A Review on Resonant MEMS Electric Field Sensors
Abstract
:1. Introduction
2. Electric Field Microsensors
2.1. Working Principle
2.2. Lumped Model Analysis
2.3. Micro-Field-Mills
2.3.1. Folded Beam Micro-Field-Mills
2.3.2. Double-Clamped Beam Micro-Field-Mills
2.3.3. Parallel Plate Capacitive Membrane Sensing Micro-Field-Mills
2.3.4. Comb-Finger Capacitive Sliding Film Sensing Micro-Field-Mills
2.4. Torsional and Rotary Vibrating MEMS EFSs
2.5. Micro-Cantilever EFSs
3. Frequency-Modulated Electric Field Microsensors
3.1. Vibration System and Working Principle
3.1.1. Resonance Overview
3.1.2. Working Mechanism of the Sensor
3.2. Axial Stiffness Perturbation Method for Electric Field Measurement
3.3. Lateral Stiffness Perturbation Method for Electric Field Measurement
4. Mode-Localized Electric Field Microsensors
4.1. Theoretical Analysis
4.1.1. Eigenvalue Analysis
4.1.2. Transfer Function Analysis
4.1.3. Butterworth–Van Dyke Model Analysis
4.2. Prototype Instantiation for Mode-Localized Microsensor
4.2.1. A 2-DOF Mode-Localized Resonant Microsensor
4.2.2. Multi-DOF Mode-Localized Microsensor
5. Discussion
6. Conclusions
Funding
Conflicts of Interest
References
- Hare, B.M.; Scholten, O.; Dwyer, J.; Trinh, T.N.G.; Buitink, S.; ter Veen, S.; Bonardi, A.; Corstanje, A.; Falcke, H.; Hörandel, J.R.; et al. Needle-like Structures Discovered on Positively Charged Lightning Branches. Nature 2019, 568, 360–363. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Chen, Y.; Zhang, T.; Gao, Y.; Zhao, X.; Zhou, F. A Electrical Field with Multi- Parameters Sounding System for Observations through Thunderstorms. In Proceedings of the 2019 6th International Conference on Systems and Informatics (ICSAI), Shanghai, China, 2–4 November 2019; pp. 1362–1368. [Google Scholar]
- Zou, X.; Li, Q.; Cai, L.; Zhou, M.; Wang, J.; Fan, Y. Electric Field Waveform Characteristics of Natural Cloud-to-Ground Lightning at Different Distances. In Proceedings of the 2019 11th Asia-Pacific International Conference on Lightning (APL), Hong Kong, China, 12–14 June 2019; pp. 1–6. [Google Scholar]
- Bassett, C.A.L.; Pawluk, R.J.; Becker, R.O. Effects of Electric Currents on Bone In Vivo. Nature 1964, 204, 652–654. [Google Scholar] [CrossRef] [PubMed]
- Daish, C.; Blanchard, R.; Fox, K.; Pivonka, P.; Pirogova, E. The Application of Pulsed Electromagnetic Fields (PEMFs) for Bone Fracture Repair: Past and Perspective Findings. Ann. Biomed. Eng. 2018, 46, 525–542. [Google Scholar] [CrossRef] [PubMed]
- Androjna, C.; Fort, B.; Zborowski, M.; Midura, R.J. Pulsed Electromagnetic Field Treatment Enhances Healing Callus Biomechanical Properties in an Animal Model of Osteoporotic Fracture. Bioelectromagnetics 2014, 35, 396–405. [Google Scholar] [CrossRef]
- Markov, M.S. Pulsed Electromagnetic Field Therapy History, State of the Art and Future. Environmentalist 2007, 27, 465–475. [Google Scholar] [CrossRef]
