The Association Between the Triglyceride–Glucose Index, Its Combination with the Body Roundness Index, and Chronic Kidney Disease in Patients with Type 2 Diabetes in Eastern China: A Preliminary Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Data Collection
2.3. Definition of the Variables
2.4. Definition of the TyG-BRI Index
2.5. Statistical Analysis
3. Results
3.1. General Characteristics of Participants
3.2. Association Between TyG-BRI Index and CKD
3.3. RCS Analysis of the TyG-BRI Index in Relation to CKD Risk and the ROC Curve Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Strati, M.; Moustaki, M.; Psaltopoulou, T.; Vryonidou, A.; Paschou, S.A. Early onset type 2 diabetes mellitus: An update. Endocrine 2024, 85, 965–978. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Teng, D.; Shi, X.; Qin, G.; Qin, Y.; Quan, H.; Shi, B.; Sun, H.; Ba, J.; Chen, B.; et al. Prevalence of diabetes recorded in mainland China using 2018 diagnostic criteria from the American Diabetes Association: National cross sectional study. BMJ 2020, 369, m997. [Google Scholar] [CrossRef]
- Liu, B.; Li, L.; Cui, H.; Zhao, Q.; Chen, S. Analysis of the global burden of CKD-T2DM in young and middle-aged adults in 204 countries and territories from 2000 to 2019: A systematic study of the global burden of disease in 2019. Diabetes Res. Clin. Pract. 2024, 217, 111884. [Google Scholar] [CrossRef]
- Song, J.; Li, Y.; Zhu, J.; Liang, J.; Xue, S.; Zhu, Z. Non-linear associations of cardiometabolic index with insulin resistance, impaired fasting glucose, and type 2 diabetes among US adults: A cross-sectional study. Front. Endocrinol. 2024, 15, 1341828. [Google Scholar] [CrossRef]
- Shen, R.; Lin, L.; Bin, Z.; Qiao, X. The U-shape relationship between insulin resistance-related indexes and chronic kidney disease: A retrospective cohort study from National Health and Nutrition Examination Survey 2007–2016. Diabetol. Metab. Syndr. 2024, 16, 168. [Google Scholar] [CrossRef]
- Artunc, F.; Schleicher, E.; Weigert, C.; Fritsche, A.; Stefan, N.; Häring, H.-U. The impact of insulin resistance on the kidney and vasculature. Nat. Rev. Nephrol. 2016, 12, 721–737. [Google Scholar] [CrossRef]
- Macdonald, I.A. A review of recent evidence relating to sugars, insulin resistance and diabetes. Eur. J. Nutr. 2016, 55, 17–23. [Google Scholar] [CrossRef]
- Liu, S.; Sun, H.; Liu, J.; Wang, G. Accessing the relationship between six surrogate insulin resistance indexes and the incidence of rapid kidney function decline and the progression to chronic kidney disease among middle-aged and older adults in China: Results from the China health and retirement longitudinal study. Diabetes Res. Clin. Pract. 2024, 212, 111705. [Google Scholar]
- Wang, Y.-N.; Ma, S.-X.; Chen, Y.-Y.; Chen, L.; Liu, B.-L.; Liu, Q.-Q.; Zhao, Y.-Y. Chronic kidney disease: Biomarker diagnosis to therapeutic targets. Clin. Chim. Acta 2019, 499, 54–63. [Google Scholar] [CrossRef]
