The “Burden” of Childhood Obesity on Bone Health: A Look at Prevention and Treatment
Abstract
:1. Introduction
2. Material and Methods
2.1. Eligibility Criteria
2.2. Information Sources and Search Strategy
2.3. Study Selection
3. In Vitro, In Vivo, and Human Studies
3.1. In Vitro Insights: The Role of Pro-Inflammatory Cytokines in Obesity-Induced Bone Loss
3.2. In Vivo Models
3.3. The Burden of Exogenous Childhood Obesity on Bone Health: Human Studies
4. Bone Health in Syndromic Obesity and Overweight Related to Eating Disorders
4.1. Bone Health in Syndromic Obesity
4.2. Bone Health in Eating and Neurodevelopmental Disorders
5. Prevention at the Core: Strategies for Childhood Obesity and Bone Health
6. Impact of Severe Obesity Drug Treatments and Bariatric Surgery on Bone Health
Phases | Clinical Trials.Gov | Start Date of Trial | Drug | Subjects | Measurements | Effects on Bone Health | Adverse Effects | References |
---|---|---|---|---|---|---|---|---|
III | NCT02918279 | September 2016 | Liraglutide | Obese adolescents and patients with T2DM | BMI | Not investigated | Nausea, vomiting, diarrhea | [149] |
III | NCT00097500 | July 2019 | Exenatide | Metformin-treated patients with T2DM | BMD, ALP, Ca | BMD, serum markers of bone metabolism, and calcium homeostasis were unaffected by exenatide treatment | Nausea | [150] |
N/A | NCT01147627 | August 2010 | Exenatide | 62 patients with T2D, randomized into 3 groups: exenatide, insulin, pioglitazone | BMD, CTX, OC, TRAcP5b | No impact on bone turnover markers or BMD | Nausea | [151] |
III | NCT01648582 | July 2012 | Exenatide Dulaglutide | Patients with T2DM randomized into four groups: exenatide group, dulaglutide group, insulin glargine group, placebo | BMD | Exenatide group: increased total hip BMD. Dulaglutide group: decreased femoral neck BMD | Not investigated | [152] |
N/A | NCT02094183 | September 2019 | Liraglutide | Obese women | BMD, CTX-1, P1NP | BMD increase | Not investigated | [157] |
N/A | NCT04122716 secondary analysis | August 2016 | Liraglutide | Obese adults randomized into 4 groups: exercise alone, liraglutide alone, the combination, or placebo | BMD at the hip, lumbar spine, and distal forearm | BMD decreased in liraglutide group | Not investigated | [158] |
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ALP | Alkaline Phosphatase |
AN | Anorexia Nervosa |
APPL1 | Adaptor Protein, Phosphotyrosine Interacting with PH Domain and Leucine Zipper1 |
ARFID | Avoidant/Restrictive Food Intake Disorder |
ASD | Autism Spectrum Disorder |
BMC | Bone Mineral Content |
BMD | Bone Mineral Density |
BMSC | Bone Mesenchymal Stem Cell |
BMI | Body Mass Index |
BN | Bulimia Nervosa |
Ca | Calcium |
CTX | C-terminal Telopeptide |
DXA | Dual-Energy X-ray Absorptiometry |
DPD | Deoxypyridinoline |
GH | Growth Hormone |
GLP-1 | Glucagon-like Peptide-1 |
GLP-1R | Glucagon-like Peptide-1 Receptor |
HFD | High-Fat Diet |
HOMA-IR | Homeostatic Model Assessment of Insulin Resistance |
IGF-1 | Insulin-like Growth Factor 1 |
IL-6 | Interleukin-6 |
LIGHT | Lymphotoxin-like Inducible Protein that Competes with Glycoprotein D for Herpesvirus Entry Mediator on T Cells |
MAPK | Mitogen-Activated Protein Kinase |
MBS | Metabolic and Bariatric Surgery |
MCP-1 | Monocyte Chemoattractant Protein-1 |
N/A | Not Available |
OC | Osteocalcin |
OPG | Osteoprotegerin |
PA | Physical Activity |
P1NP | Procollagen Type 1 N-terminal Propeptide |
Pica | Persistent Ingestion of Non-food Substances |
PPARγ | Peroxisome Proliferator-Activated Receptor Gamma |
PTH | Parathyroid Hormone |
QUS | Quantitative Ultrasound |
RANK | Receptor Activator of Nuclear Factor Kappa-B |
RANKL | Receptor Activator of Nuclear Factor Kappa-B Ligand |
RYGB | Roux-en-Y Gastric Bypass |
SG | Sleeve Gastrectomy |
STAT3 | Signal Transducer and Activator of Transcription 3 |
T2DM | Type 2 Diabetes Mellitus |
TGFβ | Transforming Growth Factor-beta |
TNF-α | Tumor Necrosis Factor-alpha |
TRAcP5b | Tartrate-resistant Acid Phosphatase 5b |
WHO | World Health Organization |
References
- World Health Organization. Mapping the Health System Response to Childhood Obesity in the WHO European Region: An Overview and Country Perspectives; World Health Organization: Geneva, Switzerland, 2022; Available online: https://apps.who.int/iris/handle/10665/353747 (accessed on 11 January 2025).
- Ciężki, S.; Odyjewska, E.; Bossowski, A.; Głowińska-Olszewska, B. Not Only Metabolic Complications of Childhood Obesity. Nutrients 2024, 16, 539. [Google Scholar] [CrossRef] [PubMed]
- Faienza, M.F.; Santoro, N.; Lauciello, R.; Calabrò, R.; Giordani, L.; Di Salvo, G.; Ventura, A.; Delvecchio, M.; Perrone, L.; Del Giudice, E.M.; et al. IGF2 Gene Variants and Risk of Hypertension in Obese Children and Adolescents. Pediatr. Res. 2010, 67, 340–344. [Google Scholar] [CrossRef] [PubMed]
- Fintini, D.; Cianfarani, S.; Cofini, M.; Andreoletti, A.; Ubertini, G.M.; Cappa, M.; Manco, M. The Bones of Children With Obesity. Front. Endocrinol. 2020, 11, 200. [Google Scholar] [CrossRef] [PubMed]
- Miniello, V.L.; Faienza, M.F.; Scicchitano, P.; Cortese, F.; Gesualdo, M.; Zito, A.; Basile, M.; Recchia, P.; Leogrande, D.; Viola, D.; et al. Insulin Resistance and Endothelial Function in Children and Adolescents. Int. J. Cardiol. 2014, 174, 343–347. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Wang, B.; Wang, R.; Gong, S.; Chen, G.; Xu, W. The Shift in the Balance between Osteoblastogenesis and Adipogenesis of Mesenchymal Stem Cells Mediated by Glucocorticoid Receptor. Stem. Cell Res. Ther. 2019, 10, 377. [Google Scholar] [CrossRef] [PubMed]
- Rinonapoli, G.; Pace, V.; Ruggiero, C.; Ceccarini, P.; Bisaccia, M.; Meccariello, L.; Caraffa, A. Obesity and Bone: A Complex Relationship. Int. J. Mol. Sci. 2021, 22, 13662. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-H.; Heulsmann, A.; Tondravi, M.M.; Mukherjee, A.; Abu-Amer, Y. Tumor Necrosis Factor-α (TNF) Stimulates RANKL-Induced Osteoclastogenesis via Coupling of TNF Type 1 Receptor and RANK Signaling Pathways. J. Biol. Chem. 2001, 276, 563–568. [Google Scholar] [CrossRef] [PubMed]
- Brunetti, G.; D’Amato, G.; Chiarito, M.; Tullo, A.; Colaianni, G.; Colucci, S.; Grano, M.; Faienza, M.F. An Update on the Role of RANKL–RANK/Osteoprotegerin and WNT-ß-Catenin Signaling Pathways in Pediatric Diseases. World J. Pediatr. 2019, 15, 4–11. [Google Scholar] [CrossRef] [PubMed]
- Faienza, M.F.; Ventura, A.; Colucci, S.; Cavallo, L.; Grano, M.; Brunetti, G. Bone Fragility in Turner Syndrome: Mechanisms and Prevention Strategies. Front. Endocrinol. 2016, 7, 34. [Google Scholar] [CrossRef]
- Kitaura, H.; Kimura, K.; Ishida, M.; Kohara, H.; Yoshimatsu, M.; Takano-Yamamoto, T. Immunological Reaction in TNF-α-Mediated Osteoclast Formation and Bone Resorption In Vitro and In Vivo. Clin. Dev. Immunol. 2013, 2013, 181849. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, S.V.; Renovato-Martins, M.; Ribeiro-Pereira, C.; Citelli, M.; Barja-Fidalgo, C. Obesity Modifies Bone Marrow Microenvironment and Directs Bone Marrow Mesenchymal Cells to Adipogenesis. Obesity 2016, 24, 2522–2532. [Google Scholar] [CrossRef]