- Han, Z.; Xue, F.; Hu, J.; He, J. Micro Electric Field Sensors: Principles and Applications. IEEE Ind. Electron. Mag. 2021, 15, 35–42. [Google Scholar] [CrossRef]
- Povschenko, O.; Bazhenov, V. Analysis of Modern Atmospheric Electrostatic Field Measuring Instruments and Methods. Technol. Audit. Prod. Reserv. 2023, 4, 16–24. [Google Scholar] [CrossRef]
- Waldorff, E.I.; Zhang, N.; Ryaby, J.T. Pulsed Electromagnetic Field Applications: A Corporate Perspective. J. Orthop. Transl. 2017, 9, 60–68. [Google Scholar] [CrossRef]
- Kirkham, H. On the Measurement of Stationary Electric Fields in Air. In Proceedings of the Conference Digest Conference on Precision Electromagnetic Measurements, Ottawa, ON, Canada, 16–21 June 2002; pp. 524–525. [Google Scholar]
- Montanyà, J.; Rodríguez, P.; Bergas, J.; Illa, A.; Hermoso, B.; Candela, I. A New Electrostatic Field Measurement Method: The Coherent-Notch Field Mill. J. Electrost. 2007, 65, 431–437. [Google Scholar] [CrossRef]
- Rehman, M.; Nallagownden, P.; Bhayo, M.A.; Baharudin, Z.; Baba, M. Design of a Field Mill Device for Measuring the High Voltage DC Fields. In Proceedings of the 2020 8th International Conference on Intelligent and Advanced Systems (ICIAS), Virtual, 13–15 July 2021; pp. 1–6. [Google Scholar]
- Li, J.; Zhao, P.; Yuan, H.; Lv, J.; Liu, C.; Xu, H. Differential Structure to Improve Performance of DC Electric Field Sensors. IEEE Sens. J. 2023, 23, 9909–9916. [Google Scholar] [CrossRef]
- Horenstein, M.N.; Stone, P.R. A Micro-Aperture Electrostatic "eld Mill Based on MEMS Technology. J. Electrost. 2001, 51, 515–521. [Google Scholar] [CrossRef]
- Kobayashi, T.; Oyama, S.; Takahashi, M.; Maeda, R.; Itoh, T. Microelectromechanical Systems-Based Electrostatic Field Sensor Using Pb(Zr,Ti)O 3 Thin Films. Jpn. J. Appl. Phys. 2008, 47, 7533. [Google Scholar] [CrossRef]
- Albrecht, T.R.; Grütter, P.; Horne, D.; Rugar, D. Frequency Modulation Detection Using High- Q Cantilevers for Enhanced Force Microscope Sensitivity. J. Appl. Phys. 1991, 69, 668–673. [Google Scholar] [CrossRef]
- Thiruvenkatanathan, P.; Yan, J.; Seshia, A.A. Ultrasensitive Mode-Localized Micromechanical Electrometer. In Proceedings of the 2010 IEEE International Frequency Control Symposium, Newport Beach, CA, USA, 2–4 June 2010; pp. 91–96. [Google Scholar]
- Riehl, P.S.; Scott, K.L.; Muller, R.S.; Howe, R.T.; Yasaitis, J.A. Electrostatic Charge and Field Sensors Based on Micromechanical Resonators. J. Microelectromech. Syst. 2003, 12, 577–589. [Google Scholar] [CrossRef]
- Gong, C.; Xia, S.; Deng, K.; Bai, Q.; Chen, S. Design and Simulation of Miniature Vibrating Electric Field Sensors. In Proceedings of the 2004 IEEE SENSORS, Vienna, Austria, 24–27 October 2004; Volume 3, pp. 1589–1592. [Google Scholar]
- Gong, C.; Tao, H.; Peng, C.; Bai, Q.; Chen, S.; Xia, S. A Novel Miniature Interlacing Vibrating Electric Field Sensor. In Proceedings of the 2005 IEEE SENSORS, Irvine, CA, USA, 30 October–3 November 2005; p. 3. [Google Scholar]
