Research Progress on the Degradation of Human Milk Oligosaccharides (HMOs) by Bifidobacteria
Abstract
:1. Introduction
2. The Composition and Properties of HMOs
2.1. Monosaccharide Composition of HMOs
2.2. Performance of HMOs
3. The Degradation Mechanism of HMOs by Bifidobacterium
4. Effects of HMOs on Gut Microbiota
4.1. The Effect of HMO on Intestinal Tract
4.2. Regulating Intestinal Microbial Community Structure
5. Effects of HMOs Formula Milk Powder on the Intestinal Tract and Brain of Infants
6. Prospects for Future Research Directions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- De Cosmi, V.; Mazzocchi, A.; Agostoni, C.; Visioli, F. Fructooligosaccharides: From breast milk components to potential supplements. A systematic review. Adv. Nutr. 2022, 13, 318–327. [Google Scholar] [CrossRef] [PubMed]
- Lawson, M.A.; O’Neill, I.J.; Kujawska, M.; Gowrinadh Javvadi, S.; Wijeyesekera, A.; Flegg, Z.; Chalklen, L.; Hall, L.J. Breast milk-derived human milk oligosaccharides promote Bifidobacterium interactions within a single ecosystem. ISME J. 2020, 14, 635–648. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Li, T.; Xie, J.; Zhang, D.; Pi, C.; Zhou, L.; Yang, W. Gold standard for nutrition: A review of human milk oligosaccharide and its effects on infant gut microbiota. Microb. Cell Factories 2021, 20, 108. [Google Scholar] [CrossRef] [PubMed]
- Dinleyici, M.; Barbieur, J.; Dinleyici, E.C.; Vandenplas, Y. Functional effects of human milk oligosaccharides (HMOs). Gut Microbes 2023, 15, 2186115. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.J.; Yeung, C.Y. Recent advance in infant nutrition: Human milk oligosaccharides. Pediatr. Neonatol. 2021, 62, 347–353. [Google Scholar] [CrossRef]
- Sun, W.; Tao, L.; Qian, C. Human milk oligosaccharides: Bridging the gap in intestinal microbiota between mothers and infants. Front. Cell. Infect. Microbiol. 2025, 14, 1386421. [Google Scholar] [CrossRef]
- Walsh, C.; Owens, R.A.; Bottacini, F. HMO-primed bifidobacteria exhibit enhanced ability to adhere to intestinal epithelial cells. Front. Microbiol. 2023, 14, 1232173. [Google Scholar] [CrossRef]
- Hu, M.; Li, M.; Li, C. Effects of human milk oligosaccharides in infant health based on gut microbiota alteration. J. Agric. Food Chem. 2023, 71, 994–1001. [Google Scholar] [CrossRef]
- Wong, C.B.; Huang, H.; Ning, Y. Probiotics in the New Era of Human Milk Oligosaccharides (HMOs): HMO Utilization and Beneficial Effects of Bifidobacterium longum subsp. infantis M-63 on Infant Health. Microorganisms 2024, 12, 1014. [Google Scholar] [CrossRef]
- Laursen, M.F.; Sakanaka, M.; von Burg, N. Bifidobacterium species associated with breastfeeding produce aromatic lactic acids in the infant gut. Nat. Microbiol. 2021, 6, 1367–1382. [Google Scholar] [CrossRef]
- Stokholm, J.; Blaser, M.J.; Thorsen, J. Maturation of the gut microbiome and risk of asthma in childhood. Nat. Commun. 2018, 9, 141. [Google Scholar] [CrossRef] [PubMed]
- Peters, A.; Krumbholz, P.; Jäger, E. Metabolites of lactic acid bacteria present in fermented foods are highly potent agonists of human hydroxycarboxylic acid receptor 3. PLoS Genet. 2019, 15, e1008145. [Google Scholar]
