Simulation Study: The Impact of Structural Variations on the Characteristics of a Buried-Channel-Array Transistor (BCAT) in DRAM
Abstract
:1. Introduction
2. Baseline Device Design and Its Structural Variations
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kinam, K. From the future Si technology perspective: Challenges and opportunities. In Proceedings of the 2010 International Electron Devices Meeting, San Francisco, CA, USA, 6–8 December 2010; pp. 1.1.1–1.1.9. [Google Scholar]
- Mack, C.A. Fifty Years of Moore’s Law. IEEE Trans. Semicond. Manuf. 2011, 24, 202–207. [Google Scholar] [CrossRef]
- Ahmad, W.; Gong, Y.; Abbas, G.; Khan, K.; Khan, M.; Ali, G.; Shuja, A.; Tareen, A.K.; Khan, Q.; Li, D. Evolution of low-dimensional material-based field-effect transistors. Nanoscale 2021, 13, 5162–5186. [Google Scholar] [CrossRef] [PubMed]
- Hisamoto, D.; Wen-Chin, L.; Kedzierski, J.; Takeuchi, H.; Asano, K.; Kuo, C.; Anderson, E.; Tsu-Jae, K.; Bokor, J.; Chenming, H. FinFET-a self-aligned double-gate MOSFET scalable to 20 nm. IEEE Trans. Electron Devices 2000, 47, 2320–2325. [Google Scholar] [CrossRef]
- Suzuki, K.; Pidin, S. Short-channel single-gate SOI MOSFET model. IEEE Trans. Electron Devices 2003, 50, 1297–1305. [Google Scholar] [CrossRef]
- Bae, G.; Bae, D.I.; Kang, M.; Hwang, S.M.; Kim, S.S.; Seo, B.; Kwon, T.Y.; Lee, T.J.; Moon, C.; Choi, Y.M.; et al. 3 nm GAA Technology featuring Multi-Bridge-Channel FET for Low Power and High-Performance Applications. In Proceedings of the 2018 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 1–5 December 2018; pp. 28.27.21–28.27.24. [Google Scholar]
- Lee, M.L.; Fitzgerald, E.A.; Bulsara, M.T.; Currie, M.T.; Lochtefeld, A. Strained Si, SiGe, and Ge channels for high-mobility metal-oxide-semiconductor field-effect transistors. J. Appl. Phys. 2004, 97, 011101. [Google Scholar] [CrossRef]
- Frank, M.M. High-k/metal gate innovations enabling continued CMOS scaling. In Proceedings of the European Solid-State Device Research Conference (ESSDERC), Helsinki, Finland, 12–16 September 2011; pp. 25–33. [Google Scholar]
- Lee, J.-s.; Park, J.-h.; Kim, G.; Choi, H.D.; Lee, M.J. Partial Isolation Type Buried Channel Array transistor (Pi-BCAT) for a Sub-20 nm DRAM Cell Transistor. Electronics 2020, 9, 1908. [Google Scholar] [CrossRef]
- Kuhn, K.; Kenyon, C.; Kornfeld, A.; Liu, M.; Maheshwari, A.; Wei-Kai, S.; Sivakumar, S.; Taylor, G.; VanDerVoorn, P.; Zawadzki, K. Managing Process Variation in Intel’s 45nm CMOS Technology. Intel. Technol. J. 2008, 12, 93–109. [Google Scholar]
- Bordoloi, S.; Ray, A.; Trivedi, G. Numerical analysis of the Impact of Gate Geometry variations on the Reliability of AlGaN/GaN HEMT. In Proceedings of the 2021 IEEE 4th International Conference on Computing, Power and Communication Technologies (GUCON), Kuala Lumpur, Malaysia, 24–26 September 2021; pp. 1–5. [Google Scholar]
- Darwish, M.N.; Lentz, J.L.; Pinto, M.R.; Zeitzoff, P.M.; Krutsick, T.J.; Vuong, H.H. An improved electron and hole mobility model for general purpose device simulation. IEEE Trans. Electron Devices 1997, 44, 1529–1538. [Google Scholar] [CrossRef]
- Klaassen, D.B.M. A unified mobility model for device simulation. In Proceedings of the International Technical Digest on Electron Devices, San Francisco, CA, USA, 9–12 December 1990; pp. 357–360. [Google Scholar]
- Canali, C.; Majni, G.; Minder, R.; Ottaviani, G. Electron and Hole Drift Velocity Measurements in Silicon and Their Empirical Relation to Electric Field and Temperature. IEEE Trans. Electron Devices 1975, 22, 1045–1047. [Google Scholar] [CrossRef]
- Hurkx, G.A.M.; Klaassen, D.B.M.; Knuvers, M.P.G. A new recombination model for device simulation including tunneling. IEEE Trans. Electron Devices 1992, 39, 331–338. [Google Scholar] [CrossRef]