- Denison, T.; Kuang, J.; Shafran, J.; Judy, M.; Lundberg, K. A Self-Resonant MEMS-Based Electrostatic Field Sensor with 4V/m/Hz Sensitivity. In Proceedings of the 2006 IEEE International Solid State Circuits Conference—Digest of Technical Papers, San Francisco, CA, USA, 6–9 February 2006; IEEE: San Francisco, CA, USA, 2006; pp. 1121–1130. [Google Scholar]
- Peng, C.R.; Chen, X.X.; Ye, C.; Bai, Q.; Xia, S.H. Design of a Resonant Miniature Electrostatic Field Sensor with Feedback Driving and Detection. In Proceedings of the 2006 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Zhuhai, China, 18–21 January 2006; pp. 1029–1032. [Google Scholar]
- Peng, C.; Chen, X.; Bai, Q.; Luo, L.; Xia, S. A Novel High Performance Micromechanical Resonant Electrostatic Field Sensor Used in Atmospheric Electric Field Detection. In Proceedings of the 19th IEEE International Conference on Micro Electro Mechanical Systems, Istanbul, Turkey, 22–26 January 2006; pp. 698–701. [Google Scholar]
- Peng, C.; Chen, X.; Ye, C.; Tao, H.; Cui, G.; Bai, Q.; Chen, S.; Xia, S. Design and Testing of a Micromechanical Resonant Electrostatic Field Sensor. J. Micromech. Microeng. 2006, 16, 914–919. [Google Scholar] [CrossRef]
- Chen, X.; Peng, C.; Tao, H.; Ye, C.; Bai, Q.; Chen, S.; Xia, S. Thermally Driven Micro-Electrostatic Fieldmeter. Sens. Actuators Phys. 2006, 132, 677–682. [Google Scholar] [CrossRef]
- Bahreyni, B.; Wijeweera, G.; Shafai, C.; Rajapakse, A. Design and Testing of a Field-Chopping Electric Field Sensor Using Thermal Actuators with Mechanically Amplified Response. In Proceedings of the TRANSDUCERS 2007–2007 International Solid-State Sensors, Actuators and Microsystems Conference, Lyon, France, 10–14 June 2007; pp. 1397–1400. [Google Scholar]
- Wang, Y.; Fang, D.; Feng, K.; Ren, R.; Chen, B.; Peng, C.; Xia, S. A Novel Micro Electric Field Sensor with X–Y Dual Axis Sensitive Differential Structure. Sens. Actuators Phys. 2015, 229, 1–7. [Google Scholar] [CrossRef]
- Wang, Y.; Fang, D.; Feng, K.; Ren, R.; Chen, B.; Peng, C.; Xia, S. A Novel 2-Dimensional Electric Field Sensor Based on in-Plane Micro Rotary Actuator. In Proceedings of the 2014 IEEE SENSORS, Valencia, Spain, 2–5 November 2014; pp. 1924–1927. [Google Scholar]
- Chu, Z.; Peng, C.; Ren, R.; Ling, B.; Zhang, Z.; Lei, H.; Xia, S. A High Sensitivity Electric Field Microsensor Based on Torsional Resonance. Sensors 2018, 18, 286. [Google Scholar] [CrossRef]
- Chen, X.; Peng, C.; Xia, S. Design of a Thermally Driven Resonant Miniature Electric Field Sensor with Feedback Control. In Proceedings of the 2008 3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Sanya, China, 6–9 January 2008; pp. 253–256. [Google Scholar]
- Bahreyni, B.; Wijeweera, G.; Shafai, C.; Rajapakse, A. Analysis and Design of a Micromachined Electric-Field Sensor. J. Microelectromech. Syst. 2008, 17, 31–36. [Google Scholar] [CrossRef]
