Mycobiota and Mycotoxin Contamination of Traditional and Industrial Dry-Fermented Sausage Kulen
Abstract
:1. Introduction
2. Results and Discussion
2.1. LC-MS/MS Validation
2.2. Mycobiota in Traditional and Industrial Kulen
Genus | Species | Traditional Kulen (n = 16) | Industrial Kulen (n = 10) | ||
---|---|---|---|---|---|
N | Dr (%) | N | Dr (%) | ||
Aspergillus | A. pseudoglaucus | 6 | 14.3 | 2 | 9.5 |
A. proliferans | 1 | 2.4 | 2 | 9.5 | |
A. tubingensis | 1 | 2.4 | - | - | |
A. westerdijkiae * | 1 | 2.4 | - | - | |
Penicillium | P. solitum | 7 | 16.6 | 5 | 23.8 |
P. commune ** | 8 | 19.0 | 1 | 4.8 | |
P. corylophilum | 4 | 9.5 | 4 | 19.1 | |
P. citrinum | 4 | 9.5 | 3 | 14.3 | |
P. polonicum ** | 5 | 11.9 | - | - | |
P. sumatraense | 1 | 2.4 | 2 | 9.5 | |
P. atramentosum | - | - | 2 | 9.5 | |
P. brevicompactum | 2 | 4.8 | - | - | |
P. nordicum * | 1 | 2.4 | - | - | |
P. nalgiovense | 1 | 2.4 | - | - | |
Total N of isolates | 42 | 21 |
2.3. Mycotoxins in Traditional and Industrial Kulen
Mycotoxins | Traditional Kulen (n = 16) | Industrial Kulen (n = 10) | |
---|---|---|---|
AFB1 | Mean of positives * ± SD ((µg/kg) | <LOD | <LOD |
Min (µg/kg) | <LOD | <LOD | |
Max (µg/kg) | <LOD | <LOD | |
OTA | Mean of positives * ± SD | 2.16 ± 2.72 | 0.42 ± na |
n+/n+% | 6/38 | 1/10 | |
Min (µg/kg) | <LOD | <LOD | |
Max (µg/kg) | 6.95 | 0.42 | |
CPA | Mean of positives * ± SD (µg/kg) | 7.39 ± 4.09 | <LOD |
n+/n+% | 5/31 | 0/0 | |
Min (µg/kg) | <LOD | <LOD | |
Max (µg/kg) | 13.35 | <LOD |
3. Conclusions
4. Materials and Methods
4.1. Dry-Fermented Sausage Kulen Samples
4.2. Isolation and Traditional Identification of Mycobiota
4.3. Molecular Identification of Mycobiota
4.4. Mycotoxin Determination
4.4.1. Standards and Reagents
4.4.2. Sample Preparation
4.4.3. LC-MS/MS Analysis
4.4.4. LC-MS/MS Validation
4.5. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zdolec, N. Technological interventions in fermented meat production: The commercial perspective. In Innovations in Technologies for Fermented Food and Beverage Industries; Sandeep, P., Shetty, P., Eds.; Springer Publishing: New York, NY, USA, 2018; pp. 175–188. [Google Scholar] [CrossRef]
- Comi, G.; Orlić, S.; Redžepović, S.; Urso, R.; Iacumin, L. Moulds isolated from Istrian dried ham at the pre-ripening and ripening level. Int. J. Food Microbiol. 2004, 96, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Asefa, D.T.; Kure, C.F.; Gjerde, R.O.; Omer, M.K.; Langsrud, S.; Nesbakken, T.; Skaar, I. Fungal growth pattern, sources and factors of mould contamination in a dry-cured meat production facility. Int. J. Food Microbiol. 2010, 140, 131–135. [Google Scholar] [CrossRef]
- Sunesen, L.O.; Stahnke, L.H. Mould starter cultures for dry sausages-selection, application and effects. Meat Sci. 2003, 65, 935–948. [Google Scholar] [CrossRef]