- Aksun, S.; Sonu, N.C.; Aygun, S.; Karakulak, U.N.; Mumusoglu, S.; Yildiz, B.O. Alterations of cardiometabolic risk profile in polycystic ovary syndrome: 13 years follow-up in an unselected population. J. Endocrinol. Investig. 2024, 47, 1129–1137. [Google Scholar] [CrossRef]
- Pililis, S.; Lampsas, S.; Kountouri, A.; Pliouta, L.; Korakas, E.; Livadas, S.; Thymis, J.; Peppa, M.; Kalantaridou, S.; Oikonomou, E.; et al. The Cardiometabolic Risk in Women with Polycystic Ovarian Syndrome (PCOS): From Pathophysiology to Diagnosis and Treatment. Medicina 2024, 60, 1656. [Google Scholar] [CrossRef] [PubMed]
- Dave, N.; Wu, J.; Thomas, S. Chronic Kidney Disease-Induced Insulin Resistance: Current State of the Field. Curr. Diabetes Rep. 2018, 18, 44. [Google Scholar] [CrossRef] [PubMed]
- Unger, G.; Benozzi, S.F.; Perruzza, F.; Pennacchiotti, G.L. Triglycerides and glucose index: A useful indicator of insulin resistance. Endocrinol. Nutr. 2014, 61, 533–540. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.H.; Wang, L.M.; Chen, S.Y.; Liang, Y.B.; Zhang, M.; Huang, Z.J.; Chen, H.L.; Wu, J.Z.; Wu, J.; Jia, W.P. Data Resource Profile: A Protocol of China National Diabetic Chronic Complications Study. Biomed. Environ. Sci. 2022, 35, 633–640. [Google Scholar]
- Wang, L.; Xu, X.; Zhang, M.; Hu, C.; Zhang, X.; Li, C.; Nie, S.; Huang, Z.; Zhao, Z.; Hou, F.F.; et al. Prevalence of Chronic Kidney Disease in China: Results from the Sixth China Chronic Disease and Risk Factor Surveillance. JAMA Intern. Med. 2023, 183, 298–310. [Google Scholar] [CrossRef]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F.; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef]
- Wang, J.-G. Chinese Hypertension Guidelines. Pulse 2015, 3, 14–20. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, L.; Yu, D.; Ding, G. The prevalence and risk factors of dyslipidemia in different diabetic progression stages among middle-aged and elderly populations in China. PLoS ONE 2018, 13, e205709. [Google Scholar] [CrossRef]
- Zhang, X.; Ma, N.; Lin, Q.; Chen, K.; Zheng, F.; Wu, J.; Dong, X.; Niu, W. Body Roundness Index and All-Cause Mortality Among US Adults. JAMA Netw. Open 2024, 7, e2415051. [Google Scholar] [CrossRef]
- Er, L.-K.; Wu, S.; Chou, H.-H.; Hsu, L.-A.; Teng, M.-S.; Sun, Y.-C.; Ko, Y.-L. Triglyceride Glucose-Body Mass Index Is a Simple and Clinically Useful Surrogate Marker for Insulin Resistance in Nondiabetic Individuals. PLoS ONE 2016, 11, e149731. [Google Scholar] [CrossRef]
- Chen, X.-Y.; Fang, L.; Zhang, J.; Zhong, J.-M.; Lin, J.-J.; Lu, F. The association of body mass index and its interaction with family history of dyslipidemia towards dyslipidemia in patients with type 2 diabetes: A cross-sectional study in Zhejiang Province, China. Front. Public Health 2023, 11, 1188212. [Google Scholar] [CrossRef] [PubMed]
- Robin, X.; Turck, N.; Hainard, A.; Tiberti, N.; Lisacek, F.; Sanchez, J.-C.; Müller, M. pROC: An open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform. 2011, 12, 77. [Google Scholar] [CrossRef] [PubMed]