- Zhu, Y.; Lee, J.E.-Y.; Seshia, A.A. A Resonant Micromachined Electrostatic Charge Sensor. IEEE Sens. J. 2008, 8, 1499–1505. [Google Scholar] [CrossRef]
- Peng, C.; Yang, P.; Zhang, H.; Guo, X.; Xia, S. Design of a Novel Closed-Loop SOI MEMS Resonant Electrostatic Field Sensor. Procedia Eng. 2010, 5, 1482–1485. [Google Scholar] [CrossRef]
- Peng, C.; Yang, P.; Zhang, H.; Guo, X.; Xia, S. Design of a SOI MEMS Resonant Electric Field Sensor for Power Engineering Applications. In Proceedings of the 2010 IEEE SENSORS, Waikoloa, HI, USA, 1–4 November 2010; pp. 1183–1186. [Google Scholar]
- Kobayashi, T.; Oyama, S.; Okada, H.; Makimoto, N.; Tanaka, K.; Itoh, T.; Maeda, R. An Electrostatic Field Sensor Driven by Self-Excited Vibration of Sensor/Actuator Integrated Piezoelectric Micro Cantilever. In Proceedings of the 2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS), Paris, France, 29 January–2 February 2012; pp. 527–530. [Google Scholar]
- Kobayashi, T.; Oyama, S.; Makimoto, N.; Okada, H.; Itoh, T.; Maeda, R. An Electrostatic Field Sensor Operated by Self-Excited Vibration of MEMS-Based Self-Sensitive Piezoelectric Microcantilevers. Sens. Actuators Phys. 2013, 198, 87–90. [Google Scholar] [CrossRef]
- Yang, P.; Peng, C.; Zhang, H.; Liu, S.; Fang, D.; Xia, S. A High Sensitivity SOI Electric-Field Sensor with Novel Comb-Shaped Microelectrodes. In Proceedings of the 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference, Beijing, China, 5–9 June 2011; pp. 1034–1037. [Google Scholar]
- Menzel, A.; Lin, A.T.-H.; Estrela, P.; Li, P.; Seshia, A.A. Biomolecular and Electrochemical Charge Detection by a Micromechanical Electrometer. Sens. Actuators Chem. 2011, 160, 301–305. [Google Scholar] [CrossRef]
- Chu, Z.; Yang, P.; Wen, X.; Peng, C. A Resonant Electrostatic Field Microsensor with Self-Compensation for Sensitivity Drift. IEEE Sens. J. 2023, 23, 13917–13924. [Google Scholar] [CrossRef]
- Kainz, A.; Hortschitz, W.; Steiner, H.; Stifter, M.; Schalko, J.; Jachimowicz, A.; Keplinger, F. Passive Optomechanical Electric Field Strength Sensor with Built-in Vibration Suppression. Appl. Phys. Lett. 2018, 113, 143505. [Google Scholar] [CrossRef]
- Yang, P.; Peng, C.; Fang, D.; Wen, X.; Xia, S. Design, Fabrication and Application of an SOI-Based Resonant Electric Field Microsensor with Coplanar Comb-Shaped Electrodes. J. Micromech. Microeng. 2013, 23, 055002. [Google Scholar] [CrossRef]
- Jaramillo, G.; Buffa, C.; Li, M.; Brechtel, F.J.; Langfelder, G.; Horsley, D.A. MEMS Electrometer with Femtoampere Resolution for Aerosol Particulate Measurements. IEEE Sens. J. 2013, 13, 2993–3000. [Google Scholar] [CrossRef]
- Chen, T.; Shafai, C.; Rajapakse, A.; Park, B.Y. Micromachined Electric Field Mill Employing a Vertical Moving Shutter. Procedia Eng. 2014, 87, 452–455. [Google Scholar] [CrossRef]
- Yang, P.; Chen, B.; Wen, X.; Peng, C.; Xia, S.; Hao, Y. A Novel MEMS Chip-Based Atmospheric Electric Field Sensor for Lightning Hazard Warning Applications. In Proceedings of the 2015 IEEE SENSORS, Busan, Republic of Korea, 1–4 November 2015; pp. 1–4. [Google Scholar]