- Alapont, C.; López-Mendoza, M.C.; Gil, J.V.; Martínez-Culebras, P.V. Mycobiota and toxigenic Penicillium species on two Spanish dry-cured ham manufacturing plants. Food Addit. Contam. A 2014, 31, 93–104. [Google Scholar] [CrossRef]
- Zadravec, M.; Vahčić, N.; Brnić, D.; Markov, K.; Frece, J.; Beck, R.; Lešić, T.; Pleadin, J. A study of surface moulds and mycotoxins in Croatian traditional dry-cured meat products. Int. J. Food Microbiol. 2020, 317, 108459. [Google Scholar] [CrossRef] [PubMed]
- Pleadin, J.; Zadravec, M.; Brnić, D.; Perković, I.; Škrivanko, M.; Kovačević, D. Moulds and mycotoxins detected in the regional speciality fermented sausage ’slavonski kulen during a 1-year production period. Food Addit. Contam. A 2017, 34, 282–290. [Google Scholar] [CrossRef] [PubMed]
- Magista, D.; Susca, A.; Ferrara, M.; Logrieco, A.F.; Perrone, G. Penicillium species: Crossroad between quality and safety of cured meat production. Curr. Opin. Food Sci. 2017, 17, 36–40. [Google Scholar] [CrossRef]
- Perrone, G.; Rodriguez, A.; Magistà, D.; Magan, N. Insights into existing and future fungal and mycotoxin contamination of cured meats. Curr. Opin. Food Sci. 2019, 29, 20–27. [Google Scholar] [CrossRef]
- Hussein, H.S.; Brasel, J.M. Toxicity, metabolism, and impact of mycotoxins on humans and animals. Toxicology 2001, 167. [Google Scholar] [CrossRef]
- Montanha, F.P.; Anater, A.; Burchard, J.F.; Bittencourt Luciano, F.; Meca, G.; Manyes, L.; Pimpão, C.T. Mycotoxins in dry-cured meats: A review. Food Chem. Toxicol. 2018, 111, 494–502. [Google Scholar] [CrossRef] [PubMed]
- Bailly, J.D.; Guerre, P. Mycotoxins in meat and processed meat products. In Food Microbiology and Food Safety—Safety of Meat and Processed Meat; Toldrá, F., Ed.; Springer: New York, NY, USA, 2009; pp. 83–124. [Google Scholar]
- International Agency for Research on Cancer (IARC). Some Naturally Occurring Substances: Food Items and Constituents, Heterocyclic Aromatic Amines and Mycotoxins. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; IARC Press: Lyon, France, 1993; Volume 56. [Google Scholar]
- Roncada, P.; Altafini, A.; Fedrizzi, G.; Guerrini, A.; Polonini, G.I.; Caprai, E. Ochratoxin A contamination of the casing and the edible portion of artisan salamis produced in two Italian regions. World Mycotoxin J. 2020, 13, 553–562. [Google Scholar] [CrossRef]
- Kudumija, N.; Vulić, A.; Lešić, T.; Vahčić, N.; Pleadin, J. Aflatoxins and ochratoxin A in dry-fermented sausages in Croatia, by LC-MS/MS. Food Addit. Contam. B 2020, 13, 225–232. [Google Scholar] [CrossRef] [PubMed]
- International Agency for Research on Cancer (IARC). Aflatoxins. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; IARC Press: Lyon, France, 2002; Volume 82. [Google Scholar]