- Sattar, N.; Presslie, C.; Rutter, M.K.; McGuire, D.K. Cardiovascular and Kidney Risks in Individuals with Type 2 Diabetes: Contemporary Understanding with Greater Emphasis on Excess Adiposity. Diabetes Care 2024, 47, 531–543. [Google Scholar] [CrossRef]
- Kanaoka, T.; Wakui, H.; Yano, Y.; Nagasu, H.; Kanegae, H.; Nangaku, M.; Hirakawa, Y.; Nakagawa, N.; Wada, J.; Tsuruya, K.; et al. Factors affecting the sodium-glucose cotransporter 2 inhibitors-related initial decline in glomerular filtration rate and its possible effect on kidney outcome in chronic kidney disease with type 2 diabetes: The Japan Chronic Kidney Disease Database. Diabetes Obes. Metab. 2024, 26, 2905–2914. [Google Scholar] [CrossRef]
- Lin, B.; Shao, L.; Luo, Q.; Ou-yang, L.; Zhou, F.; Du, B.; He, Q.; Wu, J.; Xu, N.; Chen, J. Prevalence of chronic kidney disease and its association with metabolic diseases: A cross-sectional survey in Zhejiang province, Eastern China. BMC Nephrol. 2014, 15, 36. [Google Scholar] [CrossRef]
- Fragoso, A.; Mendes, F.; Silva, A.P.; Neves, P.L. Insulin resistance as a predictor of cardiovascular morbidity and end-stage renal disease. J. Diabetes Complicat. 2015, 29, 1098–1104. [Google Scholar] [CrossRef]
- Ahlqvist, E.; Storm, P.; Käräjämäki, A.; Martinell, M.; Dorkhan, M.; Carlsson, A.; Vikman, P.; Prasad, R.B.; Aly, D.M.; Almgren, P.; et al. Novel subgroups of adult-onset diabetes and their association with outcomes: A data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol. 2018, 6, 361–369. [Google Scholar] [CrossRef]
- Pham, H.; Robinson-Cohen, C.; Biggs, M.L.; Ix, J.H.; Mukamal, K.J.; Fried, L.F.; Kestenbaum, B.; Siscovick, D.S.; de Boer, I.H. Chronic kidney disease, insulin resistance, and incident diabetes in older adults. Clin. J. Am. Soc. Nephrol. 2012, 7, 588–594. [Google Scholar] [CrossRef]
- Janssen, J.A.M.J.L. Overnutrition, Hyperinsulinemia and Ectopic Fat: It Is Time for a Paradigm Shift in the Management of Type 2 Diabetes. Int. J. Mol. Sci. 2024, 25, 5488. [Google Scholar] [CrossRef]
- Martínez-Rojas, M.Á.; Balcázar, H.; González-Soria, I.; González-Rivera, J.M.; Rodríguez-Vergara, M.E.; Velazquez-Villegas, L.A.; León-Contreras, J.C.; Pérez-Villalva, R.; Correa, F.; Rosetti, F.; et al. Transient inhibition of sodium-glucose cotransporter 2 after ischemia/reperfusion injury ameliorates chronic kidney disease. JCI Insight 2024, 9, e173675. [Google Scholar] [CrossRef]
- Patera, F.; Gatticchi, L.; Cellini, B.; Chiasserini, D.; Reboldi, G. Kidney Fibrosis and Oxidative Stress: From Molecular Pathways to New Pharmacological Opportunities. Biomolecules 2024, 14, 137. [Google Scholar] [CrossRef] [PubMed]