- Cortez, M.; Carmo, L.S.; Rogero, M.M.; Borelli, P.; Fock, R.A. A High-Fat Diet Increases IL-1, IL-6, and TNF-α Production by Increasing NF-κB and Attenuating PPAR-γ Expression in Bone Marrow Mesenchymal Stem Cells. Inflammation 2013, 36, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Patsch, J.M.; Kiefer, F.W.; Varga, P.; Pail, P.; Rauner, M.; Stupphann, D.; Resch, H.; Moser, D.; Zysset, P.K.; Stulnig, T.M.; et al. Increased Bone Resorption and Impaired Bone Microarchitecture in Short-Term and Extended High-Fat Diet–Induced Obesity. Metabolism 2011, 60, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Lam, J.; Takeshita, S.; Barker, J.E.; Kanagawa, O.; Ross, F.P.; Teitelbaum, S.L. TNF-α Induces Osteoclastogenesis by Direct Stimulation of Macrophages Exposed to Permissive Levels of RANK Ligand. J. Clin. Investig. 2000, 106, 1481–1488. [Google Scholar] [CrossRef] [PubMed]
- Azuma, Y.; Kaji, K.; Katogi, R.; Takeshita, S.; Kudo, A. Tumor Necrosis Factor-α Induces Differentiation of and Bone Resorption by Osteoclasts. J. Biol. Chem. 2000, 275, 4858–4864. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.; Kadono, Y.; Takami, M.; Lee, J.; Lee, S.-H.; Okada, F.; Kim, J.H.; Kobayashi, T.; Odgren, P.R.; Nakano, H.; et al. Osteoclast Differentiation Independent of the TRANCE–RANK–TRAF6 Axis. J. Exp. Med. 2005, 202, 589–595. [Google Scholar] [CrossRef] [PubMed]
- Glass, G.E.; Chan, J.K.; Freidin, A.; Feldmann, M.; Horwood, N.J.; Nanchahal, J. TNF-α Promotes Fracture Repair by Augmenting the Recruitment and Differentiation of Muscle-Derived Stromal Cells. Proc. Natl. Acad. Sci. USA 2011, 108, 1585–1590. [Google Scholar] [CrossRef]
- Li, Y.; Lu, L.; Xie, Y.; Chen, X.; Tian, L.; Liang, Y.; Li, H.; Zhang, J.; Liu, Y.; Yu, X. Interleukin-6 Knockout Inhibits Senescence of Bone Mesenchymal Stem Cells in High-Fat Diet-Induced Bone Loss. Front. Endocrinol. 2021, 11, 622950. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.S.; Day, C.J.; Selinger, C.I.; Magno, C.L.; Stephens, S.R.J.; Morrison, N.A. MCP-1-Induced Human Osteoclast-like Cells Are Tartrate-Resistant Acid Phosphatase, NFATc1, and Calcitonin Receptor-Positive but Require Receptor Activator of NFκB Ligand for Bone Resorption. J. Biol. Chem. 2006, 281, 1274–1285. [Google Scholar] [CrossRef] [PubMed]
- Cornish, J.; Callon, K.; Bava, U.; Lin, C.; Naot, D.; Hill, B.; Grey, A.; Broom, N.; Myers, D.; Nicholson, G.; et al. Leptin Directly Regulates Bone Cell Function in Vitro and Reduces Bone Fragility In Vivo. J. Endocrinol. 2002, 175, 405–415. [Google Scholar] [CrossRef] [PubMed]
- Thomas, T.; Gori, F.; Khosla, S.; Jensen, M.D.; Burguera, B.; Riggs, B.L. Leptin Acts on Human Marrow Stromal Cells to Enhance Differentiation to Osteoblasts and to Inhibit Differentiation to Adipocytes. Endocrinology 1999, 140, 1630–1638. [Google Scholar] [CrossRef] [PubMed]
- Xin, X.; Zhou, L.; Reyes, C.M.; Liu, F.; Dong, L.Q. APPL1 Mediates Adiponectin-Stimulated P38 MAPK Activation by Scaffolding the TAK1-MKK3-P38 MAPK Pathway. Am. J. Physiol. Endocrinol. Metab. 2011, 300, E103–E110. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.-H.; Guo, L.-J.; Xie, H.; Yuan, L.-Q.; Wu, X.-P.; Zhou, H.-D.; Liao, E.-Y. Adiponectin Stimulates RANKL and Inhibits OPG Expression in Human Osteoblasts Through the MAPK Signaling Pathway. J. Bone Miner. Res. 2006, 21, 1648–1656. [Google Scholar] [CrossRef] [PubMed]
- Tu, Q.; Zhang, J.; Dong, L.Q.; Saunders, E.; Luo, E.; Tang, J.; Chen, J. Adiponectin Inhibits Osteoclastogenesis and Bone Resorption via APPL1-Mediated Suppression of Akt1. J. Biol. Chem. 2011, 286, 12542–12553. [Google Scholar] [CrossRef]
- Bartell, S.M.; Rayalam, S.; Ambati, S.; Gaddam, D.R.; Hartzell, D.L.; Hamrick, M.; She, J.-X.; Della-Fera, M.A.; Baile, C.A. Central (ICV) Leptin Injection Increases Bone Formation, Bone Mineral Density, Muscle Mass, Serum IGF-1, and the Expression of Osteogenic Genes in Leptin-Deficient Ob/Ob Mice. J. Bone Miner. Res. 2011, 26, 1710–1720. [Google Scholar] [CrossRef]
- Williams, G.A.; Callon, K.E.; Watson, M.; Costa, J.L.; Ding, Y.; Dickinson, M.; Wang, Y.; Naot, D.; Reid, I.R.; Cornish, J. Skeletal Phenotype of the Leptin Receptor–Deficient Db/Db Mouse. J. Bone Miner. Res. 2011, 26, 1698–1709. [Google Scholar] [CrossRef] [PubMed]
- Steppan, C.M.; Crawford, D.T.; Chidsey-Frink, K.L.; Ke, H.; Swick, A.G. Leptin Is a Potent Stimulator of Bone Growth in Ob/Ob Mice. Regul. Pept. 2000, 92, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Naot, D.; Watson, M.; Callon, K.E.; Tuari, D.; Musson, D.S.; Choi, A.J.; Sreenivasan, D.; Fernandez, J.; Tu, P.T.; Dickinson, M.; et al. Reduced Bone Density and Cortical Bone Indices in Female Adiponectin-Knockout Mice. Endocrinology 2016, 157, 3550–3561. [Google Scholar] [CrossRef]
- Pal China, S.; Sanyal, S.; Chattopadhyay, N. Adiponectin Signaling and Its Role in Bone Metabolism. Cytokine 2018, 112, 116–131. [Google Scholar] [CrossRef]
- Wang, F.; Wang, P.; Wu, X.; Dang, S.; Chen, Y.; Ni, Y.; Gao, L.; Lu, S.; Kuang, Y.; Huang, L.; et al. Deficiency of Adiponectin Protects against Ovariectomy-Induced Osteoporosis in Mice. PLoS ONE 2013, 8, e68497. [Google Scholar] [CrossRef]
- Lecka-Czernik, B.; Stechschulte, L.A.; Czernik, P.J.; Dowling, A.R. High Bone Mass in Adult Mice with Diet-Induced Obesity Results from a Combination of Initial Increase in Bone Mass Followed by Attenuation in Bone Formation; Implications for High Bone Mass and Decreased Bone Quality in Obesity. Mol. Cell. Endocrinol. 2015, 410, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Ootsuka, T.; Nakanishi, A.; Tsukamoto, I. Increase in Osteoclastogenesis in an Obese Otsuka Long-Evans Tokushima Fatty Rat Model. Mol. Med. Rep. 2015, 12, 3874–3880. [Google Scholar] [CrossRef] [PubMed]
- Feng, W.; Liu, B.; Liu, D.; Hasegawa, T.; Wang, W.; Han, X.; Cui, J.; Yimin; Oda, K.; Amizuka, N.; et al. Long-Term Administration of High-Fat Diet Corrects Abnormal Bone Remodeling in the Tibiae of Interleukin-6-Deficient Mice. J. Histochem. Cytochem. 2016, 64, 42–53. [Google Scholar] [CrossRef] [PubMed]
- Fujita, Y.; Watanabe, K.; Maki, K. Serum Leptin Levels Negatively Correlate with Trabecular Bone Mineral Density in High-Fat Diet-Induced Obesity Mice. J. Musculoskelet. Neuronal Interact. 2012, 12, 84–94. [Google Scholar] [PubMed]
- Silva, M.J.; Eekhoff, J.D.; Patel, T.; Kenney-Hunt, J.P.; Brodt, M.D.; Steger-May, K.; Scheller, E.L.; Cheverud, J.M. Effects of High-Fat Diet and Body Mass on Bone Morphology and Mechanical Properties in 1100 Advanced Intercross Mice. J. Bone Miner. Res. 2019, 34, 711–725. [Google Scholar] [CrossRef] [PubMed]
- Yamasaki, M.; Hasegawa, S.; Imai, M.; Takahashi, N.; Fukui, T. High-Fat Diet-Induced Obesity Stimulates Ketone Body Utilization in Osteoclasts of the Mouse Bone. Biochem. Biophys. Res. Commun. 2016, 473, 654–661. [Google Scholar] [CrossRef]
- Chaplin, A.; Palou, A.; Serra, F. Body Fat Loss Induced by Calcium in Co-Supplementation with Conjugated Linoleic Acid Is Associated with Increased Expression of Bone Formation Genes in Adult Mice. J. Nutr. Biochem. 2015, 26, 1540–1546. [Google Scholar] [CrossRef]
