Centipede Venoms and Their Components: Resources for Potential Therapeutic Applications
Abstract
:1. Introduction
2. Pharmacologically Important Proteins/Peptides from Centipedes
2.1. Ion Channel Modulators
2.2. Antimicrobial Peptides
2.3. Enzymes
2.3.1. Proteases
2.3.2. Metalloproteases
2.3.3. Esterases
2.3.4. Phospholipase A2
2.3.5. γ-Glutamyl Transpeptidases
2.3.6. Other Enzymes
2.4. Enzyme Inhibitors
2.5. Anticoagulants or Antithrombotic Peptides
2.6. Centipede Extracts and Anticancer Activity
2.7. Other Proteins and Substances
3. Therapeutic Potential of Centipede Venoms and Their Components
Described Components | Centipede Species | Activities | References |
---|---|---|---|
RhTx | Ssm | Activator of TRPV1 channel | [29] |
µ-SLPTX-Ssm1a | Ssm | Inhibitor of (TTX-S) Na+ channel | [12] |
κ-SLPTX-Ssm1a | Ssm | Inhibitor of K+channel | [12] |
κ-SLPTX-Ssm2a | Ssm | Inhibitor of K+channel | [12] |
κ-SLPTX-Ssm3a | Ssm | Inhibitor of K+channel | [12] |
ω-SLPTX-Ssm1a | Ssm | Activator of Ca2+ channel | [12] |
ω-SLPTX-Ssm2a | Ssm | Inhibitor of Ca2+ channel | [12] |
μ-SLPTX-Ssm6a | Ssm | Potent inhibitor of NaV1.7 | [9] |
SsmTx-I | Ssm | A selective blocker of KV2.1 channel | [6] |
GenBank accession No.: KC144287, KC144104, KC144040, KC144849, KC144556, KC144606, KC144226 | Ssd | Inhibitor of K+ channel | [11] |
GenBank accession No.: KC144347, KC144448, KC144967, KC145039 | Ssd | Inhibitor of Ca2+ channel | [11] |
GenBank accession No.: KC144793 | Ssd | Inhibitor of Na+ channel | [11] |
Scolopin 1 | Ssm | AMP Moderate hemolytic activity | [47] |
Scolopin 2 | Ssm | AMP Moderate hemolytic activity | [47] |
Lactoferricin B like peptide (LBLP) | Ssm | AMP | [49] |
Scolopendin 1 | Ssm | AMP | [45] |
Scolopendin 2 | Ssm | AMP | [50] |
Scolopendrasin I | Ssm | AMP | [51] |
Scolopendrasin II | Ssm | AMP | [52] |
Scolopendrasin VII | Ssm | AMP Anticancer activities against U937 and Jurkat leukemia cells | [53] |
Ten (10) synthetic peptides (Assigned no name) | Ssm | AMP | [31] |
Three (3) naphthylamidase-type aminopeptidases (enzymes) | Ssm | Proteases | [61] |
Endo- as well as exo-peptidases (enzymes) | Ssm | Proteases Fibrinolytic activity | [1] |
Scolonase (enzyme) | Ssm | Serine protease Fibrinolytic activity Plasmin activator | [62] |
Trypsin-like S1 family (enzyme) | Scolopendrid | Proteases | [15] |
Subtilisin-like S8 family (enzyme) | Scolopendrids | Proteases | [15] |
Enzymes (KC145121,KC145122) | Ssd | Trypsin-like proteases | [11] |
~10% of venom proteins | T. longicornis | Astacin-like metalloendoproteases | [15] |
Enzymes | S. morsitans | Non-specific esterases | [1,61,70] |
Enzyme | C. westwoodi | Type B carboxyl esterase | [15] |
A number of isofroms | T. longicornis | Porphyromonas-type peptidyl arginine deiminase (PPAD) | [15] |
Enzymes | Ot. pradoi, S. viridicornis, S. viridis | PLA2 | [15,16,63] |
Scol/pla | S. viridis | PLA2 | [16] |
Transcripts | S. alternans, Ssm, E. rubripes | PLA2 homologs | [15] |
Enzyme | Ssd | γ-Glutamyl transpeptidase (GTT) Inducer of platelet aggregation | [15] |
Transcripts | Five species tested in reference | γ-Glutamyl transpeptidase (GTT) | [15] |
Enzyme | Scolopendrids | Glucose dehydrogenase | [15] |
Cystatin type-1 | E. rubripes | Peptidase inhibitors | [15] |
Two cystatin isoforms | E. rubripes | Peptidase inhibitors | [15] |
A natural peptide | Ssm | FXa inhibitor, | [13] |
GenBank accession No.: KC144061 | Ssd | Trypsin inhibitor | [11] |
Centipede acidic protein (CAP) | Scolopendrids | Suppressor of atherosclerosis Improver of hemorheological disturbances | [78] |
Antithrombotic peptide | Ssm | Inhibitor of platelet aggregation | [17] |
GenBank accession No.: KC144034 | Ssd | Platelet aggregation and Hemolytic activity | [11] |
GenBank accession No.: KC144430 | Ssd | Anticoagulation | [11] |