- Sebastian, S.A.; Padda, I.; Johal, G. Cardiovascular-Kidney-Metabolic (CKM) syndrome: A state-of-the-art review. Curr. Probl. Cardiol. 2024, 49, 102344. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.; Ren, X.; Hou, Y.; Zhang, Y.; Zhang, Y.; Tan, E.; Wang, L. Triglyceride-Glucose Index is Significantly Associated with the Risk of Hyperuricemia in Patients with Nonalcoholic Fatty Liver Disease. Diabetes Metab. Syndr. Obes. 2023, 16, 1323–1334. [Google Scholar] [CrossRef]
- Moisi, M.I.; Rus, M.; Bungau, S.; Zaha, D.C.; Uivarosan, D.; Fratila, O.; Tit, D.M.; Endres, L.; Nistor-Cseppento, D.C.; Popescu, M.I. Acute Coronary Syndromes in Chronic Kidney Disease: Clinical and Therapeutic Characteristics. Medicina 2020, 56, 118. [Google Scholar] [CrossRef]
- Chen, Y.; Dabbas, W.; Gangemi, A.; Benedetti, E.; Lash, J.; Finn, P.W.; Perkins, D.L. Obesity Management and Chronic Kidney Disease. Semin. Nephrol. 2021, 41, 392–402. [Google Scholar] [CrossRef]
- Moriconi, D.; D’Alessandro, C.; Giannese, D.; Panichi, V.; Cupisti, A. Diagnosis, Prevalence and Significance of Obesity in a Cohort of CKD Patients. Metabolites 2023, 13, 196. [Google Scholar] [CrossRef]
- Vallianou, N.G.; Mitesh, S.; Gkogkou, A.; Geladari, E. Chronic Kidney Disease and Cardiovascular Disease: Is There Any Relationship? Curr. Cardiol. Rev. 2019, 15, 55–63. [Google Scholar] [CrossRef]
- Yau, K.; Kuah, R.; Cherney, D.Z.I.; Lam, T.K.T. Obesity and the kidney: Mechanistic links and therapeutic advances. Nat. Rev. Endocrinol. 2024, 20, 321–335. [Google Scholar] [CrossRef]
- Czaja-Stolc, S.; Potrykus, M.; Stankiewicz, M.; Kaska, Ł.; Małgorzewicz, S. Pro-Inflammatory Profile of Adipokines in Obesity Contributes to Pathogenesis, Nutritional Disorders, and Cardiovascular Risk in Chronic Kidney Disease. Nutrients 2022, 14, 1457. [Google Scholar] [CrossRef]
- Ali, M.M.; Parveen, S.; Williams, V.; Dons, R.; Uwaifo, G.I. Cardiometabolic comorbidities and complications of obesity and chronic kidney disease (CKD). J. Clin. Transl. Endocrinol. 2024, 36, 100341. [Google Scholar] [CrossRef]
- Lyons, O.D. Sleep disorders in chronic kidney disease. Nat. Rev. Nephrol. 2024, 20, 690–700. [Google Scholar] [CrossRef] [PubMed]
- Macaione, F.; Di Lisi, D.; Madaudo, C.; D’Agostino, A.; Adorno, D.; Sucato, V.; Novo, G.; Evola, S. The Impact of Triglyceride-Glucose (TyG) Index on Future Cardio and Cerebrovascular Events in Patients with Acute Coronary Syndrome, During 3 Years of Follow-Up. J. Cardiovasc. Dev. Dis. 2024, 11, 354. [Google Scholar] [CrossRef] [PubMed]
- Moisi, M.I.; Bungau, S.G.; Vesa, C.M.; Diaconu, C.C.; Behl, T.; Stoicescu, M.; Toma, M.M.; Bustea, C.; Sava, C.; Popescu, M.I. Framing Cause-Effect Relationship of Acute Coronary Syndrome in Patients with Chronic Kidney Disease. Diagnostics 2021, 11, 1518. [Google Scholar] [CrossRef]
- Zhao, S.; Yu, S.; Chi, C.; Fan, X.; Tang, J.; Ji, H.; Teliewubai, J.; Zhang, Y.; Xu, Y. Association between macro- and microvascular damage and the triglyceride glucose index in community-dwelling elderly individuals: The Northern Shanghai Study. Cardiovasc. Diabetol. 2019, 18, 95. [Google Scholar] [CrossRef]