- Ip, T.Y.; Peterson, J.; Byrner, R.; Tou, J.C. Bone Responses to Body Weight and Moderate Treadmill Exercising in Growing Male Obese (Fa/Fa) and Lean Zucker Rats. J. Musculoskelet. Neuronal Interact. 2009, 9, 155–166. [Google Scholar]
- Kelley, J.C.; Crabtree, N.; Zemel, B.S. Bone Density in the Obese Child: Clinical Considerations and Diagnostic Challenges. Calcif. Tissue Int. 2017, 100, 514–527. [Google Scholar] [CrossRef] [PubMed]
- Bialo, S.R.; Gordon, C.M. Underweight, Overweight, and Pediatric Bone Fragility: Impact and Management. Curr. Osteoporos. Rep. 2014, 12, 319–328. [Google Scholar] [CrossRef] [PubMed]
- Leonard, M.B.; Shults, J.; Wilson, B.A.; Tershakovec, A.M.; Zemel, B.S. Obesity during Childhood and Adolescence Augments Bone Mass and Bone Dimensions. Am. J. Clin. Nutr. 2004, 80, 514–523. [Google Scholar] [CrossRef]
- Pollock, N.K. Childhood Obesity, Bone Development, and Cardiometabolic Risk Factors. Mol. Cell. Endocrinol. 2015, 410, 52–63. [Google Scholar] [CrossRef] [PubMed]
- Palermo, A.; Tuccinardi, D.; Defeudis, G.; Watanabe, M.; D’Onofrio, L.; Lauria Pantano, A.; Napoli, N.; Pozzilli, P.; Manfrini, S. BMI and BMD: The Potential Interplay between Obesity and Bone Fragility. Int. J. Environ. Res. Public Health 2016, 13, 544. [Google Scholar] [CrossRef] [PubMed]
- Lazar-Antman, M.A.; Leet, A.I. Effects of Obesity on Pediatric Fracture Care and Management. J. Bone Jt. Surg. Am. 2012, 94, 855–861. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.J. Effects of Obesity on Bone Metabolism. J. Orthop. Surg. Res. 2011, 6, 30. [Google Scholar] [CrossRef]
- Kessler, J.; Koebnick, C.; Smith, N.; Adams, A. Childhood Obesity Is Associated With Increased Risk of Most Lower Extremity Fractures. Clin. Orthop. Relat. Res. 2013, 471, 1199–1207. [Google Scholar] [CrossRef]
- Gil-Cosano, J.J.; Gracia-Marco, L.; Ubago-Guisado, E.; Labayen, I.; Adelantado-Renau, M.; Cadenas-Sanchez, C.; Mora-Gonzalez, J.; Plaza-Florido, A.; Aguilera, C.M.; Gómez-Vida, J.; et al. Inflammatory Markers and Bone Mass in Children with Overweight/Obesity: The Role of Muscular Fitness. Pediatr. Res. 2020, 87, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Erazmus, M.; Rumińska, M.; Witkowska-Sędek, E.; Kucharska, A.M.; Stelmaszczyk-Emmel, A.; Majcher, A.; Pyrżak, B. Decreased Level of Soluble Receptor Activator of Nuclear Factor-Κβ Ligand (sRANKL) in Overweight and Obese Children. Front. Endocrinol. 2022, 13, 963467. [Google Scholar] [CrossRef]
- Brunetti, G.; Faienza, M.F.; Piacente, L.; Storlino, G.; Oranger, A.; D’Amato, G.; De Filippo, G.; Colucci, S.; Grano, M. Shedding “LIGHT” on the Link between Bone and Fat in Obese Children and Adolescents. Int. J. Mol. Sci. 2020, 21, 4739. [Google Scholar] [CrossRef]
- Dimitri, P.; Jacques, R.M.; Paggiosi, M.; King, D.; Walsh, J.; Taylor, Z.A.; Frangi, A.F.; Bishop, N.; Eastell, R. Leptin May Play a Role in Bone Microstructural Alterations in Obese Children. J. Clin. Endocrinol. Metab. 2015, 100, 594–602. [Google Scholar] [CrossRef] [PubMed]
- Schaffler, M.B.; Kennedy, O.D. Osteocyte Signaling in Bone. Curr. Osteoporos. Rep. 2012, 10, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Arita, Y.; Kihara, S.; Ouchi, N.; Takahashi, M.; Maeda, K.; Miyagawa, J.; Hotta, K.; Shimomura, I.; Nakamura, T.; Miyaoka, K.; et al. Paradoxical Decrease of an Adipose-Specific Protein, Adiponectin, in Obesity. Biochem. Biophys. Res. Commun. 1999, 257, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Cooper, M.S.; Bujalska, I.; Rabbitt, E.; Walker, E.A.; Bland, R.; Sheppard, M.C.; Hewison, M.; Stewart, P.M. Modulation of 11β-Hydroxysteroid Dehydrogenase Isozymes by Proinflammatory Cytokines in Osteoblasts: An Autocrine Switch from Glucocorticoid Inactivation to Activation. J. Bone Miner. Res. 2001, 16, 1037–1044. [Google Scholar] [CrossRef]
- Tomlinson, J.W.; Walker, E.A.; Bujalska, I.J.; Draper, N.; Lavery, G.G.; Cooper, M.S.; Hewison, M.; Stewart, P.M. 11β-Hydroxysteroid Dehydrogenase Type 1: A Tissue-Specific Regulator of Glucocorticoid Response. Endocr. Rev. 2004, 25, 831–866. [Google Scholar] [CrossRef] [PubMed]
- Ugur-Altun, B.; Altun, A.; Gerenli, M.; Tugrul, A. The Relationship between Insulin Resistance Assessed by HOMA-IR and Serum Osteoprotegerin Levels in Obesity. Diabetes Res. Clin. Pract. 2005, 68, 217–222. [Google Scholar] [CrossRef] [PubMed]
- Suliburska, J.; Bogdanski, P.; Gajewska, E.; Kalmus, G.; Sobieska, M.; Samborski, W. The Association of Insulin Resistance with Serum Osteoprotegerin in Obese Adolescents. J. Physiol. Biochem. 2013, 69, 847–853. [Google Scholar] [CrossRef] [PubMed]
- De Leonibus, C.; Marcovecchio, M.L.; Chiarelli, F. Update on Statural Growth and Pubertal Development in Obese Children. Pediatr. Rep. 2012, 4, e35. [Google Scholar] [CrossRef]
- Oh, M.S.; Kim, S.; Lee, J.; Lee, M.S.; Kim, Y.-J.; Kang, K.-S. Factors Associated with Advanced Bone Age in Overweight and Obese Children. Pediatr. Gastroenterol. Hepatol. Nutr. 2020, 23, 89. [Google Scholar] [CrossRef] [PubMed]
- Chaplais, E.; Naughton, G.; Greene, D.; Dutheil, F.; Pereira, B.; Thivel, D.; Courteix, D. Effects of Interventions with a Physical Activity Component on Bone Health in Obese Children and Adolescents: A Systematic Review and Meta-Analysis. J. Bone Miner. Metab. 2018, 36, 12–30. [Google Scholar] [CrossRef]
- Clark, E.M.; Ness, A.R.; Tobias, J.H. Adipose Tissue Stimulates Bone Growth in Prepubertal Children. J. Clin. Endocrinol. Metab. 2006, 91, 2534–2541. [Google Scholar] [CrossRef] [PubMed]
- Fornari, E.D.; Suszter, M.; Roocroft, J.; Bastrom, T.; Edmonds, E.W.; Schlechter, J. Childhood Obesity as a Risk Factor for Lateral Condyle Fractures Over Supracondylar Humerus Fractures. Clin. Orthop. Relat. Res. 2013, 471, 1193–1198. [Google Scholar] [CrossRef]
- Nelson, S.E.; Frantz, J.A.; Ziegler, E.E. Absorption of Fat and Calcium by Infants Fed a Milk-Based Formula Containing Palm Olein. J. Am. Coll. Nutr. 1998, 17, 327–332. [Google Scholar] [CrossRef] [PubMed]
- Zakharova, I.; Klimov, L.; Kuryaninova, V.; Nikitina, I.; Malyavskaya, S.; Dolbnya, S.; Kasyanova, A.; Atanesyan, R.; Stoyan, M.; Todieva, A.; et al. Vitamin D Insufficiency in Overweight and Obese Children and Adolescents. Front. Endocrinol. 2019, 10, 103. [Google Scholar] [CrossRef] [PubMed]
- Cediel, G.; Corvalán, C.; Aguirre, C.; De Romaña, D.L.; Uauy, R. Serum 25-Hydroxyvitamin D Associated with Indicators of Body Fat and Insulin Resistance in Prepubertal Chilean Children. Int. J. Obes. 2016, 40, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Saneei, P.; Salehi-Abargouei, A.; Esmaillzadeh, A. Serum 25-hydroxy Vitamin D Levels in Relation to Body Mass Index: A Systematic Review and Meta-analysis. Obes. Rev. 2013, 14, 393–404. [Google Scholar] [CrossRef] [PubMed]
