt mango (g) | 38.1 g | 0 |
Italian ice (g) | 0 | 110 |
Crystal light mango flavor (g) | 0 | 1.6 |
Water (g) | 65 | 110 |
Total carbohydrate (g) | 24.5 | 25 |
Total sugars (g) | 22 | 25 |
Total protein (g) | 1.5 | 0 |
Total fat (g) | 0.75 | 0 |
Dietary fiber (g) | 2.5 | 0 |
Total energy (kcal) | 100 | 100 |
Variables * | Control Intervention | Mango Intervention |
---|---|---|
Glucose (mg/dL) | 117.68 ± 2.68 | 117.83 ± 1.98 |
Insulin (µIU/mL) | 13.19 ± 2.55 | 12.42 ± 1.00 |
Total Cholesterol (mg/dL) | 215.19 ± 10.35 | 213.74 ± 11.24 |
LDL Cholesterol (mg/dL) | 139.04 ± 8.23 | 139.25 ± 7.77 |
HDL Cholesterol (mg/dL) | 58.75 ± 4.02 | 53.38 ± 4.83 |
IL-6 (pg/mL) | 1.84 ± 0.16 | 2.10 ± 0.28 |
TNFα (pg/mL) | 0.99 ± 0.05 | 1.07 ± 0.08 |
hs-CRP (mg/L) | 3.32 ± 0.56 | 3.01 ± 0.45 |
HOMA IR | 3.99 ± 0.84 | 3.65 ± 0.33 |
Matsuda Index | 4.07 ± 0.56 | 3.06 ± 0.31 |
Disposition Index | 5.63 ± 1.43 | 3.64 ± 0.77 |
Insulinogenic Index | 1.44 ± 0.29 | 1.16 ± 0.19 |
Glucose AUC(0–120 min) (mg·min·dL−1) | 19017.52 ± 1132.88 | 19643.50 ± 1168.21 |
Insulin AUC(0–120 min) (µiU·min·mL−1) | 7430.74 ± 958.79 | 8516.56 ± 908.84 |
BMI (kg/m2) | 30.23 ± 0.95 | 30.72 ± 0.73 |
Age (years) | 36.62 ± 2.86 | 38.75 ± 2.84 |
Caucasian:African American:Hispanic:Asian:Other (not known) | 10:3:1:6:4 | 9:6:3:5:1 |
Male/Female | 9/15 | 10/14 |
Intervention | Body Weight at Week 0 (kg) | Body Weight at Week 4 (kg) | p-Value |
---|---|---|---|
Mango | 84.35 ± 2.50 | 84.62 ± 2.56 | 0.37 |
Control | 84.74 ± 3.11 | 85.61 ± 3.17 | <0.001 |
Analyte/Marker | Mango Intervention Week 4 | Control Intervention Week 4 | p-Value |
---|---|---|---|
Glucose (mg/dL) | 119.67 ± 1.02 | 116.95 ± 1.02 | 0.51 |
Insulin (µIU/mL) | 8.2 ± 1.16 | 15.26 ± 1.18 | 0.05 |
Total Cholesterol (mg/dL) | 202.21 ± 1.03 | 195.43 ± 1.03 | 0.46 |
LDL Cholesterol (mg/dL) | 129.21 ± 1.03 | 125.60 ± 1.03 | 0.50 |
HDL Cholesterol (mg/dL) | 47.33 ± 1.04 | 48.63 ± 1.04 | 0.61 |
Triglycerides (mg/dL) | 97.16 ± 1.08 | 81.04 ± 1.08 | 0.09 |
HOMA-IR | 2.28 ± 1.19 | 4.67 ± 1.21 | 0.03 |
Matsuda Index | 3.85 ± 1.15 | 2.23 ± 1.17 | 0.07 |
Disposition Index | 2.76 ± 1.02 | 5.37 ± 1.03 | 0.04 |
Insulinogenic Index | 1.33 ± 1.22 | 0.81 ± 1.24 | 0.09 |
Glucose AUC(0–120min) (mg min·dL−1) | 16,634.13 ± 1.09 | 20,749.14 ± 1.10 | 0.18 |
Insulin AUC(0–120min) (µiU·min·mL−1) | 6137.62 ± 1.12 | 7261.06 ± 1.13 | 0.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pett, K.D.; Alex, P.G.; Weisfuss, C.; Sandhu, A.; Burton-Freeman, B.; Edirisinghe, I. Mango Consumption Is Associated with Increased Insulin Sensitivity in Participants with Overweight/Obesity and Chronic Low-Grade Inflammation. Nutrients 2025, 17, 490. https://doi.org/10.3390/nu17030490
Pett KD, Alex PG, Weisfuss C, Sandhu A, Burton-Freeman B, Edirisinghe I. Mango Consumption Is Associated with Increased Insulin Sensitivity in Participants with Overweight/Obesity and Chronic Low-Grade Inflammation. Nutrients. 2025; 17(3):490. https://doi.org/10.3390/nu17030490
Chicago/Turabian StylePett, Katherine D, Peter Geevarghese Alex, Casey Weisfuss, Amandeep Sandhu, Britt Burton-Freeman, and Indika Edirisinghe. 2025. "Mango Consumption Is Associated with Increased Insulin Sensitivity in Participants with Overweight/Obesity and Chronic Low-Grade Inflammation" Nutrients 17, no. 3: 490. https://doi.org/10.3390/nu17030490
APA StylePett, K. D., Alex, P. G., Weisfuss, C., Sandhu, A., Burton-Freeman, B., & Edirisinghe, I. (2025). Mango Consumption Is Associated with Increased Insulin Sensitivity in Participants with Overweight/Obesity and Chronic Low-Grade Inflammation. Nutrients, 17(3), 490. https://doi.org/10.3390/nu17030490