Centipede extracts | Ssm | Antitumor effect on cervical tumor in mice. Inhibitor of A375 cell proliferation. Anticancer effects against epidermal growth factor receptor (EGFR)-dependent cancers. Inducer of high-EGFR expression cell apoptosis | [79,80,81] |
Serotonin | S. viridicornis | Algesics that cause instant sharp pain | [1,82,83] |
Histamine | S. subspinipes | Algesics that cause instant sharp pain | [1,82,84] |
Polysaccharide | Ssm | Inhibitor of tumor cells | [86] |
Transferrin | E. rubripes, S. morsitans | Potential antimicrobial component | [15] |
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Undheim, E.A.; King, G.F. On the venom system of centipedes (chilopoda), a neglected group of venomous animals. Toxicon 2011, 57, 512–524. [Google Scholar] [CrossRef] [PubMed]
- Edgecombe, G.D.; Giribet, G. Evolutionary biology of centipedes (myriapoda: Chilopoda). Annu. Rev. Entomol. 2007, 52, 151–170. [Google Scholar] [CrossRef] [PubMed]
- Veraldi, S.; Cuka, E.; Gaiani, F. Scolopendra bites: A report of two cases and review of the literature. Int. J. Dermatol. 2014, 53, 869–872. [Google Scholar] [CrossRef] [PubMed]
- Fry, B.G.; Vidal, N.; Norman, J.A.; Vonk, F.J.; Scheib, H.; Ramjan, S.F.; Kuruppu, S.; Fung, K.; Hedges, S.B.; Richardson, M.K.; et al. Early evolution of the venom system in lizards and snakes. Nature 2006, 439, 584–588. [Google Scholar] [CrossRef] [PubMed]
- Lesniewska, M.; Bonato, L.; Minelli, A.; Fusco, G. Trunk anomalies in the centipede Stigmatogaster subterranea provide insight into late-embryonic segmentation. Arthropod Struct. Dev. 2009, 38, 417–426. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Li, J.; Zhang, F.; Liu, Z. Isolation and characterization of SsmTx-I, a specific Kv2.1 blocker from the venom of the centipede Scolopendra subspinipes mutilans L. Koch. J. Pept. Sci. 2014, 20, 159–164. [Google Scholar] [PubMed]
- Antoniazzi, M.M.; Pedroso, C.M.; Knysak, I.; Martins, R.; Guizze, S.P.; Jared, C.; Barbaro, K.C. Comparative morphological study of the venom glands of the centipede Cryptops iheringi, Otostigmus pradoi and Scolopendra viridicornis. Toxicon 2009, 53, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Rates, B.; Bemquerer, M.P.; Richardson, M.; Borges, M.H.; Morales, R.A.; de Lima, M.E.; Pimenta, A.M. Venomic analyses of Scolopendra viridicornis nigra and Scolopendra angulata (centipede, scolopendromorpha): Shedding light on venoms from a neglected group. Toxicon 2007, 49, 810–826. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Xiao, Y.; Kang, D.; Liu, J.; Li, Y.; Undheim, E.A.; Klint, J.K.; Rong, M.; Lai, R.; King, G.F. Discovery of a selective Nav1.7 inhibitor from centipede venom with analgesic efficacy exceeding morphine in rodent pain models. Proc. Natl. Acad. Sci. USA 2013, 110, 17534–17539. [Google Scholar] [CrossRef] [PubMed]
- Dugon, M.M.; Arthur, W. Comparative studies on the structure and development of the venom-delivery system of centipedes, and a hypothesis on the origin of this evolutionary novelty. Evol. Dev. 2012, 14, 128–137. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.C.; Zhang, R.; Zhao, F.; Chen, Z.M.; Liu, H.W.; Wang, Y.J.; Jiang, P.; Zhang, Y.; Wu, Y.; Ding, J.P.; et al. Venomic and transcriptomic analysis of centipede Scolopendra subspinipes dehaani. J. Proteome Res. 2012, 11, 6197–6212. [Google Scholar] [PubMed]
