Electrochemical Immunosensor for Detection of Aflatoxin B1 Based on Indirect Competitive ELISA
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of the ELISA Parameters
2.2. Standard Calibration Curve of AFB1 in Spectrophotometric ELISA
2.3. Study of the Enzyme–Substrate Interaction
2.4. Chronoamperometry Study of Enzyme Activity Using TMB/H2O2
2.5. Analytical Performance of Designed Immunosensor
2.6. Detection of AFB1 in Peanut Samples
3. Conclusions
4. Materials and Methods
4.1. Reagents
4.2. Apparatus
4.3. Optimization of ELISA
4.4. Fabrication of the Electrode
4.5. Design of Electrochemical Immunosensor
4.6. Electrochemical Reaction
4.7. Sample Preparation
Author Contributions
Funding
Conflicts of Interest
References
- Van der Gaag, B.; Spath, S.; Dietrich, H.; Stigter, E.; Boonzaaijer, G.; van Osenbruggen, T.; Koopal, K. Biosensors and multiple mycotoxin analysis. Food Control 2003, 14, 251–254. [Google Scholar] [CrossRef]
- Rai, M.K.; Bonde, S.R.; Ingle, A.P.; Gade, A.K. Mycotoxin: rapid detection, differentiation and safety. J. Pharm. Educ. Res. 2012, 3, 22–34. [Google Scholar]
- Bennett, J.W.; Klich, M. Mycotoxins. Clin. Microbial. Rev. 2003, 16, 497–516. [Google Scholar] [CrossRef]
- Espinosa-Calderón, A.; Contreras-Medina, L.M.; Muñoz-Huerta, R.F.; Millán-Almaraz, J.R.; González, R.G.G.; Torres-Pacheco, I. Methods for Detection and Quantification of Aflatoxins. In Aflatoxins—Detection, Measurement and Control; InTech: Rijeka, Croatia, 2011; pp. 109–128. ISBN 978-953-307-711-6. [Google Scholar]
- Pittet, A. Modern methods and trends in mycotoxin analysis. Mitt. Lebensm. Hyg. 2005, 96, 424–444. [Google Scholar]
- Afsah-Hejri, L.; Jinap, S.; Hajeb, P.; Radu, S.; Shakibazadeh, S. A review on mycotoxins in food and feed: Malaysia case study. Compr. Rev. Food Sci. Food Saf. 2013, 12, 629–651. [Google Scholar] [CrossRef]
- Li, P.; Zhang, Q.; Zhang, D.; Guan, D.; Liu, D.X.; Fang, S; Wang, X. Aflatoxin Measurement and Analysis. In Aflatoxins—Detection, Measurement and Control; InTech: Rijeka, Croatia, 2011; pp. 183–203. ISBN 978-953-307-711-6. [Google Scholar]
- Alcaide-Molina, M.; Ruiz-Jiménez, J.; Mata-Granados, J.M.; Luque de Castro, M.D. High through-put aflatoxin determination in plant material by automated solid-phase extraction on-line coupled to laser-induced fluorescence screening and determination by liquid chromatography-triple quadrupole mass spectrometry. J. Chromatogr. A 2009, 1216, 1115–1125. [Google Scholar] [CrossRef] [PubMed]
- Ammida, N.H.S.; Micheli, L.; Piermarini, S.; Moscone, D.; Palleschi, G. In Barley: Comparative study of immunosensor and HPLC. Anal. Lett. 2006, 39, 1559–1572. [Google Scholar] [CrossRef] [Green Version]
- Ayejuyo, O.O.; Olowu, R.A.; Agbaje, T.O.; Atamenwan, M.; Osundiya, M.O. Enzyme-linked immunosorbent assay (ELISA) of aflatoxin B1 in groundnut and cereal grains in Lagos, Nigeria. Res. J. Chem. Sci. 2011, 1, 1–5. [Google Scholar]
- Zheng, M.Z.; Richard, J.L.; Binder, J. A review of rapid methods for the analysis of mycotoxins. Mycopathologia 2006, 161, 261–273. [Google Scholar] [CrossRef] [PubMed]
- Orlov, A.V.; Burenin, A.G.; Massarskaya, N.G.; Betin, A.V.; Nikitin, M.P.; Nikitin, P.I. Highly reproducible and sensitive detection of mycotoxins by label-free biosensors. Sens. Actuators B Chem. 2017, 246, 1080–1084. [Google Scholar] [CrossRef]
- Mosiello, L.; Lamberti, I. Biosensors for aflatoxins detection. In Aflatoxins—Detection, Measurement and Control; Torres-Pacheco, I., Ed.; InTech: Shanghai, China, 2011; pp. 147–160. [Google Scholar]
- Adányi, N.; Levkovets, I.A.; Rodriguez-Gil, S.; Ronald, A.; Váradi, M.; Szendro, I. Development of immunosensor based on OWLS technique for determining Aflatoxin B1 and Ochratoxin A. Biosens. Bioelectron. 2007, 22, 797–802. [Google Scholar] [CrossRef] [PubMed]
