Improvement of Single Event Transient Effects for a Novel AlGaN/GaN High Electron-Mobility Transistor with a P-GaN Buried Layer and a Locally Doped Barrier Layer
Abstract
:1. Introduction
2. Device Structure and Simulation Details
3. Results and Discussion
3.1. Basic Characteristics
3.2. SET Effect
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tian, K.; Zhao, P.; Du, J.; Yu, Q. Design optimization of wide-gate swing E-mode GaN HEMTs with junction barrier Schottky gate. J. Phys. D Appl. Phys. 2024, 57, 415107. [Google Scholar] [CrossRef]
- Liu, H.X.; Huang, H.M.; Wang, K.; Xie, Z.J.; Wang, H. Impact of composition and thickness of step-graded AlGaN barrier in AlGaN/GaN heterostructures. Mater. Sci. Semicond. Process. 2024, 178, 108460. [Google Scholar] [CrossRef]
- Cheng, J.J.; Wang, Q.Y.; Liu, Y.K.; Ding, G.; Zhang, M.M.; Yi, B.; Huang, H.M.; Yang, H.Q. Study on a p-GaN HEMT with composite passivation and composite barrier layers. Semicond. Sci. Technol. 2024, 39, 085004. [Google Scholar] [CrossRef]
- Liu, A.-C.; Huang, Y.-W.; Chen, H.-C.; Kuo, H.-C. Improvement Performance of p-GaN Gate High Electron-Mobility Transistors with GaN/AlN/AlGaN Barrier Structure. Micromachines 2024, 15, 517. [Google Scholar] [CrossRef] [PubMed]
- Husna Hamza, K.; Nirmal, D.; Augustine Fletcher, A.S.; Ajayan, J.; Natarajan, R. Enhanced drain current and cut off frequency in AlGaN/GaN HEMT with BGaN back barrier. Mater. Sci. Eng. B 2022, 284, 115863. [Google Scholar] [CrossRef]
- He, Y.W.; Zhang, L.; Cheng, Z.; Li, C.C.; He, J.H.; Xie, S.J.; Wu, X.K.; Wu, C.; Zhang, Y. Scaled InAlN/GaN HEMT on Sapphire With fT/fmax of 190/301 GHz. IEEE Trans. Electron. Device 2023, 70, 3001–3004. [Google Scholar] [CrossRef]
- Lv, R.P.; Sun, H.Q.; Yang, L.F.; Liu, Z.; Zhang, Y.H.; Li, Y.; Huang, Y.; Guo, Z.Y. Improving RF characteristic and suppress gate leakage in normally-off GaN-HEMTs using negative polarization effect and floating gate for millimeter-wave systems. Results Phys. 2024, 59, 107526. [Google Scholar] [CrossRef]
- Mounika, B.; Ajayan, J.; Bhattacharya, S.; Nirmal, D. Recent developments in materials, architectures and processing of AlGaN/GaN HEMTs for future RF and power electronic applications: A critical review. Micro Nanostruct. 2022, 168, 207317. [Google Scholar] [CrossRef]
- Zerarka, M.; Austin, P.; Bensoussan, A.; Morancho, F.; Durier, A. TCAD Simulation of the Single Event Effects in Normally-OFF GaN Transistors After Heavy Ion Radiation. IEEE Trans. Nucl. Sci. 2017, 64, 2242–2249. [Google Scholar] [CrossRef]
- Mounika, B.; Ajayan, J.; Bhattacharya, S. An intensive study on effects of lateral scaling and gate metals on the RF/DC performance of recessed T-gated Fe-doped AlN/GaN/SiC HEMTs for future RF and microwave power applications. Microelectron. Eng. 2023, 271–272, 111948. [Google Scholar] [CrossRef]
- Nelson, T.; Georgiev, D.G.; Hontz, M.R.; Khanna, R.; Ildefonso, A.; Koehler, A.D.; Hobart, A.; Khachatrian, A.; McMorrow, D. Examination of Trapping Effects on Single-Event Transients in GaN HEMTs. IEEE Trans. Nucl. Sci. 2023, 70, 328–335. [Google Scholar] [CrossRef]
- Li, K.; Hao, J.H.; Zhao, Q.; Zhang, F.; Dong, Z.W. Simulation of heavy ion irradiation effect on 3D MOSFET. AIP Adv. 2023, 13, 025143. [Google Scholar] [CrossRef]
- Liu, B.J.; Li, C.; Chen, M.H. Investigation of Single Event Transient Induced by Process Variability in 14 nm High-k/Metal Gate SOI FinFET Devices. Silicon 2023, 15, 1317–1324. [Google Scholar] [CrossRef]
- Wu, W.R.; Xu, W.T.; Qu, K.; Yang, G.G.; Yu, Z.X.; Sun, W.F. Comprehensive investigation on different ions of geostationary orbitinduced single event burnout in GaN HEMT power devices. Microelectron. Reliab. 2023, 149, 115187. [Google Scholar] [CrossRef]
