Comprehensive Power Gain Assessment of GaN-SOI-FinFET for Improved RF/Wireless Performance Using TCAD
Abstract
:1. Introduction
2. Device Structure and Simulation Methodology
3. Calibration with Experimental Data
4. Result and Discussion
4.1. Impact of Gate Length Variation
4.2. Impact of Oxide Thickness Variation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hisamoto, D.; Lee, W.-C.; Kedzierski, J.; Takeuchi, H.; Asano, K.; Kuo, C.; Anderson, E.; King, T.-J.; Bokor, J.; Hu, C. FinFET-a self-aligned double-gate MOSFET scalable to 20 nm. IEEE Trans. Electron Devices 2000, 47, 2320–2325. [Google Scholar]
- Yu, B.; Chang, L.; Ahmed, S.; Wang, H.; Bell, S.; Yang, C.-Y.; Tabery, C.; Ho, C.; Xiang, Q.; King, T.-J. FinFET scaling to 10 nm gate length. In Proceedings of the Digest. International Electron Devices Meeting, San Francisco, CA, USA, 8–11 December 2002; pp. 251–254. [Google Scholar]
- Gupta, N.; Kumar, A. Assessment of High-k Gate Stack on Sub-10 nm SOI-FinFET for High-Performance Analog and RF Applications Perspective. ECS J. Solid State Sci. Technol. 2020, 9, 123009. [Google Scholar] [CrossRef]
- Sahay, S.; Kumar, M.J. Spacer design guidelines for nanowire FETs from gate-induced drain leakage perspective. IEEE Trans. Electron Devices 2017, 64, 3007–3015. [Google Scholar] [CrossRef]
- Colinge, J.-P.; Gao, M.; Romano-Rodriguez, A.; Maes, H.; Claeys, C. Silicon-on-insulator ‘gate-all-around device’. In Proceedings of the International Technical Digest on Electron Devices, San Francisco, CA, USA, 9–12 December 1990; pp. 595–598. [Google Scholar]
- Kumar, B.; Chaujar, R. Analog and RF Performance Evaluation of Junctionless Accumulation Mode (JAM) Gate Stack Gate All Around (GS-GAA) FinFET. Silicon 2021, 13, 919–927. [Google Scholar] [CrossRef]
- Farzana, E.; Chowdhury, S.; Ahmed, R.; Khan, M.Z.R. Analysis of temperature and wave function penetration effects in nanoscale double-gate MOSFETs. Appl. Nanosci. 2013, 3, 109–117. [Google Scholar] [CrossRef]
- Xue, Y.; Jiang, Y.; Li, F.; Zhong, R.; Wang, Q. Fabrication and characteristics of back-gate black phosphorus effect field transistors based on PET flexible substrate. Appl. Nanosci. 2019, 10, 1433–1440. [Google Scholar] [CrossRef]
- Colinge, J.-P.; Lee, C.-W.; Afzalian, A.; Akhavan, N.D.; Yan, R.; Ferain, I.; Razavi, P.; O’neill, B.; Blake, A.; White, M. Nanowire transistors without junctions. Nat. Nanotechnol. 2010, 5, 225. [Google Scholar] [CrossRef]
- Zhang, Y.; Zubair, A.; Liu, Z.; Xiao, M.; Perozek, J.; Ma, Y.; Palacios, T. GaN FinFETs and trigate devices for power and RF applications: Review and perspective. Semicond. Sci. Technol. 2021, 36, 054001. [Google Scholar] [CrossRef]
- Zhang, Y.; Palacios, T. (Ultra) wide-bandgap vertical power FinFETs. IEEE Trans. Electron Devices 2020, 67, 3960–3971. [Google Scholar] [CrossRef]
- Teng, M.; Yue, H.; Chi, C.; Xiaohua, M. A new small-signal model for asymmetrical AlGaN/GaN HEMTs. J. Semicond. 2010, 31, 064002. [Google Scholar] [CrossRef]
- Shur, M. GaN based transistors for high power applications. Solid-State Electron. 1998, 42, 2131–2138. [Google Scholar] [CrossRef]
- Shrestha, P.; Guidry, M.; Romanczyk, B.; Hatui, N.; Wurm, C.; Krishna, A.; Pasayat, S.S.; Karnaty, R.R.; Keller, S.; Buckwalter, J.F. High linearity and high gain performance of N-polar GaN MIS-HEMT at 30 GHz. IEEE Electron Device Lett. 2020, 41, 681–684. [Google Scholar] [CrossRef]
- Romanczyk, B.; Li, W.; Guidry, M.; Hatui, N.; Krishna, A.; Wurm, C.; Keller, S.; Mishra, U.K. N-polar GaN-on-Sapphire deep recess HEMTs with high W-band power density. IEEE Electron Device Lett. 2020, 41, 1633–1636. [Google Scholar] [CrossRef]
- Guide, S.D.U. Version, E Sentaurus device User Guide; Synopsys Inc.: Mountain View, CA, USA, 2013. [Google Scholar]