- Holick, M.F.; Binkley, N.C.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M. Evaluation, Treatment, and Prevention of Vitamin D Deficiency: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2011, 96, 1911–1930. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Li, S.; Zhong, L.; Xu, S.; Zhu, H. Optimal Vitamin D Supplement Dosage for Improving Insulin Resistance in Children and Adolescents with Overweight/Obesity: A Systematic Review and Network Meta-Analysis. Eur. J. Nutr. 2024, 63, 763–775. [Google Scholar] [CrossRef]
- Pagnotti, G.M.; Styner, M.; Uzer, G.; Patel, V.S.; Wright, L.E.; Ness, K.K.; Guise, T.A.; Rubin, J.; Rubin, C.T. Combating Osteoporosis and Obesity with Exercise: Leveraging Cell Mechanosensitivity. Nat. Rev. Endocrinol. 2019, 15, 339–355. [Google Scholar] [CrossRef] [PubMed]
- Behringer, M.; Gruetzner, S.; McCourt, M.; Mester, J. Effects of Weight-Bearing Activities on Bone Mineral Content and Density in Children and Adolescents: A Meta-Analysis. J. Bone Miner. Res. 2014, 29, 467–478. [Google Scholar] [CrossRef] [PubMed]
- Colaianni, G.; Cuscito, C.; Mongelli, T.; Pignataro, P.; Buccoliero, C.; Liu, P.; Lu, P.; Sartini, L.; Di Comite, M.; Mori, G.; et al. The Myokine Irisin Increases Cortical Bone Mass. Proc. Natl. Acad. Sci. USA 2015, 112, 12157–12162. [Google Scholar] [CrossRef]
- Faienza, M.F.; Lassandro, G.; Chiarito, M.; Valente, F.; Ciaccia, L.; Giordano, P. How Physical Activity across the Lifespan Can Reduce the Impact of Bone Ageing: A Literature Review. Int. J. Environ. Res. Public Health 2020, 17, 1862. [Google Scholar] [CrossRef] [PubMed]
- Kaur, Y.; De Souza, R.J.; Gibson, W.T.; Meyre, D. A Systematic Review of Genetic Syndromes with Obesity. Obes. Rev. 2017, 18, 603–634. [Google Scholar] [CrossRef]
- De Lind Van Wijngaarden, R.F.A.; Festen, D.A.M.; Otten, B.J.; Van Mil, E.G.A.H.; Rotteveel, J.; Odink, R.J.; Van Leeuwen, M.; Haring, D.A.J.P.; Bocca, G.; Mieke Houdijk, E.C.A.; et al. Bone Mineral Density and Effects of Growth Hormone Treatment in Prepubertal Children with Prader-Willi Syndrome: A Randomized Controlled Trial. J. Clin. Endocrinol. Metab. 2009, 94, 3763–3771. [Google Scholar] [CrossRef] [PubMed]
- Van Abswoude, D.H.; Pellikaan, K.; Rosenberg, A.G.W.; Davidse, K.; Coupaye, M.; Høybye, C.; Markovic, T.P.; Grugni, G.; Crinò, A.; Caixàs, A.; et al. Bone Health in Adults with Prader–Willi Syndrome: Clinical Recommendations Based on a Multicenter Cohort Study. J. Clin. Endocrinol. Metab. 2022, 108, 59–84. [Google Scholar] [CrossRef] [PubMed]
- Cassidy, S.B.; Schwartz, S.; Miller, J.L.; Driscoll, D.J. Prader-Willi Syndrome. Genet. Med. 2012, 14, 10–26. [Google Scholar] [CrossRef] [PubMed]
- Duran, A.T.; Wilson, K.S.; Castner, D.M.; Tucker, J.M.; Rubin, D.A. Association between Physical Activity and Bone in Children with Prader-Willi Syndrome. J. Pediatr. Endocrinol. Metab. 2016, 29, 819–826. [Google Scholar] [CrossRef] [PubMed]
- Brunetti, G.; Grugni, G.; Piacente, L.; Delvecchio, M.; Ventura, A.; Giordano, P.; Grano, M.; D’Amato, G.; Laforgia, D.; Crinò, A.; et al. Analysis of Circulating Mediators of Bone Remodeling in Prader–Willi Syndrome. Calcif. Tissue Int. 2018, 102, 635–643. [Google Scholar] [CrossRef]
- Hirsch, H.J.; Gross-Tsur, V.; Sabag, Y.; Nice, S.; Genstil, L.; Benarroch, F.; Constantini, N. Myokine Levels after Resistance Exercise in Young Adults with Prader–Willi Syndrome (PWS). Am. J. Med. Genet. A 2020, 182, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Faienza, M.F.; Brunetti, G.; Grugni, G.; Fintini, D.; Convertino, A.; Pignataro, P.; Crinò, A.; Colucci, S.; Grano, M. The genetic background and vitamin D supplementation can affect irisin levels in Prader-Willi syndrome. J. Endocrinol. Investig. 2021, 44, 2261–2271. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Faienza, M.F.; Brunetti, G.; Fintini, D.; Grugni, G.; Wasniewska, M.G.; Crinò, A.; D’Amato, G.; Piacente, L.; Oranger, A.; Dicarlo, M.; et al. High Levels of LIGHT/TNFSF14 in Patients with Prader–Willi Syndrome. J. Endocrinol. Investig. 2023, 46, 1901–1909. [Google Scholar] [CrossRef] [PubMed]
- Marshall, J.D.; Maffei, P.; Collin, G.B.; Naggert, J.K. Alstrom Syndrome: Genetics and Clinical Overview. Curr. Genom. 2011, 12, 225–235. [Google Scholar] [CrossRef]
- Forsythe, E.; Beales, P.L. Bardet–Biedl Syndrome. Eur. J. Hum. Genet. 2013, 21, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Satta, M.; Castro-Sánchez, S.; Valverde, D. Bardet-Biedl Syndrome as a Chaperonopathy: Dissecting the Major Role of Chaperonin-Like BBS Proteins (BBS6-BBS10-BBS12). Front. Mol. Biosci. 2017, 4, 55. [Google Scholar] [CrossRef]
- Han, J.C.; Reyes-Capo, D.P.; Liu, C.-Y.; Reynolds, J.C.; Turkbey, E.; Turkbey, I.B.; Bryant, J.; Marshall, J.D.; Naggert, J.K.; Gahl, W.A.; et al. Comprehensive Endocrine-Metabolic Evaluation of Patients With Alström Syndrome Compared With BMI-Matched Controls. J. Clin. Endocrinol. Metab. 2018, 103, 2707–2719. [Google Scholar] [CrossRef] [PubMed]
- Jeziorny, K.; Zmyslowska-Polakowska, E.; Wyka, K.; Pyziak-Skupień, A.; Borowiec, M.; Szadkowska, A.; Zmysłowska, A. Identification of Bone Metabolism Disorders in Patients with Alström and Bardet-Biedl Syndromes Based on Markers of Bone Turnover and Mandibular Atrophy. Bone Rep. 2022, 17, 101600. [Google Scholar] [CrossRef] [PubMed]
- Seeman, E. Pathogenesis of Bone Fragility in Women and Men. Lancet 2002, 359, 1841–1850. [Google Scholar] [CrossRef] [PubMed]
- Falahati-Nini, A.; Riggs, B.L.; Atkinson, E.J.; O’Fallon, W.M.; Eastell, R.; Khosla, S. Relative Contributions of Testosterone and Estrogen in Regulating Bone Resorption and Formation in Normal Elderly Men. J. Clin. Investig. 2000, 106, 1553–1560. [Google Scholar] [CrossRef] [PubMed]
- Bass, S.; Delmas, P.D.; Pearce, G.; Hendrich, E.; Tabensky, A.; Seeman, E. The Differing Tempo of Growth in Bone Size, Mass, and Density in Girls Is Region-Specific. J. Clin. Investig. 1999, 104, 795–804. [Google Scholar] [CrossRef] [PubMed]
- Misra, M.; Miller, K.K.; Bjornson, J.; Hackman, A.; Aggarwal, A.; Chung, J.; Ott, M.; Herzog, D.B.; Johnson, M.L.; Klibanski, A. Alterations in Growth Hormone Secretory Dynamics in Adolescent Girls with Anorexia Nervosa and Effects on Bone Metabolism. J. Clin. Endocrinol. Metab. 2003, 88, 5615–5623. [Google Scholar] [CrossRef] [PubMed]
- Counts, D.R.; Gwirtsman, H.; Carlsson, L.M.; Lesem, M.; Cutler, G.B. The Effect of Anorexia Nervosa and Refeeding on Growth Hormone-Binding Protein, the Insulin-like Growth Factors (IGFs), and the IGF-Binding Proteins. J. Clin. Endocrinol. Metab. 1992, 75, 762–767. [Google Scholar] [PubMed]
- Grinspoon, S.K.; Baum, H.B.; Peterson, S.; Klibanski, A. Effects of rhIGF-I Administration on Bone Turnover during Short-Term Fasting. J. Clin. Investig. 1995, 96, 900–906. [Google Scholar] [CrossRef] [PubMed]
- Lawson, E.A.; Donoho, D.; Miller, K.K.; Misra, M.; Meenaghan, E.; Lydecker, J.; Wexler, T.; Herzog, D.B.; Klibanski, A. Hypercortisolemia Is Associated with Severity of Bone Loss and Depression in Hypothalamic Amenorrhea and Anorexia Nervosa. J. Clin. Endocrinol. Metab. 2009, 94, 4710–4716. [Google Scholar] [CrossRef]