- Wen, X.; Yang, P.; Chu, Z.; Peng, C.; Liu, Y.; Wu, S. Toward Atmospheric Electricity Research: A Low-Cost, Highly Sensitive and Robust Balloon-Borne Electric Field Sounding Sensor. IEEE Sens. J. 2021, 21, 13405–13416. [Google Scholar] [CrossRef]
- Lee, J.E.-Y.; Bahreyni, B.; Seshia, A.A. An Axial Strain Modulated Double-Ended Tuning Fork Electrometer. Sens. Actuators Phys. 2008, 148, 395–400. [Google Scholar] [CrossRef]
- Zhao, J.; Ding, H.; Xie, J. Electrostatic Charge Sensor Based on a Micromachined Resonator with Dual Micro-Levers. Appl. Phys. Lett. 2015, 106, 233505. [Google Scholar] [CrossRef]
- Chen, D.; Zhao, J.; Wang, Y.; Xie, J. An Electrostatic Charge Sensor Based on Micro Resonator with Sensing Scheme of Effective Stiffness Perturbation. J. Micromech. Microeng. 2017, 27, 065002. [Google Scholar] [CrossRef]
- Zhao, C.; Wood, G.S.; Pu, S.H.; Kraft, M. A Mode-Localized MEMS Electrical Potential Sensor Based on Three Electrically Coupled Resonators. J. Sens. Sens. Syst. 2017, 6, 1–8. [Google Scholar] [CrossRef]
- Zhang, H.; Yuan, W.; Huang, J.; Li, B.; Chang, H. A High-Sensitive Resonant Electrometer Based on Mode Localization of the Weakly Coupled Resonators. In Proceedings of the 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS), Shanghai, China, 24–28 January 2016; pp. 87–90. [Google Scholar]
- Zhang, H.; Huang, J.; Yuan, W.; Chang, H. A High-Sensitivity Micromechanical Electrometer Based on Mode Localization of Two Degree-of-Freedom Weakly Coupled Resonators. J. Microelectromech. Syst. 2016, 25, 937–946. [Google Scholar] [CrossRef]
- Zhao, C.; Montaseri, M.H.; Wood, G.S.; Pu, S.H.; Seshia, A.A.; Kraft, M. A Review on Coupled MEMS Resonators for Sensing Applications Utilizing Mode Localization. Sens. Actuators Phys. 2016, 249, 93–111. [Google Scholar] [CrossRef]
- Lee, J.E.-Y.; Seshia, A.A. Parasitic Feedthrough Cancellation Techniques for Enhanced Electrical Characterization of Electrostatic Microresonators. Sens. Actuators Phys. 2009, 156, 36–42. [Google Scholar] [CrossRef]
- Kacem, N.; Hentz, S. Bifurcation Topology Tuning of a Mixed Behavior in Nonlinear Micromechanical Resonators. Appl. Phys. Lett. 2009, 95, 183104. [Google Scholar] [CrossRef]
- Hodges, C.H.; Woodhouse, J. Confinement of Vibration by One-Dimensional Disorder, II: A Numerical Experiment on Different Ensemble Averages. J. Sound Vib. 1989, 130, 253–268. [Google Scholar] [CrossRef]
- Hodges, C.H.; Woodhouse, J. Confinement of Vibration by One-Dimensional Disorder, I: Theory of Ensemble Averaging. J. Sound Vib. 1989, 130, 237–251. [Google Scholar] [CrossRef]
- Hodges, C.H. Confinement of Vibration by Structural Irregularity. J. Sound Vib. 1982, 82, 411–424. [Google Scholar] [CrossRef]
- Thiruvenkatanathan, P.; Woodhouse, J.; Yan, J.; Seshia, A.A. Limits to Mode-Localized Sensing Using Micro- and Nanomechanical Resonator Arrays. J. Appl. Phys. 2011, 109, 104903. [Google Scholar] [CrossRef]