- Zhang, X.; Cao, Y.; Chen, C.; Wu, L.; Wang, Z.; Su, S.; Zhang, W.; Lv, L.; Zheng, X.; Tian, W.; et al. Study on Single Event Effects of Enhanced GaN HEMT Devices under Various Conditions. Micromachines 2024, 15, 950. [Google Scholar] [CrossRef]
- Liang, Y.; Chen, R.; Han, J.; Wang, X.; Chen, Q.; Yang, H. The Study of the Single Event Effect in AlGaN/GaN HEMT Based on a Cascode Structure. Electronics 2021, 10, 440. [Google Scholar] [CrossRef]
- Das, S.; Kumari, V.; Sehra, K.; Gupta, M.; Saxena, M. TCAD Based Investigation of Single Event Transient Effect in Double ChannelAlGaN/GaN HEMT. IEEE Trans. Device Mater. Reliab. 2021, 21, 416–423. [Google Scholar] [CrossRef]
- Zhen, Z.X.; Feng, C.; Wang, Q.; Niu, D.; Wang, X.L.; Tan, M.Q. Single Event Burnout Hardening of Enhancement Mode HEMTs With Double Field Plates. IEEE Trans. Nucl. Sci. 2021, 68, 2358–2366. [Google Scholar] [CrossRef]
- Khachatrian, A.; Buchner, S.; Koehler, A.; Affouda, C.; McMorrow, D.; LaLumondiere, S.D.; Dillingham, E.C.; Bonsall, J.P.; Scofield, A.C.; Brewe, D.L. The Effect of the Gate-Connected Field Plate on Single-Event Transients in AlGaN/GaN Schottky-Gate HEMTs. IEEE Trans. Nucl. Sci. 2019, 66, 1682–1687. [Google Scholar] [CrossRef]
- Zhang, N.Q.; Keller, S.; Parish, G.; Heikman, S.; DenBaars, S.P.; Mishra, U.K. High breakdown GaN HEMT with overlapping gate structure. IEEE Electron. Device Lett. 2000, 21, 421–423. [Google Scholar] [CrossRef]
- Saito, W.; Nitta, T.; Kakiuchi, Y.; Saito, Y.; Tsuda, K.; Omura, I.; Yamaguchi, M. Suppression of dynamic on-resistance increase and gate charge measurements in high-voltage GaN-HEMTs with optimized field-plate structure. IEEE Trans. Electron. Device 2007, 54, 1825–1830. [Google Scholar] [CrossRef]
- Medjdoub, F.; Derluyn, J.; Cheng, K.; Leys, M.; Degroote, S.; Marcon, D.; Visalli, D.; Van Hove, M.; Germain, M.; Borghs, G. Low on-resistance high-breakdown normally off AlN/GaN/AlGaN DHFET on Si substrate. IEEE Electron. Device Lett. 2010, 31, 111–113. [Google Scholar] [CrossRef]
- Luo, X.; Wang, Y.; Hao, Y.; Cao, F.; Yu, C.H.; Fei, X.X. TCAD Simulation of Breakdown-Enhanced AlGaN-/GaN-Based MISFET with Electrode-Connected p-i-n Diode in Buffer Layer. IEEE Trans. Electron. Device 2018, 65, 476–482. [Google Scholar] [CrossRef]
- Du, J.F.; Liu, D.; Zhao, Z.Q.; Bai, Z.Y.; Li, L.; Mo, J.H.; Yu, Q. Design of high breakdown voltage GaN vertical HFETs with p-GaN buried buffer layers for power switching applications. Superlattices Microstruct. 2015, 83, 251–260. [Google Scholar] [CrossRef]
- Fei, X.; Wang, Y.; Luo, X.; Bao, M.; Yu, C. TCAD simulation of abreakdown-enhanced double channel GaN metal-insulator-semiconductorfield-effect transistor with a P-buried layer. Semicond. Sci. Technol. 2020, 35, 065012. [Google Scholar]
- Wang, Y.; Bao, M.; Cao, F.; Tang, J.; Luo, X. Technology Computer Aided Design Study of GaN MISFET with Double P-Buried Layers. IEEE Access 2019, 7, 87574–87581. [Google Scholar] [CrossRef]
- Fei, X.; Wang, Y.; Sun, B.; Xing, J.; Wei, W.; Li, C. Simulation study of single-event burnout in hardened GaN MISFET. Radiat. Phys. Chem. 2023, 213, 111244. [Google Scholar] [CrossRef]
- Sabui, G.; Parbrook, P.J.; Arredondo-Arechavala, M.; Shen, Z.J. Modeling and simulation of bulk gallium nitride power semiconductor devices. Aip Adv. 2016, 6, 055006. [Google Scholar] [CrossRef]
- Jia, Y.; Wang, Q.; Chen, C.; Feng, C.; Li, W.; Jiang, L.; Xiao, H.; Wang, Q.; Xu, X.; Wang, X. Simulation of a Parallel Dual-Metal-Gate Structure for AlGaN/GaN High-Electron-Mobility Transistor High Linearity Applications. Phys. Status Solidi A 2021, 218, 2100151. [Google Scholar] [CrossRef]