- Rauch, A.; Seitz, S.; Baschant, U.; Schilling, A.F.; Illing, A.; Stride, B.; Kirilov, M.; Mandic, V.; Takacz, A.; Schmidt-Ullrich, R.; et al. Glucocorticoids Suppress Bone Formation by Attenuating Osteoblast Differentiation via the Monomeric Glucocorticoid Receptor. Cell Metab. 2010, 11, 517–531. [Google Scholar] [CrossRef] [PubMed]
- Misra, M.; Miller, K.K.; Kuo, K.; Griffin, K.; Stewart, V.; Hunter, E.; Herzog, D.B.; Klibanski, A. Secretory Dynamics of Leptin in Adolescent Girls with Anorexia Nervosa and Healthy Adolescents. Am. J. Physiol. Endocrinol. Metab. 2005, 289, E373–E381. [Google Scholar] [CrossRef] [PubMed]
- LaMarca, A.; Volpe, A. Recombinant Human Leptin in Women with Hypothalamic Amenorrhea. N. Engl. J. Med. 2004, 351, 2343. [Google Scholar] [CrossRef]
- Upadhyay, J.; Farr, O.M.; Mantzoros, C.S. The Role of Leptin in Regulating Bone Metabolism. Metabolism 2015, 64, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Legroux-Gérot, I.; Vignau, J.; Biver, E.; Pigny, P.; Collier, F.; Marchandise, X.; Duquesnoy, B.; Cortet, B. Anorexia nervosa, osteoporosis and circulating leptin: The missing link. Osteoporos. Int. 2010, 21, 1715–1722. [Google Scholar] [CrossRef]
- Fazeli, P.K.; Klibanski, A. Effects of Anorexia Nervosa on Bone Metabolism. Endocr. Rev. 2018, 39, 895–910. [Google Scholar] [CrossRef] [PubMed]
- Miller, K.K. Medical Findings in Outpatients With Anorexia Nervosa. Arch. Intern. Med. 2005, 165, 561. [Google Scholar] [CrossRef] [PubMed]
- Grinspoon, S. Prevalence and Predictive Factors for Regional Osteopenia in Women with Anorexia Nervosa. Ann. Intern. Med. 2000, 133, 790. [Google Scholar] [CrossRef] [PubMed]
- Faje, A.T.; Karim, L.; Taylor, A.; Lee, H.; Miller, K.K.; Mendes, N.; Meenaghan, E.; Goldstein, M.A.; Bouxsein, M.L.; Misra, M.; et al. Adolescent Girls With Anorexia Nervosa Have Impaired Cortical and Trabecular Microarchitecture and Lower Estimated Bone Strength at the Distal Radius. J. Clin. Endocrinol. Metab. 2013, 98, 1923–1929. [Google Scholar] [CrossRef]
- Singhal, V.; Tulsiani, S.; Campoverde, K.J.; Mitchell, D.M.; Slattery, M.; Schorr, M.; Miller, K.K.; Bredella, M.A.; Misra, M.; Klibanski, A. Impaired Bone Strength Estimates at the Distal Tibia and Its Determinants in Adolescents with Anorexia Nervosa. Bone 2018, 106, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Miller, K.K.; Lee, E.E.; Lawson, E.A.; Misra, M.; Minihan, J.; Grinspoon, S.K.; Gleysteen, S.; Mickley, D.; Herzog, D.; Klibanski, A. Determinants of Skeletal Loss and Recovery in Anorexia Nervosa. J. Clin. Endocrinol. Metab. 2006, 91, 2931–2937. [Google Scholar] [CrossRef] [PubMed]
- Lucas, A.R.; Melton, L.J.; Crowson, C.S.; O’Fallon, W.M. Long-Term Fracture Risk Among Women With Anorexia Nervosa: A Population-Based Cohort Study. Mayo Clin. Proc. 1999, 74, 972–977. [Google Scholar] [CrossRef] [PubMed]
- Lopes, M.P.; Robinson, L.; Stubbs, B.; Dos Santos Alvarenga, M.; Araújo Martini, L.; Campbell, I.C.; Schmidt, U. Associations between Bone Mineral Density, Body Composition and Amenorrhoea in Females with Eating Disorders: A Systematic Review and Meta-Analysis. J. Eat. Disord. 2022, 10, 173. [Google Scholar] [CrossRef]
- Morris, J.; Tothill, P.; Gard, M.; McPhail, K.; Hannan, J.; Cowen, S.; Freeman, C. Reduced Bone Mineral Density in Bulimia as Well as Anorexia Nervosa. Eur. Eat. Disord. Rev. 2004, 12, 71–78. [Google Scholar] [CrossRef]
- Dinkler, L.; Yasumitsu-Lovell, K.; Eitoku, M.; Fujieda, M.; Suganuma, N.; Hatakenaka, Y.; Hadjikhani, N.; Bryant-Waugh, R.; Råstam, M.; Gillberg, C. Development of a Parent-Reported Screening Tool for Avoidant/Restrictive Food Intake Disorder (ARFID): Initial Validation and Prevalence in 4–7-Year-Old Japanese Children. Appetite 2022, 168, 105735. [Google Scholar] [CrossRef] [PubMed]
- Alberts, Z.; Fewtrell, M.; Nicholls, D.E.; Biassoni, L.; Easty, M.; Hudson, L.D. Bone Mineral Density in Anorexia Nervosa versus Avoidant Restrictive Food Intake Disorder. Bone 2020, 134, 115307. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, R.; Hiemisch, A.; Kiess, W.; Von Klitzing, K.; Schlensog-Schuster, F.; Hilbert, A. Macro- and Micronutrient Intake in Children with Avoidant/Restrictive Food Intake Disorder. Nutrients 2021, 13, 400. [Google Scholar] [CrossRef]
- Aulinas, A.; Marengi, D.A.; Galbiati, F.; Asanza, E.; Slattery, M.; Mancuso, C.J.; Wons, O.; Micali, N.; Bern, E.; Eddy, K.T.; et al. Medical Comorbidities and Endocrine Dysfunction in Low-weight Females with Avoidant/Restrictive Food Intake Disorder Compared to Anorexia Nervosa and Healthy Controls. Int. J. Eat. Disord. 2020, 53, 631–636. [Google Scholar] [CrossRef]
- Miao, D.; Young, S.L.; Golden, C.D. A Meta-analysis of Pica and Micronutrient Status. Am. J. Hum. Biol. 2015, 27, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.A.; Al-Nafeesah, A.; AlEed, A.; Adam, I. Serum Level of 25-Hydroxyvitamin D and Symptoms of Pica Among Adolescent School Children in Northern Sudan: A Cross-Sectional Study. Glob. Pediatr. Health. 2024, 11, 2333794X241242564. [Google Scholar] [CrossRef] [PubMed]
- Advani, S.; Kochhar, G.; Chachra, S.; Dhawan, P. Eating Everything except Food (PICA): A Rare Case Report and Review. J. Int. Soc. Prev. Community Dent. 2014, 4, 1. [Google Scholar] [CrossRef] [PubMed]
- McCarty, D.; Reddy, A.; Keigley, Q.; Kim, P.Y.; Cohen, S.; Marino, A.A. Nonspecific Pain Is a Marker for Hypovitaminosis D in Patients Undergoing Evaluation for Sleep Disorders: A Pilot Study. Nat. Sci. Sleep 2013, 5, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Herndon, A.C.; DiGuiseppi, C.; Johnson, S.L.; Leiferman, J.; Reynolds, A. Does Nutritional Intake Differ Between Children with Autism Spectrum Disorders and Children with Typical Development? J. Autism. Dev. Disord. 2009, 39, 212–222. [Google Scholar] [CrossRef] [PubMed]
- Zafirovski, K.; Aleksoska, M.T.; Thomas, J.; Hanna, F. Impact of Gluten-Free and Casein-Free Diet on Behavioural Outcomes and Quality of Life of Autistic Children and Adolescents: A Scoping Review. Children 2024, 11, 862. [Google Scholar] [CrossRef]
- Hediger, M.L.; England, L.J.; Molloy, C.A.; Yu, K.F.; Manning-Courtney, P.; Mills, J.L. Reduced Bone Cortical Thickness in Boys with Autism or Autism Spectrum Disorder. J. Autism. Dev. Disord. 2008, 38, 848–856. [Google Scholar] [CrossRef] [PubMed]
- Neumeyer, A.M.; Gates, A.; Ferrone, C.; Lee, H.; Misra, M. Bone Density in Peripubertal Boys with Autism Spectrum Disorders. J. Autism. Dev. Disord. 2013, 43, 1623–1629. [Google Scholar] [CrossRef]
- Neumeyer, A.M.; Cano Sokoloff, N.; McDonnell, E.I.; Macklin, E.A.; McDougle, C.J.; Holmes, T.M.; Hubbard, J.L.; Misra, M. Nutrition and Bone Density in Boys with Autism Spectrum Disorder. J. Acad. Nutr. Diet. 2018, 118, 865–877. [Google Scholar] [CrossRef] [PubMed]
- Fornari, E.; Brusati, M.; Maffeis, C. Nutritional Strategies for Childhood Obesity Prevention. Life 2021, 11, 532. [Google Scholar] [CrossRef] [PubMed]
- Faienza, M.F.; Urbano, F.; Anaclerio, F.; Moscogiuri, L.A.; Konstantinidou, F.; Stuppia, L.; Gatta, V. Exploring Maternal Diet-Epigenetic-Gut Microbiome Crosstalk as an Intervention Strategy to Counter Early Obesity Programming. Curr. Issues Mol. Biol. 2024, 46, 4358–4378. [Google Scholar] [CrossRef]