- Yang, P.; Wen, X.; Chu, Z.; Ni, X.; Peng, C. AC/DC Fields Demodulation Methods of Resonant Electric Field Microsensor. Micromachines 2020, 11, 511. [Google Scholar] [CrossRef]
- Hsu, C.H.; Muller, R.S. Micromechanical Electrostatic Voltmeter. In TRANSDUCERS ’91: 1991 International Conference on Solid-State Sensors and Actuators. Digest of Technical Papers; IEEE: Piscataway, NJ, USA, 1991; pp. 659–662. [Google Scholar]
- Wen, X.; Yang, P.; Chu, Z.; Peng, C.; Liu, Y.; Wu, S. MEMS-Based Electric Field Sensor with Environmental Adaptability Consideration and Its Application in the near-Ground Atmosphere. J. Phys. Conf. Ser. 2021, 1775, 012003. [Google Scholar] [CrossRef]
- Liu, J.; Xia, S.; Peng, C.; Wu, Z.; Chu, Z.; Zhang, Z.; Lei, H.; Zheng, F.; Zhang, W. Wafer-Level Vacuum-Packaged Electric Field Microsensor: Structure Design, Theoretical Model, Microfabrication, and Characterization. Micromachines 2022, 13, 928. [Google Scholar] [CrossRef]
- Chen, S.; Yu, Z.; Mou, Y.; Shi, J. Parametric Analysis of Electrostatic Comb Drive for Resonant Sensors Operating under Atmospheric Pressure. J. Sens. 2023, 2023, 7482858. [Google Scholar] [CrossRef]
- Jalil, J.; Ruan, Y.; Zhu, Y. Room-Temperature Sensing of Single Electrons Using Vibrating-Reed Electrometer in Silicon-on-Glass Technology. IEEE Electron Device Lett. 2018, 39, 1928–1931. [Google Scholar] [CrossRef]
- Lei, H.; Xia, S.; Chu, Z.; Ling, B.; Peng, C.; Zhang, Z.; Liu, J.; Zhang, W. An Electric Field Microsensor with Mutual Shielding Electrodes. Micromachines 2021, 12, 360. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, X.; Peng, S.; Zhang, W.; Liu, Y.; Wang, Y.; Wu, Z.; Peng, C.; Xia, S. A Wafer-Level Vacuum-Packaged Vertical Resonant Electric Field Microsensor. IEEE Trans. Electron Devices 2024, 71, 782–789. [Google Scholar] [CrossRef]
- Gao, Y.; Peng, S.; Liu, X.; Liu, Y.; Zhang, W.; Peng, C.; Xia, S. A Sensitivity-Enhanced Vertical-Resonant MEMS Electric Field Sensor Based on TGV Technology. Micromachines 2024, 15, 356. [Google Scholar] [CrossRef]
- Yang, P.; Wen, X.; Chu, Z.; Ni, X.; Peng, C. Non-Intrusive DC Voltage Measurement Based on Resonant Electric Field Microsensors. J. Micromech. Microeng. 2021, 31, 064001. [Google Scholar] [CrossRef]
- Wen, X.; Yang, P.; Zhang, Z.; Chu, Z.; Peng, C.; Liu, Y.; Wu, S.; Zhang, B.; Zheng, F. Resolution-Enhancing Structure for the Electric Field Microsensor Chip. Micromachines 2021, 12, 936. [Google Scholar] [CrossRef]
- Huang, J.; Wu, X.; Wang, X.; Yan, X.; Lin, L. A Novel High-Sensitivity Electrostatic Biased Electric Field Sensor. J. Micromech. Microeng. 2015, 25, 095008. [Google Scholar] [CrossRef]
- Han, Z.; Hu, J.; Li, L.; He, J. Micro-Cantilever Electric Field Sensor Driven by Electrostatic Force. Engineering 2023, 24, 184–191. [Google Scholar] [CrossRef]