- Hermes, G.D.A.; Rasmussen, C.; Wellejus, A. Variation in the Conservation of Species-Specific Gene Sets for HMO Degradation and Its Effects on HMO Utilization in Bifidobacteria. Nutrients 2024, 16, 1893. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Ling, D.; Liu, H. Research progress on the relationship between breast milk oligosaccharides and infant health. Food Mach. 2024, 2. [Google Scholar]
- Zabel, B.E.; Gerdes, S.; Evans, K.C. Strain-specific strategies of 2′-fucosyllactose, 3-fucosyllactose, and difucosyllactose assimilation by Bifidobacterium longum subsp. infantis Bi-26 and ATCC 15697. Sci. Rep. 2020, 10, 15919. [Google Scholar] [CrossRef]
- Padilla, L.; Fricker, A.D.; Luna, E. Mechanism of 2′-fucosyllactose degradation by human-associated Akkermansia. J. Bacteriol. 2024, 206, e00334-23. [Google Scholar] [CrossRef]
- Grant, E.T.; De Franco, H.; Desai, M.S. Non-SCFA microbial metabolites associated with fiber fermentation and host health. Trends Endocrinol. Metab. 2024, 36, 70–82. [Google Scholar] [CrossRef]
- Frolova, M.S.; Suvorova, I.A.; Iablokov, S.N. Genomic reconstruction of short-chain fatty acid production by the human gut microbiota. Front. Mol. Biosci. 2022, 9, 949563. [Google Scholar] [CrossRef]
- Strass, S.; Heinzel, C.; Cloos, N. P139 effect of lysosomal short chain fatty acid delivery on immune response. Inflamm. Bowel Dis. 2020, 26, S12. [Google Scholar] [CrossRef]
- Garcia-Aguirre, J.; Alvarado-Morales, M.; Fotidis, I.A. Up-concentration of succinic acid, lactic acid, and ethanol fermentations broths by forward osmosis. Biochem. Eng. J. 2020, 155, 107482. [Google Scholar] [CrossRef]
- Parschat, K.; Melsaether, C.; Jäpelt, K.R. Clinical evaluation of 16-week supplementation with 5HMO-mix in healthy-term human infants to determine tolerability, safety, and effect on growth. Nutrients 2021, 13, 2871. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; van der Molen, J.; Kuipers, F. Quantitation of bioactive components in infant formulas: Milk oligosaccharides, sialic acids and corticosteroids. Food Res. Int. 2023, 174, 113589. [Google Scholar] [CrossRef] [PubMed]
- Tseng, H.W.; Tseng, H.K.; Ooi, K.E.; You, C.E.; Wang, H.K.; Kuo, W.H.; Ni, C.K.; Manabe, Y.; Lin, C.C. Controllable Enzymatic Synthesis of Natural Asymmetric Human Milk Oligosaccharides. JACS Au 2024, 4, 4496–4506. [Google Scholar] [CrossRef] [PubMed]
- Ruhaak, L.R.; Lebrilla, C.B. Advances in analysis of human milk oligosaccharides. Adv. Nutr. 2012, 3, 406S–414S. [Google Scholar] [CrossRef]
- Fan, Y.; Vinjamuri, A.; Tu, D. Determinants of human milk oligosaccharides profiles of participants in the STRONG kids 2 cohort. Front. Nutr. 2023, 10, 1105668. [Google Scholar] [CrossRef]
- Wei, Y.; Zheng, H.; Wu, S. Changes in the composition and content of oligosaccharides in Chinese breast milk-A case study of Jiangmen, Guangdong, China. Food Sci. 2017, 38, 180–186. [Google Scholar]
- Chen, Q.; Shi, F.; Zhao, L. Advances in in vivo metabolism and in vitro synthesis of breast milk oligosaccharides. Food Sci. 2021, 42, 379–387. [Google Scholar]
- Garrido, D.; Ruiz-Moyano, S.; Kirmiz, N.; Davis, J.C.; Totten, S.M.; Lemay, D.G.; Ugalde, J.A.; German, J.B.; Lebrilla, C.B.; Mills, D.A. A novel gene cluster allows preferential utilization of fucosylated milk oligosaccharides in Bifidobacterium longum subsp. longum SC596. Sci. Rep. 2016, 6, 35045. [Google Scholar] [CrossRef]