- Farella, I.; D’Amato, G.; Orellana-Manzano, A.; Segura, Y.; Vitale, R.; Clodoveo, M.L.; Corbo, F.; Faienza, M.F. “OMICS” in Human Milk: Focus on Biological Effects on Bone Homeostasis. Nutrients 2024, 16, 3921. [Google Scholar] [CrossRef] [PubMed]
- Isganaitis, E. Milky Ways: Effects of Maternal Obesity on Human Milk Composition and Childhood Obesity Risk. Am. J. Clin. Nutr. 2021, 113, 772–774. [Google Scholar] [CrossRef] [PubMed]
- Patro-Gołąb, B.; Zalewski, B.M.; Kouwenhoven, S.M.; Karaś, J.; Koletzko, B.; Bernard Van Goudoever, J.; Szajewska, H. Protein Concentration in Milk Formula, Growth, and Later Risk of Obesity: A Systematic Review. J. Nutr. 2016, 146, 551–564. [Google Scholar] [CrossRef] [PubMed]
- Herouvi, D.; Paltoglou, G.; Soldatou, A.; Kalpia, C.; Karanasios, S.; Karavanaki, K. Lifestyle and Pharmacological Interventions and Treatment Indications for the Management of Obesity in Children and Adolescents. Children 2023, 10, 1230. [Google Scholar] [CrossRef] [PubMed]
- Farella, I.; Miselli, F.; Campanozzi, A.; Grosso, F.M.; Laforgia, N.; Baldassarre, M.E. Mediterranean Diet in Developmental Age: A Narrative Review of Current Evidences and Research Gaps. Children 2022, 9, 906. [Google Scholar] [CrossRef]
- Valerio, G.; Maffeis, C.; Saggese, G.; Ambruzzi, M.A.; Balsamo, A.; Bellone, S.; Bergamini, M.; Bernasconi, S.; Bona, G.; Calcaterra, V.; et al. Diagnosis, Treatment and Prevention of Pediatric Obesity: Consensus Position Statement of the Italian Society for Pediatric Endocrinology and Diabetology and the Italian Society of Pediatrics. Ital. J. Pediatr. 2018, 44, 88. [Google Scholar] [CrossRef]
- D’Innocenzo, S.; Biagi, C.; Lanari, M. Obesity and the Mediterranean Diet: A Review of Evidence of the Role and Sustainability of the Mediterranean Diet. Nutrients 2019, 11, 1306. [Google Scholar] [CrossRef]
- Alemzadeh, R.; Kichler, J.; Babar, G.; Calhoun, M. Hypovitaminosis D in Obese Children and Adolescents: Relationship with Adiposity, Insulin Sensitivity, Ethnicity, and Season. Metabolism 2008, 57, 183–191. [Google Scholar] [CrossRef]
- Lenders, C.M.; Feldman, H.A.; Von Scheven, E.; Merewood, A.; Sweeney, C.; Wilson, D.M.; Lee, P.D.; Abrams, S.H.; Gitelman, S.E.; Wertz, M.S.; et al. Relation of Body Fat Indexes to Vitamin D Status and Deficiency among Obese Adolescents. Am. J. Clin. Nutr. 2009, 90, 459–467. [Google Scholar] [CrossRef] [PubMed]
- Drincic, A.T.; Armas, L.A.G.; Van Diest, E.E.; Heaney, R.P. Volumetric Dilution, Rather Than Sequestration Best Explains the Low Vitamin D Status of Obesity. Obesity 2012, 20, 1444–1448. [Google Scholar] [CrossRef] [PubMed]
- Gou, H.; Wang, Y.; Liu, Y.; Peng, C.; He, W.; Sun, X. Efficacy of Vitamin D Supplementation on Child and Adolescent Overweight/Obesity: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Eur J. Pediatr. 2022, 182, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Rajakumar, K.; Fernstrom, J.D.; Holick, M.F.; Janosky, J.E.; Greenspan, S.L. Vitamin D Status and Response to Vitamin D3 in Obese vs. Non-obese African American Children. Obesity 2008, 16, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Wang, Y.; Luo, F.; Liu, J.; Xiu, L.; Qin, J.; Wang, T.; Yu, N.; Wu, H.; Zou, T. The Level of Vitamin D in Children and Adolescents with Nonalcoholic Fatty Liver Disease: A Meta-Analysis. BioMed Res. Int. 2019, 2019, 7643542. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Clark, S.A.; Gill, R.K.; Christakos, S. 1,25-Dihydroxyvitamin D3 and pancreatic beta-cell function: Vitamin D receptors, gene expression, and insulin secretion. Endocrinology 1994, 134, 1602–1610. [Google Scholar] [CrossRef] [PubMed]
- Sooy, K.; Schermerhorn, T.; Noda, M.; Surana, M.; Rhoten, W.B.; Meyer, M.; Fleischer, N.; Sharp, G.W.G.; Christakos, S. Calbindin-D28k Controls [Ca2+] and Insulin Release. J. Biol. Chem. 1999, 274, 34343–34349. [Google Scholar] [CrossRef]
- Saggese, G.; Vierucci, F.; Prodam, F.; Cardinale, F.; Cetin, I.; Chiappini, E.; De’ Angelis, G.L.; Massari, M.; Miraglia Del Giudice, E.; Miraglia Del Giudice, M.; et al. Vitamin D in Pediatric Age: Consensus of the Italian Pediatric Society and the Italian Society of Preventive and Social Pediatrics, Jointly with the Italian Federation of Pediatricians. Ital. J. Pediatr. 2018, 44, 51. [Google Scholar] [CrossRef]
- Asghari, G.; Yuzbashian, E.; Wagner, C.L.; Park, Y.; Mirmiran, P.; Hosseinpanah, F. Daily Vitamin D3 in Overweight and Obese Children and Adolescents: A Randomized Controlled Trial. Eur. J. Nutr. 2021, 60, 2831–2840. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Bei, L.; Zhang, X.; Fu, Y. Vitamin D Supplementation Reduces Hyperlipidemia and Improves Bone Mass in Pediatric Obesity. Crit. Rev. Immunol. 2025, 45, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Faienza, M.F.; Urbano, F.; Chiarito, M.; Lassandro, G.; Giordano, P. Musculoskeletal Health in Children and Adolescents. Front. Pediatr. 2023, 11, 1226524. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, M.; Engelke, K.; Ebert, R.; Müller-Deubert, S.; Rudert, M.; Ziouti, F.; Jundt, F.; Felsenberg, D.; Jakob, F. Interactions between Muscle and Bone—Where Physics Meets Biology. Biomolecules 2020, 10, 432. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Zhang, L.; Wang, D.; AIQudsy, L.; Jiang, J.X.; Xu, H.; Shang, P. Muscle-bone Crosstalk and Potential Therapies for Sarco-osteoporosis. J. Cell. Biochem. 2019, 120, 14262–14273. [Google Scholar] [CrossRef] [PubMed]
- Colaianni, G.; Cuscito, C.; Mongelli, T.; Oranger, A.; Mori, G.; Brunetti, G.; Colucci, S.; Cinti, S.; Grano, M. Irisin Enhances Osteoblast Differentiation In Vitro. Int. J. Endocrinol. 2014, 2014, 902186. [Google Scholar] [CrossRef] [PubMed]
- Valerio, G.; Gallarato, V.; D’Amico, O.; Sticco, M.; Tortorelli, P.; Zito, E.; Nugnes, R.; Mozzillo, E.; Franzese, A. Perceived Difficulty with Physical Tasks, Lifestyle, and Physical Performance in Obese Children. BioMed Res. Int. 2014, 2014, 735764. [Google Scholar] [CrossRef]
- Watson, L.A.; Baker, M.C.; Chadwick, P.M. Kids Just Wanna Have Fun: Children’s Experiences of a Weight Management Programme. Br. J. Health Psychol. 2016, 21, 407–420. [Google Scholar] [CrossRef] [PubMed]
- Bahia, L.; Schaan, C.W.; Sparrenberger, K.; Abreu, G.D.A.; Barufaldi, L.A.; Coutinho, W.; Schaan, B.D. Overview of Meta-Analysis on Prevention and Treatment of Childhood Obesity. J. Pediatr. 2019, 95, 385–400. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Zou, Z.; Zhang, X.; Xiao, D.; Li, X. Exenatide for Obesity in Children and Adolescents: Systematic Review and Meta-Analysis. Front. Pharmacol. 2024, 15, 1290184. [Google Scholar] [CrossRef] [PubMed]
- Kelly, A.S.; Auerbach, P.; Barrientos-Perez, M.; Gies, I.; Hale, P.M.; Marcus, C.; Mastrandrea, L.D.; Prabhu, N.; Arslanian, S. A Randomized, Controlled Trial of Liraglutide for Adolescents with Obesity. N. Engl. J. Med. 2020, 382, 2117–2128. [Google Scholar] [CrossRef]