- Yu, C.H.; Guo, H.M.; Liu, Y.; Wu, X.D.; Zhang, L.D.; Tan, X.; Han, Y.C.; Ren, L. Simulation study on single-event burnout in field-plated Ga2O3 MOSFETs. Microelectron. Reliab. 2023, 149, 115227. [Google Scholar] [CrossRef]
- Wang, K.; Wang, Z.; Cao, Y.; Liu, H.; Chang, W.; Zhao, L.; Mei, B.; Lv, H.; Zeng, X.; Xue, Y. Study of the mechanism of single event burnout in lateral depletion-mode Ga2O3 MOSFET devices via TCAD simulation. J. Appl. Phys. 2024, 135, 145702. [Google Scholar] [CrossRef]
- Olson, B.D.; Ingalls, J.D.; Rice, C.H.; Hedge, C.C.; Cole, P.L.; Duncan, A.R.; Armstrong, S.E. Leakage Current Degradation of Gallium Nitride Transistors Due to Heavy Ion Tests. In Proceedings of the IEEE Radiation Effects Data Workshop (REDW), Boston, MA, USA, 3 December 2015. [Google Scholar]
- Weatherford, T.R. Radiation effects in high speed III-V integrated circuits. Int. J. High. Speed Electron. Syst. 2003, 13, 277–292. [Google Scholar] [CrossRef]
- Fu, W.; Xu, Y.; Yan, B.; Zhang, B.; Xu, R. Numerical simulation of local doped barrier layer AlGaN/GaN HEMTs. Superlattices Microstruct. 2013, 60, 443–452. [Google Scholar] [CrossRef]
- Luo, J.; Zhao, S.; Lin, Z.; Zhang, J.; Ma, X.; Hao, Y. Enhancement of Breakdown Voltage in AlGaN/GaN High Electron Mobility Transistors Using Double Buried p-Type Layers. Chin. Phys. Lett. 2016, 33, 067301. [Google Scholar] [CrossRef]
- Luo, X.; Wang, Y.; Cao, F.; Yu, C.; Fei, X. A breakdown enhanced AlGaN/GaN MISFET with source connected P-buried layer. Superlattices Microstruct. 2017, 112, 517–527. [Google Scholar] [CrossRef]
- Kodama, M.; Sugimoto, M.; Hayashi, E.; Soejim, N.; Ishiguro, O.; Kanechika, M.; Itoh, K.; Ueda, H.; Uesugi, T.; Kachi, T. GaN-Based Trench Gate Metal Oxide Semiconductor Field-Effect Transistor Fabricated with Novel Wet Etching. Appl. Phys. Express 2008, 1, 021104. [Google Scholar] [CrossRef]
- Arifin, P.; Sutanto, H.; Sugianto; Subagio, A. Plasma Assisted MOCVD Growth of Non-Polar GaN and AlGaN on Si(111) Substrates Utilizing GaN-AlN Buffer Layer. Coatings 2022, 12, 94. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Al0.3Ga0.7N barrier layer thickness | 25 nm |
GaN channel layer thickness | 100 nm |
Thickness of P-GaN buried layer (T) | 100 nm |
Distance from channel for P-GaN buried layer (D) | 50 nm |
P-GaN layer doping concentration (NP) | 7 × 1017 cm−3 |
GaN buffer layer thickness | 1.4 µm |
Gate–source spacing | 1.4 µm |
Gate–drain spacing | 2.4 µm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, J.; Xie, X.; Wei, J.; Sun, S.; Luo, X. Improvement of Single Event Transient Effects for a Novel AlGaN/GaN High Electron-Mobility Transistor with a P-GaN Buried Layer and a Locally Doped Barrier Layer. Micromachines 2024, 15, 1158. https://doi.org/10.3390/mi15091158
Xiong J, Xie X, Wei J, Sun S, Luo X. Improvement of Single Event Transient Effects for a Novel AlGaN/GaN High Electron-Mobility Transistor with a P-GaN Buried Layer and a Locally Doped Barrier Layer. Micromachines. 2024; 15(9):1158. https://doi.org/10.3390/mi15091158
Chicago/Turabian StyleXiong, Juan, Xintong Xie, Jie Wei, Shuxiang Sun, and Xiaorong Luo. 2024. "Improvement of Single Event Transient Effects for a Novel AlGaN/GaN High Electron-Mobility Transistor with a P-GaN Buried Layer and a Locally Doped Barrier Layer" Micromachines 15, no. 9: 1158. https://doi.org/10.3390/mi15091158
APA StyleXiong, J., Xie, X., Wei, J., Sun, S., & Luo, X. (2024). Improvement of Single Event Transient Effects for a Novel AlGaN/GaN High Electron-Mobility Transistor with a P-GaN Buried Layer and a Locally Doped Barrier Layer. Micromachines, 15(9), 1158. https://doi.org/10.3390/mi15091158