- Nishiyama, K.; Nagai, A.; Uribayashi, K. Two extracellular sialidases from Bifidobacterium bifidum promote the degradation of sialyl-oligosaccharides and support the growth of Bifidobacterium breve. Anaerobe 2018, 52, 22–28. [Google Scholar] [CrossRef]
- Cuxart, I.; Coines, J.; Esquivias, O.; Faijes, M.; Planas, A.; Biarnés, X.; Rovira, C. Enzymatic hydrolysis of human milk oligosaccharides. The molecular mechanism of bifidobacterium bifidum lacto-N-biosidase. ACS Catal. 2022, 12, 4737–4743. [Google Scholar] [CrossRef]
- Fushinobu, S.; Abou Hachem, M. Structure and evolution of the bifidobacterial carbohydrate metabolism proteins and enzymes. Biochem. Soc. Trans. 2021, 49, 563–578. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Li, Q.; Li, Y. Research progress on the molecular mechanism and probiotic effects of Bifidobacterium longum subsp. infantis using breast milk oligosaccharides. Food Sci. 2024, 45, 243–251. [Google Scholar]
- Tan, Y. Study on the Multi-Enzymatic Synthesis of Human Milk Oligosaccharides. Master Thesis, Shandong University, Jinan, China, 2021. [Google Scholar] [CrossRef]
- Xu, Z.; Li, N.; Chen, Y.L.; Zhang, R.W.; Zhu, W.Y. Advances in biological preparation of human milk oligosaccharides 2′-FL and 3-FL. J. Bioeng. 2020, 36, 2767–2778. [Google Scholar]
- Sprenger, N.; Binia, A.; Austin, S. Human milk oligosaccharides: Factors affecting their composition and their physiological significance. In Human Milk: Composition, Clinical Benefits and Future Opportunities; Karger Publishers: Basel Switzerland, 2019; Volume 90, pp. 43–56. [Google Scholar]
- Kellman, B.P.; Richelle, A.; Yang, J.Y. Elucidating Human Milk Oligosaccharide biosynthetic genes through network-based multi-omics integration. Nat. Commun. 2022, 13, 2455. [Google Scholar] [CrossRef]
- Zabel, B.; Yde, C.C.; Roos, P. Novel genes and metabolite trends in Bifidobacterium longum subsp. infantis Bi-26 metabolism of human milk oligosaccharide 2′-fucosyllactose. Sci. Rep. 2019, 9, 7983. [Google Scholar] [CrossRef]
- Xiao, M.; Zhang, C.; Duan, H.; Narbad, A.; Zhao, J.; Chen, W.; Zhai, Q.; Yu, L.; Tian, F. Cross-feeding of bifidobacteria promotes intestinal homeostasis: A lifelong perspective on the host health. NPJ Biofilms Microbiomes 2024, 10, 47. [Google Scholar] [CrossRef]
- Asakuma, S.; Hatakeyama, E.; Urashima, T. Physiology of consumption of human milk oligosaccharides by infant gut-associated bifidobacteria. J. Biol. Chem. 2011, 286, 34583–34592. [Google Scholar] [CrossRef]
- Underwood, M.A.; German, J.B.; Lebrilla, C.B. Bifidobacterium longum subspecies infantis: Champion colonizer of the infant gut. Pediatr. Res. 2015, 77, 229–235. [Google Scholar] [CrossRef]
- Li, M. Functional Genomics of Bifidobacterium longum subsp. infantis and Its Effect on DSS-Induced Colitis. Master’s Thesis, Jiangnan University, Wuxi, China, 2022. [Google Scholar] [CrossRef]
- Sakanaka, M.; Gotoh, A.; Yoshida, K.; Odamaki, T.; Koguchi, H.; Xiao, J.Z.; Kitaoka, M.; Katayama, T. Varied pathways of infant gut-associated Bifidobacterium to assimilate human milk oligosaccharides: Prevalence of the gene set and its correlation with bifidobacteria-rich microbiota formation. Nutrients 2020, 12, 71. [Google Scholar] [CrossRef]