- Pleadin, J.; Malenica Staver, M.; Vahčić, N.; Kovačević, D.; Milone, S.; Saftić, L.; Scortichini, G. Survey of aflatoxin B1 and ochratoxin A occurrence in traditional meat products coming from Croatian households and markets. Food Control 2015, 52, 71–77. [Google Scholar] [CrossRef]
- Ostry, V.; Toman, J.; Grosse, Y.; Malir, F. Cyclopiazonic acid: 50th anniversary of its discovery. World Mycotoxin J. 2018, 11, 135–148. [Google Scholar] [CrossRef] [Green Version]
- Bailly, J.D.; Tabuc, C.; Quérin, A.; Guerre, P. Production and stability of patulin, ochratoxin A, citrinin, and cyclopiazonic acid on dry cured ham. J. Food Prot. 2005, 68, 1516–1520. [Google Scholar] [CrossRef]
- Vulić, A.; Lešić, T.; Kudumija, N.; Zadravec, M.; Kiš, M.; Vahčić, N.; Pleadin, J. The development of LC-MS/MS method of determination of cyclopiazonic acid in dry-fermented meat products. Food Control 2020, 123, 107814. [Google Scholar] [CrossRef]
- Peromingo, B.; Rodríguez, M.; Núñez, F.; Silva, A.; Rodríguez, A. Sensitive determination of cyclopiazonic acid in dry-cured ham using a QuEChERS method and UHPLC–MS/MS. Food Chem. 2018, 263, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Peromingo, B.; Rodríguez, A.; Delgado, J.; Cordoba, J.J.; Rodríguez, M. Relationship between cyclopiazonic acid production and gene expression in Penicillium griseofulvum under dry-cured ham processing environmental conditions. Mycotoxin Res. 2019, 35, 353–361. [Google Scholar] [CrossRef] [PubMed]
- Delgado, J.; Peromingo, B.; Rodríguez, A.; Rodríguez, M. Biocontrol of Penicillium griseofulvum to reduce cyclopiazonic acid contamination in dry- fermented sausages. Int. J. Food Microbiol. 2019, 293, 1–6. [Google Scholar] [CrossRef]
- European Food Safety Auhority (EFSA). Minutes of the 18th Plenary Meeting of the Scientific Panel on Contaminants in the Food Chain (CONTAM), Parma, Italy, 12–14 October 2006; EFSA/CONTAM/493; EFSA: Parma, Italy, 2006. [Google Scholar]
- Bertuzzi, T.; Gualla, A.; Morlacchini, M.; Pietri, A. Direct and indirect contamination with ochratoxin A of ripened pork products. Food Control 2013, 34, 79–83. [Google Scholar] [CrossRef]
- Perši, N.; Pleadin, J.; Kovačević, D.; Scortichini, G.; Milone, S. Ochratoxin A in raw materials and cooked meat products made from OTA-treated pigs. Meat Sci. 2014, 96, 203–210. [Google Scholar] [CrossRef]
- Pleadin, J.; Kudumija, N.; Kovačević, D.; Scortichini, G.; Milone, S.; Kmetič, I. Comparison of ochratoxin A levels in edible pig tissues and in biological fluids after exposure to a contaminated diet. Mycotoxin Res. 2016, 32, 145–155. [Google Scholar] [CrossRef] [PubMed]
- Commision decision (EC) No 2002/657 of 12 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and interpretation of results. Off. J. Eur. Union 2002, 45, 109–137. Available online: http://data.europa.eu/eli/dec/2002/657/oj (accessed on 6 September 2021).