- Low, S.; Pek, S.; Moh, A.; Ang, K.; Khoo, J.; Shao, Y.-M.; Tang, W.E.; Lim, Z.; Subramaniam, T.; Sum, C.F.; et al. Triglyceride-glucose index is prospectively associated with chronic kidney disease progression in Type 2 diabetes—Mediation by pigment epithelium-derived factor. Diabetes Vasc. Dis. Res. 2022, 19, 1486956472. [Google Scholar] [CrossRef]
- Lv, L.; Zhou, Y.; Chen, X.; Gong, L.; Wu, J.; Luo, W.; Shen, Y.; Han, S.; Hu, J.; Wang, Y.; et al. Relationship Between the TyG Index and Diabetic Kidney Disease in Patients with Type-2 Diabetes Mellitus. Diabetes Metab. Syndr. Obes. 2021, 14, 3299–3306. [Google Scholar] [CrossRef]
- Huang, N.; Lu, B.; Zhu, Z.-Z.; Zhu, X.-Y.; Chen, S.; Shu, Z.-Y.; Liu, G.-F.; Peng, Y.-F.; Li, L. The Association Between Triglyceride Glucose-Body Mass Index and Kidney Impairment in Patients with Type 2 Diabetes Mellitus. Diabetes Metab. Syndr. Obes. 2024, 17, 3447–3453. [Google Scholar] [CrossRef]
- Chen, T.; Liu, Y.; Wu, S.; Long, S.; Feng, L.; Lu, W.; Chen, W.; Hong, G.; Zhou, L.; Wang, F.; et al. Comparison of TyG and Newly TyG Related Indicators for Chronic Kidney Diseases Estimation in a Chinese Population. Diabetes Metab. Syndr. Obes. 2024, 17, 3063–3075. [Google Scholar] [CrossRef]
- Torun, C.; Ankaralı, H.; Caştur, L.; Uzunlulu, M.; Erbakan, A.N.; Akbaş, M.M.; Gündüz, N.; Doğan, M.B.; Bahadır, M.A.; Oğuz, A.; et al. Prediction of visceral adipose tissue magnitude using a new model based on simple clinical measurements. Front. Endocrinol. 2024, 15, 1411678. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, X.; Guan, H.; Zhang, S.; Zhu, Q.; Fu, X.; Chen, H.; Tang, S.; Feng, Y.; Kuang, J. Body Roundness Index Is a Superior Obesity Index in Predicting Diabetes Risk Among Hypertensive Patients: A Prospective Cohort Study in China. Front. Cardiovasc. Med. 2021, 8, 736073. [Google Scholar] [CrossRef]
- Mao, T.; He, Q.; Yang, J.; Jia, L.; Xu, G. Relationship between gout, hyperuricemia, and obesity-does central obesity play a significant role?—A study based on the NHANES database. Diabetol. Metab. Syndr. 2024, 16, 24. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Overall (n = 1756) | Participants Without CKD (n = 1271) | Participants with CKD (n = 485) | t/χ2/z | p |
---|---|---|---|---|---|
Age, mean ± SD, years | 57.23 ± 10.15 | 56.52 ± 9.92 | 59.09 ± 10.54 | −4.77 a | <0.001 |
Gender, n (%) | 0.048 b | 0.827 | |||
Male | 876 (49.89) | 632 (49.72) | 244 (50.31) | ||
Female | 880 (50.11) | 639 (50.28) | 241 (49.69) | ||
Educational level, n (%) | 8.12 b | 0.017 | |||
Secondary school and lower | 1541 (87.76) | 1130 (88.90) | 411 (84.74) | ||
Senior high school | 171 (9.74) | 108 (8.50) | 63 (12.99) | ||
College or above | 44 (2.50) | 33 (2.60) | 11 (2.27) | ||
Residence, n (%) | 1.30 b | 0.255 | |||
Rural | 875 (49.83) | 644 (50.67) | 231 (47.63) | ||
Urban | 881 (50.17) | 627 (49.33) | 254 (52.37) | ||
BMI, mean ± SD, kg/m2 | 24.76 ± 3.43 | 24.51 ± 3.35 | 25.43 ± 3.56 | −5.06 a | <0.001 |