- Yang, S.; Liu, Z.; Xiao, Y.; Li, Y.; Rong, M.; Liang, S.; Zhang, Z.; Yu, H.; King, G.F.; Lai, R. Chemical punch packed in venoms makes centipedes excellent predators. Mol. Cell. Proteom. MCP 2012, 11, 640–650. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.; Shao, Y.; Chen, H.; Ming, X.; Wang, J.B.; Li, Z.Y.; Wei, J.F. A novel factor Xa-inhibiting peptide from centipedes venom. Int. J. Pept. Res. Ther. 2013, 19, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Rong, M.; Yang, S.; Wen, B.; Mo, G.; Kang, D.; Liu, J.; Lin, Z.; Jiang, W.; Li, B.; Du, C.; et al. Peptidomics combined with cDNA library unravel the diversity of centipede venom. J. Proteom. 2015, 114, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Undheim, E.A.; Jones, A.; Clauser, K.R.; Holland, J.W.; Pineda, S.S.; King, G.F.; Fry, B.G. Clawing through evolution: Toxin diversification and convergence in the ancient lineage chilopoda (centipedes). Mol. Biol. Evol. 2014, 31, 2124–2148. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Morales, L.; Diego-Garcia, E.; Segovia, L.; Gutierrez Mdel, C.; Possani, L.D. Venom from the centipede Scolopendra viridis say: Purification, gene cloning and phylogenetic analysis of a phospholipase A2. Toxicon 2009, 54, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.; Huang, S.L.; Shao, Y.; Li, S.; Wei, J.F. Purification and characterization of a novel antithrombotic peptide from Scolopendra subspinipes mutilans. J. Ethnopharmacol. 2013, 145, 182–186. [Google Scholar] [CrossRef] [PubMed]
- Pemberton, R.W. Insects and other arthropods used as drugs in korean traditional medicine. J. Ethnopharmacol. 1999, 65, 207–216. [Google Scholar] [CrossRef]
- Undheim, E.A.; Fry, B.G.; King, G.F. Centipede venom: Recent discoveries and current state of knowledge. Toxins 2015, 7, 679–704. [Google Scholar] [CrossRef] [PubMed]
- Bergeron, Z.L.; Bingham, J.P. Scorpion toxins specific for potassium (K+) channels: A historical overview of peptide bioengineering. Toxins 2012, 4, 1082–1119. [Google Scholar] [CrossRef] [PubMed]
- Bohlen, C.J.; Priel, A.; Zhou, S.; King, D.; Siemens, J.; Julius, D. A bivalent tarantula toxin activates the capsaicin receptor, TRPV1, by targeting the outer pore domain. Cell 2010, 141, 834–845. [Google Scholar] [CrossRef] [PubMed]
- Possani, L.D.; Becerril, B.; Delepierre, M.; Tytgat, J. Scorpion toxins specific for Na+-channels. Eur. J. Biochem. FEBS 1999, 264, 287–300. [Google Scholar] [CrossRef]
- Quintero-Hernandez, V.; Jimenez-Vargas, J.M.; Gurrola, G.B.; Valdivia, H.H.; Possani, L.D. Scorpion venom components that affect ion-channels function. Toxicon 2013, 76, 328–342. [Google Scholar] [CrossRef] [PubMed]
- Diochot, S.; Baron, A.; Salinas, M.; Douguet, D.; Scarzello, S.; Dabert-Gay, A.S.; Debayle, D.; Friend, V.; Alloui, A.; Lazdunski, M.; et al. Black mamba venom peptides target acid-sensing ion channels to abolish pain. Nature 2012, 490, 552–555. [Google Scholar] [CrossRef] [PubMed]
- Salinas, M.; Besson, T.; Delettre, Q.; Diochot, S.; Boulakirba, S.; Douguet, D.; Lingueglia, E. Binding site and inhibitory mechanism of the mambalgin-2 pain-relieving peptide on acid-sensing ion channel 1a. J. Biol. Chem. 2014, 289, 13363–13373. [Google Scholar] [CrossRef] [PubMed]
- Takacs, Z.; Imredy, J.P.; Bingham, J.P.; Zhorov, B.S.; Moczydlowski, E.G. Interaction of the BKCa channel gating ring with dendrotoxins. Channels 2014, 8, 421–432. [Google Scholar] [CrossRef] [PubMed]
- Chow, C.Y.; Cristofori-Armstrong, B.; Undheim, E.A.; King, G.F.; Rash, L.D. Three peptide modulators of the human voltage-gated sodium channel 1.7, an important analgesic target, from the venom of an australian tarantula. Toxins 2015, 7, 2494–2513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klint, J.K.; Senff, S.; Rupasinghe, D.B.; Er, S.Y.; Herzig, V.; Nicholson, G.M.; King, G.F. Spider-venom peptides that target voltage-gated sodium channels: Pharmacological tools and potential therapeutic leads. Toxicon 2012, 60, 478–491. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Yang, F.; Wei, N.; Hong, J.; Li, B.; Luo, L.; Rong, M.; Yarov-Yarovoy, V.; Zheng, J.; Wang, K.; et al. A pain-inducing centipede toxin targets the heat activation machinery of nociceptor TRPV1. Nat. Commun. 2015, 6, 8297. [Google Scholar] [CrossRef] [PubMed]