- Salli, K.; Hirvonen, J.; Siitonen, J. Selective utilization of the human milk oligosaccharides 2′-fucosyllactose, 3-fucosyllactose, and difucosyllactose by various probiotic and pathogenic bacteria. J. Agric. Food Chem. 2020, 69, 170–182. [Google Scholar] [CrossRef]
- Garrido, D.; Ruiz-Moyano, S.; Mills, D.A. Release and utilization of N-acetyl-D-glucosamine from human milk oligosaccharides by Bifidobacterium longum subsp. infantis. Anaerobe 2012, 18, 430–435. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, X. Research progress on the relationship between human milk oligosaccharides and infant gut microbiota. Chin. J. Dairy Ind. 2020, 48, 31–34. [Google Scholar]
- Bode, L. Human milk oligosaccharides: Every baby needs a sugar mama. Glycobiology 2019, 22, 114–133. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Li, Y. Effects of human milk oligosaccharides on intestinal flora and immune function of infants. Chin. J. Microecol. 2021, 33, 597–601. [Google Scholar]
- Zheng, X.; Liu, Y. Research progress on the function and mechanism of human milk oligosaccharides in infant formula. China Dairy Ind. 2022, 50, 34–38. [Google Scholar]
- Wang, H.; Zhang, Y. Advances in the study of the role of human milk oligosaccharides in infant health. J. Hyg. Res. 2020, 49, 678–683. [Google Scholar]
- Puccio, G.; Alessandroni, R.; Riva, E. Effects of infant formula with human milk oligosaccharides on growth and morbidity: A randomized multicenter trial. J. Pediatr. Gastroenterol. Nutr. 2017, 64, 624–631. [Google Scholar] [CrossRef]
- Matsuki, T.; Yahagi, K.; Mori, H. A key genetic factor for fucosyllactose utilization affects infant gut microbiota development. Nat. Commun. 2016, 7, 11939. [Google Scholar] [CrossRef]
- Zuurveld, M.; Van Witzenburg, N.P.; Garssen, J. Immunomodulation by human milk oligosaccharides: The potential role in prevention of allergic diseases. Front. Immunol. 2020, 11, 801. [Google Scholar] [CrossRef]
- Sela, D.A.; Garrido, D.; Lerno, L. Bifidobacterium longum subsp. infantis ATCC 15697 α-fucosidases are active on fucosylated human milk oligosaccharides. Appl. Environ. Microbiol. 2012, 78, 795–803. [Google Scholar]
- Sela, D.A.; Li, Y.; Lerno, L. An infant-associated bacterial commensal utilizes breast milk sialyloligosaccharides. J. Biol. Chem. 2011, 286, 11909–11918. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, E.; Sakurama, H.; Kiyohara, M. Bifidobacterium longum subsp. infantis uses two different β-galactosidases for selectively degrading type-1 and type-2 human milk oligosaccharides. Glycobiology 2012, 22, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Yin, R.; Pang, J. Impact of complementary feeding on infant gut microbiome, metabolites and early development. Food Funct. 2024, 15, 10663–10678. [Google Scholar] [CrossRef] [PubMed]
- Cordeiro, R.L.; Pirolla, R.A.S.; Persinoti, G.F. N-glycan utilization by bifidobacterium gut symbionts involves a specialist β-mannosidase. J. Mol. Biol. 2019, 431, 732–747. [Google Scholar] [CrossRef]
- Gao, H.; Yang, B.; Stanton, C. Characteristics of bifidobacterial conjugated fatty acid and hydroxy fatty acid production and its potential application in fermented milk. LWT 2020, 120, 108940. [Google Scholar] [CrossRef]