BRI | 4.31 ± 1.23 | 4.18 ± 1.16 | 4.65 ± 1.35 | −7.31 a | <0.001 |
Hypertension, n (%) | 1099 (62.59) | 714 (56.18) | 385 (79.38) | 80.73 b | <0.001 |
TG, median (IQR), mmol/L | 1.60 (1.12–2.42) | 1.51 (1.06–2.26) | 1.87 (1.30–2.94) | 47.47 c | <0.001 |
TC, mean ± SD, mmol/L | 4.65 ± 1.07 | 4.61 ± 0.97 | 4.78 ± 1.29 | −2.64 a | 0.009 |
HDL-C, mean ± SD, mmol/L | 1.25 ± 0.36 | 1.28 ± 0.35 | 1.18 ± 0.37 | 4.96 a | <0.001 |
LDL-C, mean ± SD, mmol/L | 2.73 ± 0.90 | 2.75 ± 0.85 | 2.70 ± 1.02 | 0.98 a | 0.325 |
FPG, mean ± SD, mmol/L | 7.94 ± 2.58 | 7.72 ± 2.31 | 8.54 ± 3.11 | −5.32 a | <0.001 |
HbA1c, mean ± SD, % | 7.27 ± 1.49 | 7.14 ± 1.40 | 7.61 ± 1.65 | −5.43 a | <0.001 |
TyG index | 9.26 ± 0.73 | 9.17 ± 0.68 | 9.49 ± 0.80 | −7.89 a | <0.001 |
TyG-BRI index | 40.11 ± 12.63 | 38.50 ± 11.70 | 44.30 ± 13.93 | −8.13 a | <0.001 |
SUA, mean ± SD, mmol/L | 334.65 ± 94.44 | 325.89 ± 85.50 | 357.60 ± 111.48 | −5.66 a | <0.001 |
UAlb, median (IQR), mg/L | 17.30 (6.90–43.40) | 11.10 (4.95–22.05) | 87.10 (41.95–228.00) | 705.80 c | <0.001 |
Ucr, median (IQR), μmol/L | 12,735.00 (8799.00–18,085.50) | 13,200.00 (9380.50–18,630.50) | 11,510.50 (7689.00–16,537.00) | 20.04 c | <0.001 |
Duration of diabetes (years), n (%) | 23.52 b | <0.001 | |||
≤5 | 836 (47.61) | 635 (49.96) | 201 (41.44) | ||
6–10 | 491 (27.96) | 364 (28.64) | 127 (26.19) | ||
11–15 | 236 (13.44) | 148 (11.64) | 88 (18.14) | ||
>15 | 193 (10.99) | 124 (9.76) | 69 (14.23) | ||
Therapies of diabetes, n (%) | 35.57 b | <0.001 | |||
No medication | 263 (14.98) | 201 (15.81) | 62 (12.78) | ||
Anti-hyperglycemic drugs only | 1207 (68.74) | 904 (71.13) | 303 (62.47) | ||
Insulin only | 87 (4.95) | 52 (4.09) | 35 (7.22) | ||
Anti-hyperglycemic drugs and insulin | 199 (11.33) | 114 (8.97) | 85 (17.53) |
Variables | Total (n = 1756) | Q1 (n = 441) | Q2 (n = 438) | Q3 (n = 439) | Q4 (n = 438) | p |
---|---|---|---|---|---|---|
Age, mean ± SD | 57.23 ± 10.15 | 55.71 ± 10.77 | 57.33 ± 9.18 | 58.12 ± 9.85 | 57.76 ± 10.60 | 0.002 |
Gender, n (%) | <0.001 | |||||
Female | 880 (50.11) | 198 (44.90) | 211 (48.17) | 211 (48.06) | 260 (59.36) | |
Male | 876 (49.89) | 243 (55.10) | 227 (51.83) | 228 (51.94) | 178 (40.64) | |
Educational level, n (%) | <0.001 | |||||
Secondary school and lower | 1541 (87.76) | 355 (80.50) | 397 (90.64) | 397 (90.43) | 392 (89.50) | |
Senior high school | 171 (9.74) | 64 (14.51) | 37 (8.45) | 32 (7.29) | 38 (8.68) | |
College or above | 44 (2.51) | 22 (4.99) | 4 (0.91) | 10 (2.28) | 8 (1.83) | |
Residence, n (%) | 0.054 | |||||
Rural | 875 (49.83) | 199 (45.12) | 228 (52.05) | 213 (48.52) | 235 (53.65) | |
Urban | 881 (50.17) | 242 (54.88) | 210 (47.95) | 226 (51.48) | 203 (46.35) | |
BMI, mean ± SD | 24.76 ± 3.43 | 21.37 ± 2.01 | 23.80 ± 1.78 | 25.47 ± 1.99 | 28.43 ± 3.09 | <0.001 |
BRI, mean ± SD | 4.31 ± 1.23 | 2.93 ± 0.50 | 3.88 ± 0.30 | 4.55 ± 0.38 | 5.88 ± 0.97 | <0.001 |
TC abnormal, n (%) | 120 (6.83) | 18 (4.08) | 19 (4.34) | 33 (7.52) | 50 (11.42) | <0.001 |