- Brogden, K.A. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 2005, 3, 238–250. [Google Scholar] [CrossRef] [PubMed]
- Yoo, W.G.; Lee, J.H.; Shin, Y.; Shim, J.Y.; Jung, M.; Kang, B.C.; Oh, J.; Seong, J.; Lee, H.K.; Kong, H.S.; et al. Antimicrobial peptides in the centipede Scolopendra subspinipes mutilans. Funct. Integr. Genom. 2014, 14, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Boman, H.G. Antibacterial peptides: Key components needed in immunity. Cell 1991, 65, 205–207. [Google Scholar] [CrossRef]
- Lai, Y.; Gallo, R.L. Amped up immunity: How antimicrobial peptides have multiple roles in immune defense. Trends Immunol. 2009, 30, 131–141. [Google Scholar] [CrossRef] [PubMed]
- McGillivary, G.; Ray, W.C.; Bevins, C.L.; Munson, R.S., Jr.; Bakaletz, L.O. A member of the cathelicidin family of antimicrobial peptides is produced in the upper airway of the chinchilla and its mRNA expression is altered by common viral and bacterial co-pathogens of otitis media. Mol. Immunol. 2007, 44, 2446–2458. [Google Scholar] [CrossRef] [PubMed]
- Nicolas, P.; Mor, A. Peptides as weapons against microorganisms in the chemical defense system of vertebrates. Annu. Rev. Microbiol. 1995, 49, 277–304. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Hong, J.; Liu, X.; Yang, H.; Liu, R.; Wu, J.; Wang, A.; Lin, D.; Lai, R. Snake cathelicidin from Bungarus fasciatus is a potent peptide antibiotics. PLoS ONE 2008, 3, e3217. [Google Scholar] [CrossRef] [PubMed]
- Zasloff, M. Antibiotic peptides as mediators of innate immunity. Curr. Opin. Immunol. 1992, 4, 3–7. [Google Scholar] [CrossRef]
- Barra, D.; Simmaco, M. Amphibian skin: A promising resource for antimicrobial peptides. Trends Biotechnol. 1995, 13, 205–209. [Google Scholar] [CrossRef]
- Conlon, J.M.; Kolodziejek, J.; Nowotny, N. Antimicrobial peptides from ranid frogs: Taxonomic and phylogenetic markers and a potential source of new therapeutic agents. Biochim. Biophys. 2004, 1696, 1–14. [Google Scholar] [CrossRef]
- Lai, R.; Zheng, Y.T.; Shen, J.H.; Liu, G.J.; Liu, H.; Lee, W.H.; Tang, S.Z.; Zhang, Y. Antimicrobial peptides from skin secretions of chinese red belly toad Bombina maxima. Peptides 2002, 23, 427–435. [Google Scholar] [CrossRef]
- Li, J.; Xu, X.; Xu, C.; Zhou, W.; Zhang, K.; Yu, H.; Zhang, Y.; Zheng, Y.; Rees, H.H.; Lai, R.; et al. Anti-infection peptidomics of amphibian skin. Mol. Cell. Proteom. MCP 2007, 6, 882–894. [Google Scholar] [CrossRef] [PubMed]
- Muller, U.; Vogel, P.; Alber, G.; Schaub, G.A. The innate immune system of mammals and insects. Contrib. Microbiol. 2008, 15, 21–44. [Google Scholar] [PubMed]
- Xu, X.; Yang, H.; Ma, D.; Wu, J.; Wang, Y.; Song, Y.; Wang, X.; Lu, Y.; Yang, J.; Lai, R. Toward an understanding of the molecular mechanism for successful blood feeding by coupling proteomics analysis with pharmacological testing of horsefly salivary glands. Mol. Cell. Proteom. MCP 2008, 7, 582–590. [Google Scholar] [CrossRef] [PubMed]
- Zasloff, M. Magainins, a class of antimicrobial peptides from Xenopus skin: Isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc. Natl. Acad. Sci. USA 1987, 84, 5449–5453. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Hwang, J.S.; Lee, D.G. Identification of a novel antimicrobial peptide, scolopendin 1, derived from centipede Scolopendra subspinipes mutilans and its antifungal mechanism. Insect Mol. Biol. 2014, 23, 788–799. [Google Scholar] [CrossRef] [PubMed]
- Wenhua, R.; Shuangquan, Z.; Daxiang, S.; Kaiya, Z.; Guang, Y. Induction, purification and characterization of an antibacterial peptide scolopendrin i from the venom of centipede Scolopendra subspinipes mutilans. Indian J. Biochem. Biophys. 2006, 43, 88–93. [Google Scholar] [PubMed]