- Chen, D.; Zhao, J.; Wang, Y.; Xu, Z.; Xie, J. Sensitivity Manipulation on Micro-Machined Resonant Electrometer toward High Resolution and Large Dynamic Range. Appl. Phys. Lett. 2018, 112, 013502. [Google Scholar] [CrossRef]
- Chen, H.; Chen, D.; Shi, Z.; Huan, R.; Xie, J. A MEMS Frequency Modulation Electrometer Based on Pre-Bias Charge Mechanism to Enhance Performance. J. Micromech. Microeng. 2022, 32, 105003. [Google Scholar] [CrossRef]
- Liu, X.; Xia, S.; Peng, C.; Gao, Y.; Peng, S.; Zhang, Z.; Zhang, W.; Xing, X.; Liu, Y. A Highly Sensitive and High-Resolution Resonant MEMS Electrostatic Field Microsensor Based on Electrostatic Stiffness Perturbation. Micromachines 2023, 14, 1489. [Google Scholar] [CrossRef]
- Gusso, A.; De Mello, L.E. Nonlinear Acoustic Damping Mechanism in Micro and Nanobeam Resonators Due to Nonlinear Shear Stress at Clamping. Nonlinear Dyn. 2024, 112, 14035–14049. [Google Scholar] [CrossRef]
- Yang, Q.; Wang, X.; Dai, H.; Shi, Z.; Song, J.; Xu, Y.; Wan, H.; Huan, R.; Wei, X. Phase Evolution and Control in a Synchronized Duffing-Type Nonlinear Micro-Oscillator. Mech. Syst. Signal Process. 2024, 219, 111598. [Google Scholar] [CrossRef]
- Wang, X.; Wei, X.; Pu, D.; Huan, R. Single-Electron Detection Utilizing Coupled Nonlinear Microresonators. Microsyst. Nanoeng. 2020, 6, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Kang, H.; Chang, H. A Micro Resonant Electrometer with 9-Electron Charge Resolution in Room Temperature. In Proceedings of the 2018 IEEE Micro Electro Mechanical Systems (MEMS), Belfast, UK, 21–25 January 2018; pp. 67–70. [Google Scholar]
- Yan, Z.; Liang, J.; Hao, Y.; Chang, H. A Micro Resonant DC Electric Field Sensor Based on Mode Localization Phenomenon. In Proceedings of the 2019 IEEE 32nd International Conference on Micro Electro Mechanical Systems (MEMS), Seoul, Republic of Korea, 27–31 January 2019; IEEE: Seoul, Republic of Korea, 2019; pp. 849–852. [Google Scholar]
- Kang, H.; Ruan, B.; Hao, Y.; Chang, H. A Micromachined Electrometer with Room Temperature Resolution of 0.256 e/√ Hz. IEEE Sens. J. 2020, 20, 95–101. [Google Scholar] [CrossRef]
- Hao, Y.; Liang, J.; Kang, H.; Yuan, W.; Chang, H. A Micromechanical Mode-Localized Voltmeter. IEEE Sens. J. 2021, 21, 4325–4332. [Google Scholar] [CrossRef]
- Hao, Y.; Wang, C.; Sun, Z.; Zhang, Z.; Guo, J.; Chang, H. A Mode-Localized DC Electric Field Sensor. Sens. Actuators Phys. 2022, 333, 113244. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, Z.; Liu, X.; Gao, Y.; Peng, S.; Ren, R.; Zheng, F.; Lv, Y.; Peng, C. A Novel High Sensitive Mode-Localization MEMS Electric Field Sensor Based on Closed-Loop Feedback. In Proceedings of the 2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers), Online, 20–25 June 2021; pp. 423–426. [Google Scholar]
- Liu, X.; Wang, Z.; Wu, Z.; Gao, Y.; Peng, S.; Ren, R.; Zheng, F.; Lv, Y.; Yang, P.; Wen, X.; et al. Enhanced Sensitivity and Stability of a Novel Resonant MEMS Electric Field Sensor Based on Closed-Loop Feedback. IEEE Sens. J. 2021, 21, 22536–22543. [Google Scholar] [CrossRef]