- Lešić, T.; Vahčić, N.; Kos, I.; Zadravec, M.; Sinčić Pulić, B.; Bogdanović, T.; Petričević, S.; Listeš, E.; Škrivanko, M.; Pleadin, J. Characterization of Traditional Croatian Household- Produced Dry- Fermented Sausages. Foods 2020, 9, 990. [Google Scholar] [CrossRef]
- Pitt, J.I.; Hocking, A.D. Fungi and Food Spoilage; Springer: New York, NY, USA, 2009. [Google Scholar]
- Vila, G.; Segura, J.A.; Ludemann, V.; Pose, G.N. Surface mycobiota of home-made dry cured sausages from the main producing regions of Argentina and morphological and biochemical characterization of Penicillium nalgiovense populations. Int. J. Food Microbiol. 2019, 309, 108312. [Google Scholar] [CrossRef]
- Papagianni, M.; Ambrosiadis, I.; Filiousis, G. Mould growth on traditional Greek sausages and penicillin production by Penicillium isolates. Meat Sci. 2007, 76, 653–657. [Google Scholar] [CrossRef] [PubMed]
- Geisen, R.; Schmidt- Heydt, M.; Touhami, N.; Himmelsbach, A. New aspects of ochratoxin A and citrinin biosynthesis in Penicillium. Curr. Opin. Food Sci. 2018, 23, 23–31. [Google Scholar] [CrossRef]
- Samson, R.A.; Houbraken, J.; Thrane, U.; Frisvad, J.C.; Andersen, B. Food and Indoor Fungi, 2nd ed.; Westerdijk Fungal Biodiversity Institute: Utrecht, The Netherlands, 2019. [Google Scholar]
- Asefa, D.T.; Kure, C.F.; Gjerde, R.O.; Langsrud, S.; Omer, M.K.; Nesbakken, T.; Skaar, I. A HACCP plan for mycotoxigenic hazards associated with dry-cured meat production processes. Food Control 2011, 22, 831–837. [Google Scholar] [CrossRef]
- Markov, K.; Pleadin, J.; Bevardi, M.; Vahčić, N.; Sokolić- Mihalak, D.; Frece, J. Natural occurrence of aflatoxin B1, ochratoxin A and citrinin in Croatian fermented meat products. Food Control 2013, 34, 312–317. [Google Scholar] [CrossRef]
- Pleadin, J.; Vulić, A.; Perši, N.; Škrivanko, M.; Capek, B.; Cvetnić, Ž. Annual and regional variations of aflatoxin B1 levels seen in grains and feed coming from Croatian dairy farms over a 5-year period. Food Control 2015, 47, 221–225. [Google Scholar] [CrossRef]
- Kos, J.; Janić Hajnal, E.; Šarić, B.; Jovanov, P.; Mandić, A.; Đuragić, O.; Kokić, B. Aflatoxins in maize harvested in Republic of Serbia over the period 2012–2016. Food Addit. Contam. B. 2018, 11, 246–255. [Google Scholar] [CrossRef]
- Ministero della Sanità. CIRCOLARE 9 giugno 1999, n.10. Direttive in Materia di Controllo Ufficiale sui Prodotti Alimentari: Valori Massimi Ammissibili di Micotossine Nelle Derrate Alimentari di Origine Nazionale, Comunitaria e Paesi Terzi. Gazzetta Ufficiale 1999, 135. Available online: https://tinyurl.com/y8q4uqzg (accessed on 9 August 2021).
- Silva, J.J.; Puel, O.; Lorber, S.; Ferranti, L.S.; Ortiz, L.F.; Taniwaki, M.H.; Iamanaka, B.T.; Fungaro, M.H.P. Occurrence and diversity of Aspergillus in commercial yerba mate elaborated for the Brazilian beverage ‘chimarrão’. Food Res. Int. 2019, 121, 940–946. [Google Scholar] [CrossRef]
- Storari, M.; Bigler, L.; Gessler, C.; Broggini, G.A.L. Assessment of the ochratoxin A production ability of Aspergillus tubingensis. Food Addit. Contam. A 2012, 29, 1450–1454. [Google Scholar] [CrossRef] [PubMed]
- Pleadin, J.; Kovačević, D.; Perši, N. Ochratoxin A contamination of the autochthonous dry-cured meat product “Slavonski Kulen” during a six-month production process. Food Control 2015, 57, 377–384. [Google Scholar] [CrossRef]
- Iacumin, L.; Chiesa, L.; Boscolo, D.; Manzano, M.; Cantoni, C.; Orlic, S.; Comi, G. Moulds and ochratoxin A on surfaces of artisanal and industrial dry sausages. Food Microbiol. 2009, 26, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Bernáldez, V.; Córdoba, J.J.; Rodríguez, M.; Cordero, M.; Polo, L.; Rodríguez, A. Effect of Penicillium nalgiovense as protective culture in processing of dry-fermented sausage “salchichón”. Food Control 2013, 32, 69–76. [Google Scholar] [CrossRef]
- Commission Regulation (EC) No 401/2006 of 23 February 2006 laying down the methods of sampling and analysis for the official control of the levels of mycotoxins in foodstuffs. Off. J. Eur. Union 2006, 49, 3–25. Available online: http://data.europa.eu/eli/reg/2006/401/oj (accessed on 8 September 2021).