- Peng, K.; Kong, Y.; Zhai, L.; Wu, X.; Jia, P.; Liu, J.; Yu, H. Two novel antimicrobial peptides from centipede venoms. Toxicon 2010, 55, 274–279. [Google Scholar] [CrossRef] [PubMed]
- Hou, H.; Yan, W.; Du, K.; Ye, Y.; Cao, Q.; Ren, W. Construction and expression of an antimicrobial peptide scolopin 1 from the centipede venoms of Scolopendra subspinipes mutilans in Escherichia coli using SUMO fusion partner. Protein Expr. Purif. 2013, 92, 230–234. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Hwang, J.S.; Lee, D.G. Antifungal effect and pore-forming action of lactoferricin B like peptide derived from centipede Scolopendra subspinipes mutilans. Biochim. Biophys. Acta 2013, 1828, 2745–2750. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Hwang, J.S.; Lee, J.; Kim, J.I.; Lee, D.G. Scolopendin 2, a cationic antimicrobial peptide from centipede, and its membrane-active mechanism. Biochim. Biophys. Acta 2015, 1848, 634–642. [Google Scholar] [CrossRef] [PubMed]
- Joon Ha, L.; In-Woo, K.; Sang-Hee, K.; Eun-Young, Y.; Sung-Hee, N.; Mi-Young, A.; Jae Sam, H. Biological Activities of the Synthetic Peptide Scolopendrasin I from the Centipede, Scolopendra subspinipes mutilans. Kor. Soc. App. Entomol. 2013, 10, 303. [Google Scholar]
- Kwon, Y.N.; Lee, J.H.; Kim, I.W.; Kim, S.H.; Yun, E.Y.; Nam, S.H.; Ahn, M.Y.; Jeong, M.; Kang, D.C.; Lee, I.H.; et al. Antimicrobial activity of the synthetic peptide scolopendrasin II from the centipede Scolopendra subspinipes mutilans. J. Microbiol. Biotechnol. 2013, 23, 1381–1385. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Kim, I.W.; Kim, S.H.; Kim, M.A.; Yun, E.Y.; Nam, S.H.; Ahn, M.Y.; Kang, D.C.; Hwang, J.S. Anticancer activity of the antimicrobial peptide scolopendrasin VII derived from the centipede, Scolopendra subspinipes mutilans. J. Microbiol. Biotechnol. 2015, 25, 1275–1280. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.J.; Lee, H.Y.; Jung, Y.S.; Park, J.S.; Hwang, J.S.; Bae, Y.S. Antimicrobial peptide scolopendrasin vii, derived from the centipede Scolopendra subspinipes mutilans, stimulates macrophage chemotaxis via formyl peptide receptor 1. BMB Rep. 2015, 48, 479–484. [Google Scholar] [CrossRef] [PubMed]
- Amel, K.S.; Fatima, L.D. Purification and characterization of a new serine protease (VLCII) isolated from Vipera lebetina venom: Its role in hemostasis. J. Biochem. Mol. Toxicol. 2015, 29, 388–397. [Google Scholar] [CrossRef] [PubMed]
- Devaraja, S.; Girish, K.S.; Devaraj, V.R.; Kemparaju, K. Factor Xa-like and fibrin(ogen)olytic activities of a serine protease from Hippasa agelenoides spider venom gland extract. J. Thromb. Thrombolysis 2010, 29, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Devaraja, S.; Nagaraju, S.; Mahadeswaraswamy, Y.H.; Girish, K.S.; Kemparaju, K. A low molecular weight serine protease: Purification and characterization from Hippasa agelenoides (funnel web) spider venom gland extract. Toxicon 2008, 52, 130–138. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.H.; Park, J.E.; Park, J.W.; Lee, J.S. Purification and biochemical characterization of a fibrin(ogen)olytic metalloprotease from Macrovipera mauritanica snake venom which induces vascular permeability. Int. J. Mol. Med. 2014, 34, 1180–1190. [Google Scholar] [CrossRef] [PubMed]
- Louati, H.; Zouari, N.; Miled, N.; Gargouri, Y. A new chymotrypsin-like serine protease involved in dietary protein digestion in a primitive animal, Scorpio maurus: Purification and biochemical characterization. Lipids Health Disease 2011, 10, 121. [Google Scholar] [CrossRef] [PubMed]
- Zaqueo, K.D.; Kayano, A.M.; Simoes-Silva, R.; Moreira-Dill, L.S.; Fernandes, C.F.; Fuly, A.L.; Maltarollo, V.G.; Honorio, K.M.; da Silva, S.L.; Acosta, G.; et al. Isolation and biochemical characterization of a new thrombin-like serine protease from Bothrops pirajai snake venom. BioMed Res. Int. 2014, 2014, 595186. [Google Scholar] [PubMed]