- Ortiz-Conde, A.; García-Sánchez, F.J.; Muci, J.; Terán Barrios, A.; Liou, J.J.; Ho, C.-S. Revisiting MOSFET threshold voltage extraction methods. Microelectron. Reliab. 2013, 53, 90–104. [Google Scholar] [CrossRef]
- Schloesser, T.; Jakubowski, F.; Kluge, J.V.; Graham, A.; Slesazeck, S.; Popp, M.; Baars, P.; Muemmler, K.; Moll, P.; Wilson, K.; et al. 6F2 buried wordline DRAM cell for 40nm and beyond. In Proceedings of the 2008 IEEE International Electron Devices Meeting, San Francisco, CA, USA, 15–17 December 2008; pp. 1–4. [Google Scholar]
- Yang-Kyu, C.; Lindert, N.; Peiqi, X.; Tang, S.; Daewon, H.; Anderson, E.; Tsu-Jae, K.; Bokor, J.; Chenming, H. Sub-20 nm CMOS FinFET technologies. In Proceedings of the International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224), Washington, DC, USA, 2–5 December 2001; pp. 19.11.11–19.11.14. [Google Scholar]
- Cheng, L.; Hai, Z.; Gang, M. Fin bending mechanism investigation for 14nm FinFET technology. In Proceedings of the 2017 China Semiconductor Technology International Conference (CSTIC), Shanghai, China, 12–13 March 2017; pp. 1–3. [Google Scholar]
- Gencer, A.H.; Tsamados, D.; Moroz, V. Fin bending due to stress and its simulation. In Proceedings of the 2013 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), Glasgow, UK, 3–5 September 2013; pp. 109–112. [Google Scholar]
- Vos, R.; Arnauts, S.; Bovie, I.; Onsia, B.; Garaud, S.; Xu, K.; Hongyu, Y.; Kubicek, S.; Rohr, E.; Schram, T.; et al. Challenges with Respect to High-k/Metal Gate Stack Etching and Cleaning. ECS Trans. 2007, 11, 275–283. [Google Scholar] [CrossRef]
- Sleva, S.; Taur, Y. The influence of source and drain junction depth on the short-channel effect in MOSFETs. IEEE Trans. Electron Devices 2005, 52, 2814–2816. [Google Scholar] [CrossRef]
- Hisamoto, D.; Kaga, T.; Takeda, E. Impact of the vertical SOI ‘DELTA’ structure on planar device technology. IEEE Trans. Electron Devices 1991, 38, 1419–1424. [Google Scholar] [CrossRef]
- Marchetti, S.; Rozzi, T. Electric field singularities at sharp edges of planar conductors. IEEE Trans. Antennas Propag. 1991, 39, 1312–1320. [Google Scholar] [CrossRef]
- Tai-Su, P.; Yu Gyun, S.; Han Sin, L.; Moon Han, P.; Sang Dong, K.; Ho Kyu, K.; Young Bum, K.; Moon Yong, L. Correlation between gate oxide reliability and the profile of the trench top corner in Shallow Trench Isolation (STI). In Proceedings of the International Electron Devices Meeting. Technical Digest, San Francisco, CA, USA, 8–11 December 1996; pp. 747–750. [Google Scholar]
Plot | ID-VG | ID-VD |
---|---|---|
ARgate | ||
DBCAT | ||
Djunction | ||
Wfin | ||
Rfillet |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, M.; Baac, H.W.; Shin, C. Simulation Study: The Impact of Structural Variations on the Characteristics of a Buried-Channel-Array Transistor (BCAT) in DRAM. Micromachines 2022, 13, 1476. https://doi.org/10.3390/mi13091476
Sun M, Baac HW, Shin C. Simulation Study: The Impact of Structural Variations on the Characteristics of a Buried-Channel-Array Transistor (BCAT) in DRAM. Micromachines. 2022; 13(9):1476. https://doi.org/10.3390/mi13091476
Chicago/Turabian StyleSun, Minjae, Hyoung Won Baac, and Changhwan Shin. 2022. "Simulation Study: The Impact of Structural Variations on the Characteristics of a Buried-Channel-Array Transistor (BCAT) in DRAM" Micromachines 13, no. 9: 1476. https://doi.org/10.3390/mi13091476
APA StyleSun, M., Baac, H. W., & Shin, C. (2022). Simulation Study: The Impact of Structural Variations on the Characteristics of a Buried-Channel-Array Transistor (BCAT) in DRAM. Micromachines, 13(9), 1476. https://doi.org/10.3390/mi13091476