TG abnormal, n (%) | 504 (28.70) | 32 (7.26) | 89 (20.32) | 154 (35.08) | 229 (52.28) | <0.001 |
HDL-C abnormal, n (%) | 506 (28.82) | 66 (14.97) | 112 (25.57) | 153 (34.85) | 175 (39.95) | <0.001 |
LDL-C abnormal, n (%) | 106 (6.04) | 21 (4.76) | 21 (4.79) | 29 (6.61) | 35 (7.99) | 0.130 |
HbA1c abnormal, n (%) | 859 (48.92) | 176 (39.91) | 194 (44.29) | 215 (48.97) | 274 (62.56) | <0.001 |
FPG abnormal, n (%) | 989 (56.32) | 206 (46.71) | 222 (50.68) | 262 (59.68) | 299 (68.26) | <0.001 |
Hypertension, n (%) | 1099 (62.59) | 185 (41.95) | 259 (59.13) | 312 (71.07) | 343 (78.31) | <0.001 |
Smoking, n (%) | 436 (24.83) | 111 (25.17) | 122 (27.85) | 112 (25.51) | 91 (20.78) | 0.105 |
Drinking, n (%) | 646 (36.79) | 162 (36.73) | 159 (36.30) | 167 (38.04) | 158 (36.07) | 0.932 |
CKD, n (%) | 485 (27.62) | 82 (18.59) | 93 (21.23) | 138 (31.44) | 172 (39.27) | <0.001 |
Crude Model | Model 2 | Model 3 | ||||
---|---|---|---|---|---|---|
OR (95% CI) | p | OR (95% CI) | p | OR (95% CI) | p | |
TyG-BRI index | 1.04 (1.03–1.05) | <0.001 | 1.04 (1.03–1.05) | <0.001 | 1.02 (1.01–1.03) | <0.001 |
TyG-BRI index quartile | ||||||
Q1 | 1.00 (ref) | 1.00 (ref) | 1.00 (ref) | |||
Q2 | 1.18 (0.85–1.64) | 0.328 | 1.19 (0.85–1.66) | 0.317 | 0.93 (0.65–1.33) | 0.708 |
Q3 | 2.01 (1.47–2.75) | <0.001 | 1.95 (1.42–2.67) | <0.001 | 1.33 (0.94–1.88) | 0.108 |
Q4 | 2.83 (2.08–3.85) | <0.001 | 2.82 (2.07–3.85) | <0.001 | 1.57 (1.10–2.25) | 0.014 |
p for trend | <0.001 | <0.001 | 0.003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Du, X.; Lu, F.; Zhang, J.; Xu, C.; Liang, M.; Chen, L.; Zhong, J. The Association Between the Triglyceride–Glucose Index, Its Combination with the Body Roundness Index, and Chronic Kidney Disease in Patients with Type 2 Diabetes in Eastern China: A Preliminary Study. Nutrients 2025, 17, 492. https://doi.org/10.3390/nu17030492
Chen X, Du X, Lu F, Zhang J, Xu C, Liang M, Chen L, Zhong J. The Association Between the Triglyceride–Glucose Index, Its Combination with the Body Roundness Index, and Chronic Kidney Disease in Patients with Type 2 Diabetes in Eastern China: A Preliminary Study. Nutrients. 2025; 17(3):492. https://doi.org/10.3390/nu17030492
Chicago/Turabian StyleChen, Xiangyu, Xiaofu Du, Feng Lu, Jie Zhang, Chunxiao Xu, Mingbin Liang, Lijin Chen, and Jieming Zhong. 2025. "The Association Between the Triglyceride–Glucose Index, Its Combination with the Body Roundness Index, and Chronic Kidney Disease in Patients with Type 2 Diabetes in Eastern China: A Preliminary Study" Nutrients 17, no. 3: 492. https://doi.org/10.3390/nu17030492
APA StyleChen, X., Du, X., Lu, F., Zhang, J., Xu, C., Liang, M., Chen, L., & Zhong, J. (2025). The Association Between the Triglyceride–Glucose Index, Its Combination with the Body Roundness Index, and Chronic Kidney Disease in Patients with Type 2 Diabetes in Eastern China: A Preliminary Study. Nutrients, 17(3), 492. https://doi.org/10.3390/nu17030492