- Mohamed, A.H.; Abu-Sinna, G.; El-Shabaka, H.A.; El-Aal, A.A. Proteins, lipids, lipoproteins and some enzyme characterizations of the venom extract from the centipede Scolopendra morsitans. Toxicon 1983, 21, 371–377. [Google Scholar] [CrossRef]
- You, W.K.; Sohn, Y.D.; Kim, K.Y.; Park, D.H.; Jang, Y.; Chung, K.H. Purification and molecular cloning of a novel serine protease from the centipede, Scolopendra subspinipes mutilans. Insect Biochem. Mol. Biol. 2004, 34, 239–250. [Google Scholar] [CrossRef] [PubMed]
- Malta, M.B.; Lira, M.S.; Soares, S.L.; Rocha, G.C.; Knysak, I.; Martins, R.; Guizze, S.P.; Santoro, M.L.; Barbaro, K.C. Toxic activities of brazilian centipede venoms. Toxicon 2008, 52, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Fry, B.G.; Roelants, K.; Champagne, D.E.; Scheib, H.; Tyndall, J.D.; King, G.F.; Nevalainen, T.J.; Norman, J.A.; Lewis, R.J.; Norton, R.S.; et al. The toxicogenomic multiverse: Convergent recruitment of proteins into animal venoms. Annu. Rev. Genom. Hum. Genet. 2009, 10, 483–511. [Google Scholar] [CrossRef] [PubMed]
- Low, D.H.; Sunagar, K.; Undheim, E.A.; Ali, S.A.; Alagon, A.C.; Ruder, T.; Jackson, T.N.; Pineda Gonzalez, S.; King, G.F.; Jones, A.; et al. Dracula’s children: Molecular evolution of vampire bat venom. J. Proteom. 2013, 89, 95–111. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; He, Y.; Zhao, R.; Wu, Y.; Li, W.; Cao, Z. Extreme diversity of scorpion venom peptides and proteins revealed by transcriptomic analysis: Implication for proteome evolution of scorpion venom arsenal. J. Proteom. 2012, 75, 1563–1576. [Google Scholar] [CrossRef] [PubMed]
- Weston, A.J.; Chung, R.; Dunlap, W.C.; Morandini, A.C.; Marques, A.C.; Moura-da-Silva, A.M.; Ward, M.; Padilla, G.; da Silva, L.F.; Andreakis, N.; et al. Proteomic characterisation of toxins isolated from nematocysts of the South Atlantic jellyfish Olindias sambaquiensis. Toxicon 2013, 71, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Wong, E.S.; Papenfuss, A.T.; Whittington, C.M.; Warren, W.C.; Belov, K. A limited role for gene duplications in the evolution of platypus venom. Mol. Biol. Evol. 2012, 29, 167–177. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, J.M.; Rucavado, A. Snake venom metalloproteinases: Their role in the pathogenesis of local tissue damage. Biochimie 2000, 82, 841–850. [Google Scholar] [CrossRef]
- Kass, L. Cytochemistry of esterases. CRC Crit. Rev. Clin. Lab. Sci. 1979, 10, 205–223. [Google Scholar] [CrossRef] [PubMed]
- Aird, S.D. Ophidian envenomation strategies and the role of purines. Toxicon 2002, 40, 335–393. [Google Scholar] [CrossRef]
- Dhananjaya, B.L.; D’Souza, C.J. The pharmacological role of nucleotidases in snake venoms. Cell Biochem. Funct. 2010, 28, 171–177. [Google Scholar] [CrossRef] [PubMed]
- McIntosh, J.M.; Ghomashchi, F.; Gelb, M.H.; Dooley, D.J.; Stoehr, S.J.; Giordani, A.B.; Naisbitt, S.R.; Olivera, B.M. Conodipine-m, a novel phospholipase A2 isolated from the venom of the marine snail Conus magus. J. Biol. Chem. 1995, 270, 3518–3526. [Google Scholar] [PubMed]
- Courtay, C.; Oster, T.; Michelet, F.; Visvikis, A.; Diederich, M.; Wellman, M.; Siest, G. Gamma-glutamyltransferase: Nucleotide sequence of the human pancreatic cDNA. Evidence for a ubiquitous gamma-glutamyltransferase polypeptide in human tissues. Biochem. Pharmacol. 1992, 43, 2527–2533. [Google Scholar] [CrossRef]
- De Graaf, D.C.; Aerts, M.; Brunain, M.; Desjardins, C.A.; Jacobs, F.J.; Werren, J.H.; Devreese, B. Insights into the venom composition of the ectoparasitoid wasp Nasonia vitripennis from bioinformatic and proteomic studies. Insect Mol. Biol. 2010, 19 (Suppl. 1), 11–26. [Google Scholar] [CrossRef] [PubMed]