- Ammida, N.H.S.; Micheli, L.; Palleschi, G. Electrochemical immunosensor for determination of aflatoxin B1 in barley. Anal. Chim. Acta 2004, 520, 159–164. [Google Scholar] [CrossRef]
- Jin, X.; Jin, X.; Liu, X.; Chen, L.; Jiang, J.; Shen, G.; Yu, R. Biocatalyzed deposition amplification for detection of aflatoxin B1 based on quartz crystal microbalance. Anal. Chim. Acta 2009, 645, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Qin, Z.; Wu, X.; Jiang, H. Immune-biosensor for aflatoxin B1 based bio-electrocatalytic reaction on micro-comb electrode. Biochem. Eng. J. 2006, 32, 211–217. [Google Scholar] [CrossRef]
- Owino, J.H.O.; Arotiba, O.A.; Hendricks, N.; Songa, E.A.; Jahed, N.; Waryo, T.T.; Iwuoha, E.I. Electrochemical immunosensor based on polythionine/gold nanoparticles for the determination of aflatoxin B1. Sensors 2008, 8, 8262–8274. [Google Scholar] [CrossRef] [PubMed]
- Piermarini, S.; Micheli, L.; Ammida, N.H.S.; Palleschi, G.; Moscone, D. Electrochemical immunosensor array using a 96-well screen-printed microplate for aflatoxin B1 detection. Biosens. Bioelectron. 2007, 22, 1434–1440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rivas, G.A.; Rubianes, M.D.; Rodríguez, M.C.; Ferreyra, N.F.; Luque, G.L.; Pedano, M.L.; Parrado, C. Carbon nanotubes for electrochemical biosensing. Talanta 2007, 74, 291–307. [Google Scholar] [CrossRef] [PubMed]
- Sapsford, K.E.; Taitt, C.R.; Fertig, S.; Moore, M.H.; Lassman, M.E.; Maragos, C.M.; Shriver-Lake, L.C. Indirect competitive immunoassay for detection of aflatoxin B1 in corn and nut products using the array biosensor. Biosens. Bioelectron. 2006, 21, 2298–2305. [Google Scholar] [CrossRef] [PubMed]
- Sun, A.L.; Qi, Q.A.; Dong, Z.L.; Liang, K.Z. An electrochemical enzyme immunoassay for aflatoxin B1 based on bio-electrocatalytic reaction with room-temperature ionic liquid and nanoparticle-modified electrodes. Sens. Instrum. Food Qual. Saf. 2008, 2, 43–50. [Google Scholar] [CrossRef]
- Tan, Y.; Chu, X.; Shen, G.L.; Yu, R.Q. A signal-amplified electrochemical immunosensor for aflatoxin B1 determination in rice. Anal. Biochem. 2009, 387, 82–86. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Liu, X.; Li, Y.; Ying, Y. A simple and rapid optical biosensor for detection of aflatoxin B1 based on competitive dispersion of gold nanorods. Biosens. Bioelectron. 2013, 47, 361–367. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, C.R.; Wang, W.C.; Xue, J.; Huang, Y.L.; Yang, X.X.; Qiu, J.F. A novel electrochemical immunosensor for highly sensitive detection of aflatoxin B1 in corn using single-walled carbon nanotubes/chitosan. Food Chem. 2016, 192, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Farah, A.A.; Sukor, R.; Fatimah, A.B.; Jinap, S. Application of nanomaterials in the development of biosensors for food safety and quality control. Int. Food Res. J. 2016, 23, 1849–1856. [Google Scholar]
- Linting, Z.; Ruiyi, L.; Zaijun, L.; Qianfang, X.; Yinjun, F.; Junkang, L. An immunosensor for ultrasensitive detection of aflatoxin B1 with an enhanced electrochemical performance based on graphene/conducting polymer/gold nanoparticles/the ionic liquid composite film on modified gold electrode with electrodeposition. Sens. Actuators B Chem. 2012, 174, 359–365. [Google Scholar] [CrossRef]
- Guo, Y. Efficient Mixed-Level Fractional Factorial Designs: Evaluation, Augmentation and Application. Ph.D. Thesis, The Florida State University, Tallahassee, FL, USA, 2006. [Google Scholar]
- Azri, F.A.; Sukor, R.; Hajian, R.; Yusof, N.A.; Bakar, F.A.; Selamat, J. Modification strategy of screen-printed carbon electrode with functionalized multi-walled carbon nanotube and chitosan matrix for biosensor development. Asian J. Chem. 2017, 29, 31–36. [Google Scholar] [CrossRef]