- Ministry of Agriculture. Regulation on meat products. Off. Gaz. 2018, 62/18. Available online: https://narodne-novine.nn.hr/clanci/sluzbeni/2018_07_62_1292.html (accessed on 20 January 2020).
- Ministry of Agriculture (MA). Product Specification „Slavonski kulen“/“Slavonski kulin“ for Registration of Protected Geographical Indication. 2014. Available online: https://poljoprivreda.gov.hr/UserDocsImages/arhiva/datastore/filestore/101/Izmijenjena_Specifikacija_proizvoda_slavonski_kulen.pdf (accessed on 23 August 2021).
- Kovačević, D. Technology of Kulen and Other Fermented Sausages; Faculty of Food Technology: Osijek, Croatia, 2014. [Google Scholar]
- Wenzl, T.; Haedrich, J.; Schaechtele, A.; Robouch, P.; Stroka, J. Guidance Document on the Estimation of LOD and LOQ for Measurements in the Field of Contaminants in Feed and Food; Publications Office of the European Union: Luxembourg, 2016. [Google Scholar] [CrossRef]
Mycotoxins | LOD (μg/kg) | LOQ (μg/kg) | Recovery (%) | Matrix Effect (%) |
---|---|---|---|---|
OTA | 0.18 | 0.59 | 119.4 | 1.81 |
AFB1 | 0.03 | 0.11 | 91.4 | 6.36 |
CPA | 0.49/2.45 * | 1.61/8.07 * | 97.52 | 1.86 |
Analyte | Precursor Ion | Fragmentor Voltage (V) | Product Ions | Collision Energy (eV) |
---|---|---|---|---|
OTA | 404 | 130 | 357.9 | 25 |
239.0 | 10 | |||
AFB1 | 313.1 | 170 | 285.1 | 23 |
269.1 | 30 | |||
CPA | 337.2 | 110 | 196.3 | 25 |
182.1 | 20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lešić, T.; Zadravec, M.; Zdolec, N.; Vulić, A.; Perković, I.; Škrivanko, M.; Kudumija, N.; Jakopović, Ž.; Pleadin, J. Mycobiota and Mycotoxin Contamination of Traditional and Industrial Dry-Fermented Sausage Kulen. Toxins 2021, 13, 798. https://doi.org/10.3390/toxins13110798
Lešić T, Zadravec M, Zdolec N, Vulić A, Perković I, Škrivanko M, Kudumija N, Jakopović Ž, Pleadin J. Mycobiota and Mycotoxin Contamination of Traditional and Industrial Dry-Fermented Sausage Kulen. Toxins. 2021; 13(11):798. https://doi.org/10.3390/toxins13110798
Chicago/Turabian StyleLešić, Tina, Manuela Zadravec, Nevijo Zdolec, Ana Vulić, Irena Perković, Mario Škrivanko, Nina Kudumija, Željko Jakopović, and Jelka Pleadin. 2021. "Mycobiota and Mycotoxin Contamination of Traditional and Industrial Dry-Fermented Sausage Kulen" Toxins 13, no. 11: 798. https://doi.org/10.3390/toxins13110798
APA StyleLešić, T., Zadravec, M., Zdolec, N., Vulić, A., Perković, I., Škrivanko, M., Kudumija, N., Jakopović, Ž., & Pleadin, J. (2021). Mycobiota and Mycotoxin Contamination of Traditional and Industrial Dry-Fermented Sausage Kulen. Toxins, 13(11), 798. https://doi.org/10.3390/toxins13110798