- Falabella, P.; Riviello, L.; Caccialupi, P.; Rossodivita, T.; Teresa Valente, M.; de Luisa Stradis, M.; Tranfaglia, A.; Varricchio, P.; Gigliotti, S.; Graziani, F.; et al. A gamma-glutamyl transpeptidase of Aphidius ervi venom induces apoptosis in the ovaries of host aphids. Insect Biochem. Mol. Biol. 2007, 37, 453–465. [Google Scholar] [CrossRef] [PubMed]
- Joshi, J.; Karanth, K.P. Cretaceous-tertiary diversification among select Scolopendrid centipedes of South India. Mol. Phylogenet. Evol. 2011, 60, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Li, J.; Wang, J.; Si, Q.; Zhang, J.; Jiang, Y.; Chu, L. Anti-atherogenic effects of centipede acidic protein in rats fed an atherogenic diet. J. Ethnopharmacol. 2009, 122, 509–516. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.Q.; Han, L.; Liu, Z.Q.; Du, K.C.; Li, K.Y. Effect of centipede extract on cervical tumor of mice and its mechanism. Zhong Yao Cai 2011, 34, 859–864. [Google Scholar] [PubMed]
- Ma, W.; Liu, R.; Qi, J.; Zhang, Y. Extracts of centipede induce cell cycle arrest and apoptosis in A375 human melanoma cells. Oncol. Lett. 2014, 8, 414–420. [Google Scholar] [PubMed]
- Ma, W.; Zhang, D.; Zheng, L.; Zhan, Y.; Zhang, Y. Potential roles of centipede Scolopendra extracts as a strategy against egfr-dependent cancers. Am. J. Transl. Res. 2015, 7, 39–52. [Google Scholar] [PubMed]
- Chahl, L.A.; Kirk, E.J. Toxins which produce pain. Pain 1975, 1, 3–49. [Google Scholar] [CrossRef]
- Welsh, J.H.; Batty, C.S. 5-hydroxytryptamine content of some arthropod venoms and venom-containing parts. Toxicon 1963, 1, 165–170. [Google Scholar] [CrossRef]
- Mohamed, A.H.; Zaid, E.; El-Beih, N.M.; Abd El-Aal, A. Effects of an extract from the centipede Scolopendra moristans on intestine, uterus and heart contractions and on blood glucose and liver and muscle glycogen levels. Toxicon 1980, 18, 581–589. [Google Scholar] [CrossRef]
- Bhagirath, T.; Chingtham, B.; Mohen, Y. Venom of a hill centipede Scolopendra viridicornis inhibits growth of human breast tumor in mice. Res. Lett. 2006, 38, 291–292. [Google Scholar]
- Li, X.N.; Xiao, X.; Wang, Y. Study on purification and property of polysaccharide from Scolopendra subspinipes mutilans. Zhong Yao Cai 2009, 32, 846–848. [Google Scholar] [PubMed]
- England, S.; de Groot, M.J. Subtype-selective targeting of voltage-gated sodium channels. Br. J. Pharmacol. 2009, 158, 1413–1425. [Google Scholar] [CrossRef] [PubMed]
- Kharatmal, S.B.; Singh, J.N.; Sharma, S.S. Voltage-gated sodium channels as therapeutic targets for treatment of painful diabetic neuropathy. Mini Rev. Med. Chem. 2015, 15, 1134–1147. [Google Scholar] [CrossRef] [PubMed]
- Bradding, P.; Wulff, H. The K+ channels Kca3.1 and Kv1.3 as novel targets for asthma therapy. Br. J. Pharmacol. 2009, 157, 1330–1339. [Google Scholar] [CrossRef] [PubMed]
- Jenkinson, D.H. Potassium channels-multiplicity and challenges. Br. J. Pharmacol. 2006, 147 (Suppl. 1), S63–S71. [Google Scholar] [CrossRef] [PubMed]
- Wickenden, A. K+ channels as therapeutic drug targets. Pharmacol. Ther. 2002, 94, 157–182. [Google Scholar] [CrossRef]
- Huang, W.; Lu, C.; Wu, Y.; Ouyang, S.; Chen, Y. T-type calcium channel antagonists, mibefradil and NNC-55–0396 inhibit cell proliferation and induce cell apoptosis in leukemia cell lines. J. Exp. Clin. Cancer Res. CR 2015, 34, 54. [Google Scholar] [CrossRef] [PubMed]
- Sousa, S.R.; Vetter, I.; Lewis, R.J. Venom peptides as a rich source of Cav2.2 channel blockers. Toxins 2013, 5, 286–314. [Google Scholar] [CrossRef] [PubMed]
- Huh, A.J.; Kwon, Y.J. “Nanoantibiotics”: A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J. Control. Release 2011, 156, 128–145. [Google Scholar] [CrossRef] [PubMed]
- Davies, J.; Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. MMBR 2010, 74, 417–433. [Google Scholar] [CrossRef] [PubMed]