- Im, K.-S.; Jo, Y.-W.; Lee, J.-H.; Cristoloveanu, S.; Lee, J.-H. Heterojunction-free GaN nanochannel FinFETs with high performance. IEEE Electron Device Lett. 2013, 34, 381–383. [Google Scholar] [CrossRef]
- Kumar, A.; Gupta, N.; Chaujar, R. Power gain assessment of ITO based Transparent Gate Recessed Channel (TGRC) MOSFET for RF/wireless applications. Superlattices Microstruct. 2016, 91, 290–301. [Google Scholar] [CrossRef]
- Pati, S.K.; Koley, K.; Dutta, A.; Mohankumar, N.; Sarkar, C.K. Study of body and oxide thickness variation on analog and RF performance of underlap DG-MOSFETs. Microelectron. Reliab. 2014, 54, 1137–1142. [Google Scholar] [CrossRef]
- Dastjerdy, E.; Ghayour, R.; Sarvari, H. Simulation and analysis of the frequency performance of a new silicon nanowire MOSFET structure. Phys. E Low-Dimens. Syst. Nanostructures 2012, 45, 66–71. [Google Scholar] [CrossRef]
- Gupta, N.; Kumar, A.; Chaujar, R. Impact of device parameter variation on RF performance of gate electrode workfunction engineered (GEWE)-silicon nanowire (SiNW) MOSFET. J. Comput. Electron. 2015, 14, 798–810. [Google Scholar] [CrossRef]
- Nae, B.; Lazaro, A.; Iniguez, B. High frequency and noise model of gate-all-around MOSFETs. In Proceedings of the 2009 Spanish Conference on Electron Devices, Santiago de Compostela, Spain, 11–13 February 2009; pp. 112–115. [Google Scholar]
- Kumar, A.; Gupta, N.; Chaujar, R. TCAD RF performance investigation of Transparent Gate Recessed Channel MOSFET. Microelectron. J. 2016, 49, 36–42. [Google Scholar] [CrossRef]
- Kumar, A.; Tripathi, M.M.; Chaujar, R. Reliability Issues of In2O5Sn Gate Electrode Recessed Channel MOSFET: Impact of Interface Trap Charges and Temperature. IEEE Trans. Electron Devices 2018, 65, 860–866. [Google Scholar] [CrossRef]
- Kumar, A. Effect of trench depth and gate length shrinking assessment on the analog and linearity performance of TGRC-MOSFET. Superlattices Microstruct. 2017, 109, 626–640. [Google Scholar] [CrossRef]
- Sarkar, A.; Jana, R. The influence of gate underlap on analog and RF performance of III–V heterostructure double gate MOSFET. Superlattices Microstruct. 2014, 73, 256–267. [Google Scholar] [CrossRef]
- Gupta, N.; Chaujar, R. Investigation of temperature variations on analog/RF and linearity performance of stacked gate GEWE-SiNW MOSFET for improved device reliability. Microelectron. Reliab. 2016, 64, 235–241. [Google Scholar] [CrossRef]
- Kumar, A.; Tripathi, M.; Chaujar, R. Investigation of parasitic capacitances of In2O5Sn gate electrode recessed channel MOSFET for ULSI switching applications. Microsyst. Technol. 2017, 23, 5867–5874. [Google Scholar] [CrossRef]
Parameter | Dimension |
---|---|
LG (nm) | 8 |
Length of Source (LS) and Drain (LD) (nm) | 10 |
Fin Height, HFin (nm) | 8 |
Fin Width, WFin (nm) | 4 |
Oxide Thickness, tOX (nm) | 1 |
NCh (cm−3) | 1.0 × 1016 |
NS,D (cm−3) | 1.0 × 1021 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, A.; Gupta, N.; Goyal, A.K.; Massoud, Y. Comprehensive Power Gain Assessment of GaN-SOI-FinFET for Improved RF/Wireless Performance Using TCAD. Micromachines 2022, 13, 1418. https://doi.org/10.3390/mi13091418
Kumar A, Gupta N, Goyal AK, Massoud Y. Comprehensive Power Gain Assessment of GaN-SOI-FinFET for Improved RF/Wireless Performance Using TCAD. Micromachines. 2022; 13(9):1418. https://doi.org/10.3390/mi13091418
Chicago/Turabian StyleKumar, Ajay, Neha Gupta, Amit Kumar Goyal, and Yehia Massoud. 2022. "Comprehensive Power Gain Assessment of GaN-SOI-FinFET for Improved RF/Wireless Performance Using TCAD" Micromachines 13, no. 9: 1418. https://doi.org/10.3390/mi13091418
APA StyleKumar, A., Gupta, N., Goyal, A. K., & Massoud, Y. (2022). Comprehensive Power Gain Assessment of GaN-SOI-FinFET for Improved RF/Wireless Performance Using TCAD. Micromachines, 13(9), 1418. https://doi.org/10.3390/mi13091418