- Thongaram, T.; Hoeflinger, J.L.; Chow, J.M. Human milk oligosaccharide consumption by probiotic and human-associated bifidobacteria and lactobacilli. J. Dairy Sci. 2017, 100, 7825–7833. [Google Scholar] [CrossRef]
- Craft, K.M.; Townsend, S.D. Mother knows best: Deciphering the antibacterial properties of human milk oligosaccharides. Acc. Chem. Res. 2019, 52, 760–768. [Google Scholar] [CrossRef]
- Zhao, M.; Wang, Y.; Cai, J. Study on the biological role and mechanism of bifidobacteria in the intestinal flora. Adv. Clin. Med. 2024, 14, 808. [Google Scholar] [CrossRef]
- Zhang, G.; Zhao, J.; Wen, R. 2′-Fucosyllactose promotes Bifidobacterium bifidum DNG6 adhesion to Caco-2 cells. J. Dairy Sci. 2020, 103, 9825–9834. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, Y.; Bukvicki, D.; Peng, Y.; Li, F.; Zhang, Q.; Yan, J.; Lin, S.; Liu, S.; Qin, W. Phenolic compounds in dietary target the regulation of gut microbiota: Role in health and disease. Food Biosci. 2024, 62, 105107. [Google Scholar] [CrossRef]
- Hirano, R.; Sakanaka, M.; Yoshimi, K. Next-generation prebiotic promotes selective growth of bifidobacteria, suppressing Clostridioides difficile. Gut Microbes 2021, 13, 1973835. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Jiang, W.; Zhu, X. Rifaximin alleviates intestinal barrier disruption and systemic inflammation via the PXR/NFκB/MLCK pathway and modulates intestinal Lachnospiraceae abundance in heat-stroke mice. Int. Immunopharmacol. 2024, 143, 113462. [Google Scholar] [CrossRef] [PubMed]
- Bajic, D.; Wiens, F.; Wintergerst, E. HMOs exert marked bifidogenic effects on children’s gut microbiota ex vivo, due to age-related Bifidobacterium species composition. Nutrients 2023, 15, 1701. [Google Scholar] [CrossRef] [PubMed]
- Berger, P.K.; Ong, M.L.; Bode, L.; Belfort, M.B. Human milk oligosaccharides and infant neurodevelopment: A narrative review. Nutrients 2023, 15, 719. [Google Scholar] [CrossRef]
- Desai, M.S.; Seekatz, A.M.; Koropatkin, N.M.; Kamada, N.; Hickey, C.A.; Wolter, M.; Pudlo, N.A.; Kitamoto, S.; Terrapon, N.; Muller, A.; et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 2016, 167, 1339–1353.e21. [Google Scholar] [CrossRef]
- Wenzel, T.J.; Gates, E.J.; Ranger, A.L. Short-chain fatty acids (SCFAs) alone or in combination regulate select immune functions of microglia-like cells. Mol. Cell. Neurosci. 2020, 105, 103493. [Google Scholar] [CrossRef]
- Scheurink, T.A.W.; Borkent, J.; Gangadin, S.S. Association between gut permeability, brain volume, and cognition in healthy participants and patients with schizophrenia spectrum disorder. Brain Behav. 2023, 13, e3011. [Google Scholar] [CrossRef]
- Peus, V.; Redelin, E.; Scharnholz, B. Breast-feeding in infancy and major depression in adulthood: A retrospective analysis. Psychother. Psychosom. 2012, 81, 189–190. [Google Scholar] [CrossRef]
- Berger, P.K.; Plows, J.F.; Jones, R.B. Human milk oligosaccharide 2′-fucosyllactose links feedings at 1 month to cognitive development at 24 months in infants of normal and overweight mothers. PLoS ONE 2020, 15, e0228323. [Google Scholar] [CrossRef]
- Al-Khafaji, A.H.; Jepsen, S.D.; Christensen, K.R. The potential of human milk oligosaccharides to impact the microbiota-gut-brain axis through modulation of the gut microbiota. J. Funct. Foods 2020, 74, 104176. [Google Scholar] [CrossRef]