- Wright, G.D. Bacterial resistance to antibiotics: Enzymatic degradation and modification. Adv. Drug Deliv. Rev. 2005, 57, 1451–1470. [Google Scholar] [CrossRef] [PubMed]
- Coughlin, S.R. Thrombin signalling and protease-activated receptors. Nature 2000, 407, 258–264. [Google Scholar] [CrossRef] [PubMed]
- Di Cera, E. Serine proteases. IUBMB Life 2009, 61, 510–515. [Google Scholar] [CrossRef] [PubMed]
- Macfarlane, S.R.; Seatter, M.J.; Kanke, T.; Hunter, G.D.; Plevin, R. Proteinase-activated receptors. Pharmacol. Rev. 2001, 53, 245–282. [Google Scholar] [PubMed]
- Molinari, F.; Meskanaite, V.; Munnich, A.; Sonderegger, P.; Colleaux, L. Extracellular proteases and their inhibitors in genetic diseases of the central nervous system. Hum. Mol. Genet. 2003, 12, R195–R200. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Luo, W.; Reiser, G. Trypsin and trypsin-like proteases in the brain: Proteolysis and cellular functions. Cell. Mol. Life Sci. CMLS 2008, 65, 237–252. [Google Scholar] [CrossRef] [PubMed]
- Choo, Y.M.; Lee, K.S.; Yoon, H.J.; Qiu, Y.; Wan, H.; Sohn, M.R.; Sohn, H.D.; Jin, B.R. Antifibrinolytic role of a bee venom serine protease inhibitor that acts as a plasmin inhibitor. PLoS ONE 2012, 7, e32269. [Google Scholar] [CrossRef] [PubMed]
- Masci, P.P.; Whitaker, A.N.; Sparrow, L.G.; de Jersey, J.; Winzor, D.J.; Watters, D.J.; Lavin, M.F.; Gaffney, P.J. Textilinins from Pseudonaja textilis textilis. Characterization of two plasmin inhibitors that reduce bleeding in an animal model. Blood Coagul. Fibrinolysis 2000, 11, 385–393. [Google Scholar] [CrossRef] [PubMed]
- Oliva, M.L.; Souza-Pinto, J.C.; Batista, I.F.; Araujo, M.S.; Silveira, V.F.; Auerswald, E.A.; Mentele, R.; Eckerskorn, C.; Sampaio, M.U.; Sampaio, C.A. Leucaena leucocephala serine proteinase inhibitor: Primary structure and action on blood coagulation, kinin release and rat paw edema. Biochim. Biophys. Acta 2000, 1477, 64–74. [Google Scholar] [CrossRef]
- Salvador, L.A.; Taori, K.; Biggs, J.S.; Jakoncic, J.; Ostrov, D.A.; Paul, V.J.; Luesch, H. Potent elastase inhibitors from cyanobacteria: structural basis and mechanisms mediating cytoprotective and anti-inflammatory effects in bronchial epithelial cells. J. Med. Chem. 2013, 56, 1276–1290. [Google Scholar] [CrossRef] [PubMed]
- Turk, B. Targeting proteases: Successes, failures and future prospects. Nat. Rev. Drug Discov. 2006, 5, 785–799. [Google Scholar] [CrossRef] [PubMed]
- Puente, X.S.; Sanchez, L.M.; Overall, C.M.; Lopez-Otin, C. Human and mouse proteases: A comparative genomic approach. Nat. Rev. Genet. 2003, 4, 544–558. [Google Scholar] [CrossRef] [PubMed]
- Hoogerwerf, W.A. Pharmacological management of pancreatitis. Curr. Opin. Pharmacol. 2005, 5, 578–582. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Gomez, F.; Ortiz-Pineda, P.A.; Rojas-Cartagena, C.; Suarez-Castillo, E.C.; Garcia-Arraras, J.E. Immune-related genes associated with intestinal tissue in the sea cucumber Holothuria glaberrima. Immunogenetics 2008, 60, 409. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hakim, M.A.; Yang, S.; Lai, R. Centipede Venoms and Their Components: Resources for Potential Therapeutic Applications. Toxins 2015, 7, 4832-4851. https://doi.org/10.3390/toxins7114832
Hakim MA, Yang S, Lai R. Centipede Venoms and Their Components: Resources for Potential Therapeutic Applications. Toxins. 2015; 7(11):4832-4851. https://doi.org/10.3390/toxins7114832
Chicago/Turabian StyleHakim, Md Abdul, Shilong Yang, and Ren Lai. 2015. "Centipede Venoms and Their Components: Resources for Potential Therapeutic Applications" Toxins 7, no. 11: 4832-4851. https://doi.org/10.3390/toxins7114832
APA StyleHakim, M. A., Yang, S., & Lai, R. (2015). Centipede Venoms and Their Components: Resources for Potential Therapeutic Applications. Toxins, 7(11), 4832-4851. https://doi.org/10.3390/toxins7114832