- Bunck, M.C.; Eliasson, B.; Cornér, A.; Heine, R.J.; Shaginian, R.M.; Taskinen, M.-R.; Yki-Järvinen, H.; Smith, U.; Diamant, M. Exenatide Treatment Did Not Affect Bone Mineral Density Despite Body Weight Reduction in Patients with Type 2 Diabetes. Diabetes Obes. Metab. 2011, 13, 374–377. [Google Scholar] [CrossRef]
- Li, R.; Xu, W.; Luo, S.; Xu, H.; Tong, G.; Zeng, L.; Zhu, D.; Weng, J. Effect of exenatide, insulin and pioglitazone on bone metabolism in patients with newly diagnosed type 2 diabetes. Acta Diabetol. 2015, 52, 1083–1091. [Google Scholar] [CrossRef]
- Cai, T.-T.; Li, H.-Q.; Jiang, L.-L.; Wang, H.-Y.; Luo, M.-H.; Su, X.-F.; Ma, J.-H. Effects of GLP-1 Receptor Agonists on Bone Mineral Density in Patients with Type 2 Diabetes Mellitus: A 52-Week Clinical Study. BioMed Res. Int. 2021, 2021, 3361309. [Google Scholar] [CrossRef] [PubMed]
- Hampl, S.E.; Hassink, S.G.; Skinner, A.C.; Armstrong, S.C.; Barlow, S.E.; Bolling, C.F.; Avila Edwards, K.C.; Eneli, I.; Hamre, R.; Joseph, M.M.; et al. Executive Summary: Clinical Practice Guideline for the Evaluation and Treatment of Children and Adolescents With Obesity. Pediatrics 2023, 151, e2022060641. [Google Scholar] [CrossRef] [PubMed]
- Xie, B.; Chen, S.; Xu, Y.; Han, W.; Hu, R.; Chen, M.; Zhang, Y.; Ding, S. The Impact of Glucagon-Like Peptide 1 Receptor Agonists on Bone Metabolism and Its Possible Mechanisms in Osteoporosis Treatment. Front. Pharmacol. 2021, 12, 697442. [Google Scholar] [CrossRef] [PubMed]
- Nuche-Berenguer, B.; Moreno, P.; Esbrit, P.; Dapía, S.; Caeiro, J.R.; Cancelas, J.; Haro-Mora, J.J.; Villanueva-Peñacarrillo, M.L. Effect of GLP-1 Treatment on Bone Turnover in Normal, Type 2 Diabetic, and Insulin-Resistant States. Calcif. Tissue Int. 2009, 84, 453–461. [Google Scholar] [CrossRef]
- Zhao, C.; Liang, J.; Yang, Y.; Yu, M.; Qu, X. The Impact of Glucagon-Like Peptide-1 on Bone Metabolism and Its Possible Mechanisms. Front. Endocrinol. 2017, 8, 98. [Google Scholar] [CrossRef]
- Iepsen, E.W.; Lundgren, J.R.; Hartmann, B.; Pedersen, O.; Hansen, T.; Jørgensen, N.R.; Jensen, J.-E.B.; Holst, J.J.; Madsbad, S.; Torekov, S.S. GLP-1 Receptor Agonist Treatment Increases Bone Formation and Prevents Bone Loss in Weight-Reduced Obese Women. J. Clin. Endocrinol. Metab. 2015, 100, 2909–2917. [Google Scholar] [CrossRef]
- Jensen, S.B.K.; Sørensen, V.; Sandsdal, R.M.; Lehmann, E.W.; Lundgren, J.R.; Juhl, C.R.; Janus, C.; Ternhamar, T.; Stallknecht, B.M.; Holst, J.J.; et al. Bone Health After Exercise Alone, GLP-1 Receptor Agonist Treatment, or Combination Treatment: A Secondary Analysis of a Randomized Clinical Trial. JAMA Netw. Open 2024, 7, e2416775. [Google Scholar] [CrossRef]
- Inge, T.H.; Coley, R.Y.; Bazzano, L.A.; Xanthakos, S.A.; McTigue, K.; Arterburn, D.; Williams, N.; Wellman, R.; Coleman, K.J.; Courcoulas, A.; et al. Comparative Effectiveness of Bariatric Procedures among Adolescents: The PCORnet Bariatric Study. Surg. Obes. Relat. Dis. 2018, 14, 1374–1386. [Google Scholar] [CrossRef] [PubMed]
- Inge, T.H.; Courcoulas, A.P.; Jenkins, T.M.; Michalsky, M.P.; Helmrath, M.A.; Brandt, M.L.; Harmon, C.M.; Zeller, M.H.; Chen, M.K.; Xanthakos, S.A.; et al. Weight Loss and Health Status 3 Years after Bariatric Surgery in Adolescents. N. Engl. J. Med. 2016, 374, 113–123. [Google Scholar] [CrossRef] [PubMed]
- Olbers, T.; Beamish, A.J.; Gronowitz, E.; Flodmark, C.-E.; Dahlgren, J.; Bruze, G.; Ekbom, K.; Friberg, P.; Göthberg, G.; Järvholm, K.; et al. Laparoscopic Roux-En-Y Gastric Bypass in Adolescents with Severe Obesity (AMOS): A Prospective, 5-Year, Swedish Nationwide Study. Lancet Diabetes Endocrinol. 2017, 5, 174–183. [Google Scholar] [CrossRef] [PubMed]
- Inge, T.H.; Courcoulas, A.P.; Jenkins, T.M.; Michalsky, M.P.; Brandt, M.L.; Xanthakos, S.A.; Dixon, J.B.; Harmon, C.M.; Chen, M.K.; Xie, C.; et al. Five-Year Outcomes of Gastric Bypass in Adolescents as Compared with Adults. N. Engl. J. Med. 2019, 380, 2136–2145. [Google Scholar] [CrossRef] [PubMed]
- Mitra, A.T.; Das, B.; Sarraf, K.M.; Ford-Adams, M.; Fehervari, M.; Ashrafian, H. Bone Health Following Paediatric and Adolescent Bariatric Surgery: A Systematic Review and Meta-Analysis. eClinicalMedicine 2024, 69, 102462. [Google Scholar] [CrossRef] [PubMed]
Author(s) | Year | Study Type | Model/System | Key Findings | References |
---|---|---|---|---|---|
Da Silva et al. | 2016 | In vitro | Bone marrow MSCs | Inflammatory bone marrow microenvironment drives MSCs toward adipogenesis | [12] |
Cortez et al. | 2013 | In vitro/in vivo | Bone marrow MSCs isolated from the femurs of Wistar rats subjected to HFD | NF-κB activation increased, while PPAR-γ expression decreased, signaling a shift toward an inflammatory state and reduced adipogenesis; high levels of pro-inflammatory cytokines | [13] |
Patsch et at. | 2011 | In vivo | Mouse model of HFD-induced obesity | Alterations in trabecular microarchitecture, even after short periods of exposure | [14] |
Lam et al. | 2000 | In vitro | Murine macrophages | TNF-α combined with minimal levels of RANKL enhances osteoclast differentiation through the activation of NF kappa-B and JNK pathways | [15] |
Azuma et al. | 2000 | In vitro | Osteoclast progenitors in cell cultures | TNF-α directly induced the formation of multinucleated TRAP-positive osteoclasts | [16] |
Kim et al. | 2005 | In vitro | Hematopoietic precursors derived from TRANCE-null, RANK-null, or TRAF6-null mice | Differentiation into osteoclasts when stimulated with TNF-α and TGF-β | [17] |
Glass et al. | 2011 | In vitro | MDSCs harvested from mice three days after exposure to an adjacent fracture | TNF-α promotes MDSC migration and osteogenic differentiation at low concentrations | [18] |
Li et al. | 2021 | In vivo/in vitro | BMSCs isolated from both WT and IL-6 KO mice | IL-6 drives MSC senescence and trabecular bone loss through STAT3/p53/p21 signaling | [19] |
Kim et al. | 2006 | In vitro | Human peripheral blood mononuclear cells cultured in the presence M-CSF and MCP-1 | MCP-1 induces TRAP(+)/CTR(+) multinuclear cells that represent an arrested stage in osteoclast differentiation | [20] |
Cornish et al. | 2002 | In vitro/in vivo | Fetal rat osteoblasts, mouse bone marrow cultures, isolated chondrocytes | Leptin directly promotes bone cell function by stimulating osteoblast and chondrocyte proliferation and inhibiting osteoclastogenesis | [21] |
Xin et al. | 2011 | In vitro | C2C12 myotubes, a murine muscle cell line | APPL1 specifically regulated adiponectin-induced p38 MAPK activation but had no effect on p38 MAPK phosphorylation in response to TNF-α | [23] |
Luo et al. | 2006 | In vitro | Human osteoblasts | Recombinant adiponectin modulated RANKL and OPG expression in human osteoblasts in a dose- and time-dependent manner | [24] |
Tu et al. | 2011 | In vitro/in vivo | RAW264.7 cells. Femurs isolated from double-labeled transgenic mice (mBSP9.0Luc/β-ACT-EGFP) transplanted into adiponectin KO mice and WT mice | Adiponectin suppressed RANKL-induced osteoclast formation from RAW264.7 cells by downregulating key osteoclastogenic regulators | [25] |
Bartell et al. | 2011 | In vivo | Ob/Ob mice | Intracerebroventricular leptin increased pro-osteogenic gene expression in bone marrow and decreased expression of genes associated with osteoclastogenesis | [26] |