- Kadir, M.K.A.; Tothill, I.E. Development of an electrochemical immunosensor for fumonisins detection in foods. Toxins 2010, 2, 382–398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, G.; Lin, Y.; Wang, J. Monitoring environmental pollutants by microchip capillary electrophoresis with electrochemical detection. Talanta 2006, 68, 497–503. [Google Scholar] [CrossRef] [PubMed]
- Heurich, M. Development of an Affinity Sensor for Ochratoxin A. Ph.D. Thesis, Cranfield University, Cranfield, UK, 2008. [Google Scholar]
- Salam, F.; Tothill, I.E. Detection of Salmonella Typhimurium using an electrochemical immunosensor. Biosens. Bioelectron. 2009, 24, 2630–2636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, Z.H.; Jin, W.R. Electrochemical detection of horseradish peroxidase at zeptomole level. Electroanalysis 2002, 14, 1674–1678. [Google Scholar] [CrossRef]
- Wang, J. Analytical Electrochemistry, 2nd ed.; John Wiley & Sons: Third Avenue, New York, NY, USA, 2000; ISBN 0-471-22823-0. [Google Scholar]
- Azri, F.; Selamat, J.; Sukor, R. Electrochemical immunosensor for the detection of aflatoxin B1 in palm kernel cake and feed samples. Sensors 2017, 17, 2776. [Google Scholar] [CrossRef] [PubMed]
- Fernández, H.; Arévalo, F.J.; Granero, A.M.; Robledo, S.N.; Nieto, C.H.D.; Riberi, W.I.; Zon, M.A. Electrochemical biosensors for the determination of toxic substances related to food safety developed in South America: Mycotoxins and Herbicides. Chemosensors 2017, 5, 23. [Google Scholar] [CrossRef]
- Zhang, L.; Dou, X.W.; Zhang, C.; Logrieco, A.; Yang, M.H. A review of current methods for analysis of mycotoxins in herbal medicines. Toxins 2018, 10, 65. [Google Scholar] [CrossRef] [PubMed]
- Pereira, V.L.; Fernandes, J.O.; Cunha, S.C. Mycotoxins in cereals and related foodstuffs: A review on occurrence and recent methods of analysis. Trends Food Sci. Technol. 2014, 36, 96–136. [Google Scholar] [CrossRef]
Coating Antigen Concentration, AFB1–BSA (µg/mL) | Primary Antibody Concentration, Anti-AFB1 (v/v) | Coefficient of Determination, R2 | IC50 (ng/mL) | Hill Slope | Top Value on y-axis, A | Bottom Value on y-axis, D | A/D | |
---|---|---|---|---|---|---|---|---|
A | 0.5 | 1/10,000 | 0.979 | 0.024 | −0.325 | 1.080 | −0.033 | 32.73 |
B | 0.25 | 1/5000 | 0.991 | 0.018 | −0.420 | 1.022 | −0.014 | 73.00 |
C | 1.0 | 1/2500 | 0.995 | 2.457 | −1.798 | 0.984 | 0.254 | 3.874 |
D | 1.0 | 1/20,000 | 0.969 | 0.056 | −0.650 | 0.973 | 0.106 | 9.179 |
E | 1.0 | 1/10,000 | 0.913 | 0.059 | −0.317 | 1.038 | 0.196 | 5.296 |
F | 0.25 | 1/2500 | 0.967 | 0.004 | −0.239 | 1.176 | 0.029 | 40.55 |
Detection Method | AFB1 Concentration (ng/mL) | % Recovery | |
---|---|---|---|
Spiked | Detected ± SD | ||
Electrochemical Immunosensor | 0 | 0.008 ± 0.005 | - |
0.1 | 0.12 ± 0.028 | 111.8 | |
1 | 1.28 ± 0.33 | 127.1 | |
10 | 10.75 ± 0.67 | 107.5 | |
Spectrophotometric ELISA | 0 | 0.004 ± 0.002 | - |
0.1 | 0.087 ± 0.015 | 83.2 | |
1 | 1.14 ± 0.28 | 113.6 | |
10 | 8.03 ± 0.91 | 80.3 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azri, F.A.; Sukor, R.; Selamat, J.; Abu Bakar, F.; Yusof, N.A.; Hajian, R. Electrochemical Immunosensor for Detection of Aflatoxin B1 Based on Indirect Competitive ELISA. Toxins 2018, 10, 196. https://doi.org/10.3390/toxins10050196
Azri FA, Sukor R, Selamat J, Abu Bakar F, Yusof NA, Hajian R. Electrochemical Immunosensor for Detection of Aflatoxin B1 Based on Indirect Competitive ELISA. Toxins. 2018; 10(5):196. https://doi.org/10.3390/toxins10050196
Chicago/Turabian StyleAzri, Farah Asilah, Rashidah Sukor, Jinap Selamat, Fatimah Abu Bakar, Nor Azah Yusof, and Reza Hajian. 2018. "Electrochemical Immunosensor for Detection of Aflatoxin B1 Based on Indirect Competitive ELISA" Toxins 10, no. 5: 196. https://doi.org/10.3390/toxins10050196
APA StyleAzri, F. A., Sukor, R., Selamat, J., Abu Bakar, F., Yusof, N. A., & Hajian, R. (2018). Electrochemical Immunosensor for Detection of Aflatoxin B1 Based on Indirect Competitive ELISA. Toxins, 10(5), 196. https://doi.org/10.3390/toxins10050196