- Xu, Y.; Wu, Y.; Liu, Y. Sustainable bioproduction of natural sugar substitutes: Strategies and challenges. Trends Food Sci. Technol. 2022, 129, 512–527. [Google Scholar] [CrossRef]
Name of Enzyme | Degradation Products of HMOs | Reference |
---|---|---|
Fucosidase | 2′-FL, LNFPI, LNFPII, LNFP III, LDFT, LNDFHI, 3-FL | [32,40] |
NanH2 | 3′-SL, 6′-SL | [31,32] |
β-galactosidase | LNT, LNB, LNH, LNnt, LNTri-Ⅱ | [31,32,41] |
β-n-acetylgalactosaminidase | LNTriⅡ, LNH, GlcNAC | [32,42] |
GNB/LNB phosphorylase | LNB | [33] |
Types of Gut Bacteria | Using the Characteristics of HMOs | Using the Types of HMOs | Reference |
---|---|---|---|
Bifidobacterium breve | A variety of HMOs are not available.degradable. Can use short-chain oligosaccharides | LNB, LNT, LNnT | [44,56] |
Bifidobacterium bifidum | It can degrade a variety of HMOs.but the degradation ability is medium. | LNB, LNT, LNnT, 2′-FL, 3′-FL | [44,57] |
Bifidobacterium infantis | It can utilize a wide range of HMOs, preferentially consume high fucosylated structures with high degree of polymerization, prefer shorter | LNB, LNT, LNnT, 2′-FL, 3′-FL, LNFPIII | [44,57,58] |
Bifidobacterium longum | A variety of HMOs are not available.degradable. Can use short-chain oligosaccharides | LNB, LNT, LDFT, 2′-FL, 3′-FL, 3′-SL, 6′-SL | [57,58,59] |
Bifidobacterium adolescens | No degradation of HMOs | — | [59] |
Bifidobacterium animalis | No degradation of HMOs | — | [59] |
Bacteroides fragilis | Degradable HMOs of all structures | LNB, LNT, LDFT, 2′-FL, 3′-FL, 3′-SL, 6′-SL, LNFPIII, LNnt | [59,60] |
Bacteroides thetaiotaomicron | Degradable HMOs of all structures | LNB, LNT, LDFT, 2′-FL, 3′-FL, 3′-SL, 6′-SL, LNFPIII, LNnt | [59,60] |
Name of Infant Formula | Added Nutrients | Content (%) |
---|---|---|
Aptamil German Platinum Edition | HMOs, GOS, FOS | 1.22% |
Abbott infant milk powder | HMOs | 1.8% |
Golden Crown Treasure Care Milk Powder | HMOs, lactoferrin, active protein OPN | 1–1.3% |
MENGNIU Future Star | HMOs, GOS, FOS α-Whey Protein and 10+ Nutrients | 2–2.5% |
Wyeth Revelation Blue Diamond 2 | HMOs | 0.72% |
Love Tammy miracle blue jar | HMOs, GOS, FOS | 0.32% |
Flying Crane Star Flying Zhuo Rui | OPO | - |
Enlightening the future | HMO, OPO | 0.5% |
Dutch version Meisujiaer | HMO, Novas | 0.41% |
BEBA Love His Beauty Baba Supreme Edition | HMO and 70% protein | 0.32% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, R.; Zhang, J.; Song, Y.; Liu, X.; Xu, H. Research Progress on the Degradation of Human Milk Oligosaccharides (HMOs) by Bifidobacteria. Nutrients 2025, 17, 519. https://doi.org/10.3390/nu17030519
Cai R, Zhang J, Song Y, Liu X, Xu H. Research Progress on the Degradation of Human Milk Oligosaccharides (HMOs) by Bifidobacteria. Nutrients. 2025; 17(3):519. https://doi.org/10.3390/nu17030519
Chicago/Turabian StyleCai, Ruitao, Jie Zhang, Yingte Song, Xiaoyong Liu, and Huilian Xu. 2025. "Research Progress on the Degradation of Human Milk Oligosaccharides (HMOs) by Bifidobacteria" Nutrients 17, no. 3: 519. https://doi.org/10.3390/nu17030519
APA StyleCai, R., Zhang, J., Song, Y., Liu, X., & Xu, H. (2025). Research Progress on the Degradation of Human Milk Oligosaccharides (HMOs) by Bifidobacteria. Nutrients, 17(3), 519. https://doi.org/10.3390/nu17030519