Mechanical System | Electrical System |
---|---|
Force (F) | Voltage (V) |
Velocity (v) | Current (I) |
Stiffness (k) | Capacitance (C) |
Mass (m) | Inductance (L) |
Damping (c) | Resistance (R) |
Sensitivity | Measurement Range | Structural Characteristics | Resolution | |
---|---|---|---|---|
Mirco Field Mill | ||||
EFS by Peng et al. [24] | - | 0–50 kV/m | parallel plate sense | 100 V/m |
EFS by Wen et al. [70] | - | −1–+1 kV/m | comb-finger sense | 5 V/m |
EFS by Liu et al. [63] | 0.16 mV/(kV/m) | 0–50 kV/m | parallel plate sense | - |
EFS by Bahreyni et al. [32] | 0.16 mV/(kV/m) | 0–5 kV/m | parallel plate sense | 42 V/m |
Charge sensor by Zhu et al. [33] | 1.58 nV /e | - | parallel plate sense | 68.3 e/ |
EFS by Gao et al. [67] | 0.31 mV/(kV/m) | 0–50 kV/m | parallel plate sense | 230 V/m |
EFS by Wen et al. [46] | 465 mV/(kV/m) | 0–100 kV/m | comb-finger sense | 10 V/m |
EFS by Chu et al. [30] | 4.82 mV/(kV/m) | 0–50 kV/m | torsional resonant and parallel plate sense | - |
EFS by Wang et al. [28,29] | 0.675 mV/(kV/m) | 0–25 kV/m | rotary resonant and comb-finger sense | - |
EFS by Huang et al. [71] | 0.84 mV/(kV/m) | 0–1 kV/m | micro-cantilever | - |
EFS by Han et al. [72] | - | 1.1–1100 kV/m | micro-cantilever | 112 V/m/ |
Frequency-Modulated | ||||
Electrometer by Lee et al. [47] | - | 0–200 fC | axial strain modulated and tuning fork | 4 fC |
Electrometer by Chen et al. [73] | - | 12.38 pC | adjustable capacitor and tuning fork | 2.6 fC |
EFS by Liu et al. [75] | 0.1384 /(kV/m) | 0–10 kV/m | lateral modulated and double-clamped beam | 10 V/m/ |
Mode-localized | ||||
Electrometer by Zhang et al. [51,52] | 663,751 ppm/C | 0–144 fC | weakly coupled tuning fork | 1.269 fC |
electrical potential sensor by Zhao et al. [50] | - | −6–+2 V | three electrically coupled resonators | 614 |
Voltmeter by Hao et al. [82] | 34/V | 0–0.25 V | three mechanically coupled resonators | 3 |
EFS by Liu et al. [85] | 3.2/(kV/m) | 0–11 kV/m | three electrically coupled resonators | 10 V/m/ |
EFS by Hao et al. [83] | 0.76/(kV/m) | 0–7 kV/m | three mechanically coupled resonators | 11.5 V/m/ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, G.; Yang, P.; Chu, Z.; Ran, L.; Li, J.; Zhang, B.; Wen, X. A Review on Resonant MEMS Electric Field Sensors. Micromachines 2024, 15, 1333. https://doi.org/10.3390/mi15111333
Wang G, Yang P, Chu Z, Ran L, Li J, Zhang B, Wen X. A Review on Resonant MEMS Electric Field Sensors. Micromachines. 2024; 15(11):1333. https://doi.org/10.3390/mi15111333
Chicago/Turabian StyleWang, Guijie, Pengfei Yang, Zhaozhi Chu, Lifang Ran, Jianhua Li, Bo Zhang, and Xiaolong Wen. 2024. "A Review on Resonant MEMS Electric Field Sensors" Micromachines 15, no. 11: 1333. https://doi.org/10.3390/mi15111333
APA StyleWang, G., Yang, P., Chu, Z., Ran, L., Li, J., Zhang, B., & Wen, X. (2024). A Review on Resonant MEMS Electric Field Sensors. Micromachines, 15(11), 1333. https://doi.org/10.3390/mi15111333