Williams et al. | 2011 | In vivo | Db/Db mice | Db/Db mice showed reduced bone mass, strength, and formation rates compared to WT mice | [27] |
Steppan et al. | 2000 | In vivo | Ob/Ob mice | Leptin administration in Ob/Ob mice increased bone length, density, and mass | [28] |
Naot et al. | 2016 | In vivo | WT and adiponectin-KO mice | Adiponectin-KO mice showed reduced body fat, decreased BMD, and lower cortical and trabecular bone volume compared to WT mice | [29] |
Wang et al. | 2013 | In vivo | Femur and vertebra in sham-operated and ovariectomized adiponectin-KO mice | Adiponectin-KO mice showed no changes in BMD but exhibited increased ALP activity, osteoclast numbers, and enhanced osteogenic differentiation of MSCs, with higher Runx2 and Osterix expression | [31] |
Lecka-Czernik et al. | 2015 | In vivo | C57BL/6 mice males fed with HFD or regular diet | HFD-induced obesity in C57BL/6 male mice increased bone mass compared to controls | [32] |
Ootsuka et al. | 2015 | In vivo | Hyperphagic and obese rat model | Hyperphagic-induced obesity in rats with normal glycemic control increased osteoclastogenesis. These effects were linked to elevated TNF-α levels and NF-κB activation | [33] |
Feng et al. | 2016 | In vivo | IL-6(−/−) mice and WT mice | HFD-induced obesity reversed IL-6-deficiency-related bone remodeling abnormalities in IL-6(−/−) mice | [34] |
Fujita et al. | 2012 | In vivo | Male C57BL/6J with normal and HFD | In early stages, diet-induced obesity reduced trabecular bone density due to increased adipocytes and trabecular deterioration | [35] |
Silva et al. | 2019 | In vivo | Mice from the Large-by-Small advanced intercross line (F34 generation) | Bone size and strength correlated with body mass, but this relationship was weaker in HFD-fed mice compared to low-fat diet-fed mice | [36] |
Yamasaki et al. | 2016 | In vivo | HFD-fed mice | In osteoclasts, AACS mRNA expression was significantly upregulated by IL-6, linking ketone body metabolism, AACS, and osteoclast activity | [37] |
Chaplin et al. | 2015 | In vivo | C57BL/6J mice | Conjugated linoleic acids reduced tibia weight with minimal impact on bone markers, while calcium, alone or with conjugated linoleic acids, preserved bone weight, enhanced bone formation gene expression | [38] |
Ip et al. | 2009 | In vivo | Obese (fa/fa) and lean (Fa/Fa) male Zucker rats | Obese Zucker rats (fa/fa) had normal bone ash levels despite reduced bone size | [39] |
Author(s) | Year | Countries | Sample Size and Characteristics | Methodology | Type of Study | Key Findings | References |
---|---|---|---|---|---|---|---|
Leonard et al. | 2004 | USA | 32 non-obese and 103 obese subjects (4–20 years) | Whole-body and BMC were measured using DXA | Cross-sectional study | Obesity was linked to advanced maturation and higher lean mass for height | [42] |
Kessler et al. | 2013 | USA | 913,178 patients (2 to 19 years) | BMI was used to classify patients into 5 weight categories, and records were analyzed for lower extremity fractures | Cross-sectional study | Higher BMI was associated with an increased risk of foot, ankle, knee, and leg fractures, especially in children aged 6–11 years | [47] |
Gil-Cosano et al. | 2019 | Spain | 55 children (10.2 ± 1.2 years) | Assessments of body composition by DXA, inflammatory markers (IL-6, IL-1β, TNF-α), and muscular fitness | Cross-sectional study | IL-6, VEGF, TNF-α, and IL-1β show a strong correlation with bone mass | [48] |
Erazmus et al. | 2022 | Poland | 70 children and adolescents with overweight and obesity (7.0 to 17.8 years) and 35 age-matched controls | OGTT, atherogenic and insulin resistance indices | Case–control study | Overweight and obese children had lower sRANKL levels and a higher OPG/sRANKL ratio | [49] |
Brunetti et al. | 2020 | Italy | 111 obese subjects (12.21 ± 3.71 years) and 45 controls | AD-SoS-Z and BTT-Z scores by QUS, LIGHT serum levels, osteoclastogenesis by culturing PBMCs with or without the addition of anti-LIGHT antibody | Case–control study | BMI-SDS negatively correlated with AD-SoS-Z and BTT-Z scores. Elevated serum LIGHT levels and increased LIGHT expression on monocytes, CD3+ T-cells, and neutrophils were observed in obese subjects | [50] |
Dimitri et al. | 2015 | UK | 18 lean children and 18 obese participants | HR-pQCT | Case–control study | Obese children showed lower radial cortical porosity and pore diameter, reduced tibial trabecular thickness, and higher trabecular number | [51] |
Ugur-Altun et al. | 2005 | Turkey | 50 obese subjects (31 ± 8 years) and 24 lean controls (30 ± 7 years) | HOMA-IR, OPG | Cross-sectional study | Obese individuals with higher insulin resistance had lower OPG levels compared to those with lower insulin resistance and lean controls | [56] |
Suliburska et al. | 2013 | Poland | Obese subjects (12–18 years) | Anthropometrical measurements and blood biochemical analyses | Cross-sectional study | Higher OPG levels and HOMA-IR indices in obese adolescents were positively correlated, linking elevated OPG to insulin resistance | [57] |
Oh et al. | 2020 | Korea | 232 overweight and obese children (6–15 years) | Anthropometric and laboratory data and the degree of MASLD | Cross-sectional study | Advanced bone age is more common in obese children, particularly with higher BMI, insulin resistance, metabolic syndrome, and severe MASLD, along with lower HDL cholesterol levels | [59] |
Clark et al. | 2006 | UK | 3503 children assessed at age of 9.9 years and followed up at 11.8 years | DXA | Cross-sectional and prospective cohort study | Fat mass stimulates bone growth in boys and prepubertal girls but diminishes or reverses in later pubertal stages, likely due to puberty’s impact | [61] |
Fornari et al. | 2013 | USA | 992 children (1–13 years) | Evaluation of BMI and BMI-for-age percentiles. Fracture classification | Retrospective cohort study | Obese children have a greater risk of sustaining a lateral condyle fracture and, when these fractures occur, they are often more severe injuries | [62] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farella, I.; Chiarito, M.; Vitale, R.; D’Amato, G.; Faienza, M.F. The “Burden” of Childhood Obesity on Bone Health: A Look at Prevention and Treatment. Nutrients 2025, 17, 491. https://doi.org/10.3390/nu17030491
Farella I, Chiarito M, Vitale R, D’Amato G, Faienza MF. The “Burden” of Childhood Obesity on Bone Health: A Look at Prevention and Treatment. Nutrients. 2025; 17(3):491. https://doi.org/10.3390/nu17030491
Chicago/Turabian StyleFarella, Ilaria, Mariangela Chiarito, Rossella Vitale, Gabriele D’Amato, and Maria Felicia Faienza. 2025. "The “Burden” of Childhood Obesity on Bone Health: A Look at Prevention and Treatment" Nutrients 17, no. 3: 491. https://doi.org/10.3390/nu17030491
APA StyleFarella, I., Chiarito, M., Vitale, R., D’Amato, G., & Faienza, M. F. (2025). The “Burden” of Childhood Obesity on Bone Health: A Look at Prevention and Treatment. Nutrients, 17(3), 491. https://doi.org/10.3390/nu17030491