Inflammation-Related Carcinogenesis: Lessons from Animal Models to Clinical Aspects
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods—Data Sources and Search Strategy
3. Inflammation-Related Carcinogenesis Model of Each Organ
3.1. Oral Cavity and Tongue Cancer
3.1.1. Alcohol
3.1.2. Chemical Carcinogenesis Model
3.1.3. Genetically Modified Host Model
3.2. Esophageal Cancer
3.2.1. Esophagoduodenal Anastomosis Model
3.2.2. Diet
3.2.3. Genetically Modified Host Model
3.3. Lung Cancer
3.3.1. Inhaled Particle Model
3.3.2. Cigarette Smoke
3.3.3. Virus Lysate
3.3.4. Chemical Carcinogenesis Model
3.3.5. Genetically Modified Host Model
3.4. Stomach Cancer
3.4.1. Helicobacter pylori Model
3.4.2. Spontaneous Carcinogenesis Model
3.4.3. Carcinogen-Assisted Carcinogenesis Model
3.4.4. Helicobacter felis Model
3.4.5. Chemical Carcinogenesis Model
3.4.6. Gastrojejunostomy Model
3.4.7. Genetically Modified Host Model
3.5. Liver Cancer
3.5.1. HBV Model
3.5.2. HCV Model
3.5.3. Fulminant Hepatitis Model
3.5.4. Parasitic Infection Model
3.5.5. Diet-Related and Obesity Model
Alcohol
Obesity
3.5.6. Microbe Model
3.5.7. Chemical Carcinogenesis Model
3.5.8. Genetically Modified Host Model
3.6. Pancreas Cancer
Genetically Modified Host Model
3.7. Colorectal Cancer
3.7.1. Chemical Irritant Model
3.7.2. Chemical Carcinogenesis Model
3.7.3. Diet-Related and Obesity Model
3.7.4. Genetically Modified Host Model
3.7.5. Microbe Model
3.7.6. Foreign Body-Induced Inflammation Model
3.8. Breast Cancer
3.8.1. Diet-Related and Obesity Model
3.8.2. Foreign Body-Induced Inflammation Model
3.8.3. Genetically Modified Host Model
3.9. Urogenital Cancer
3.9.1. Prostate Carcinogenesis Model
3.9.2. Bladder Carcinogenesis Model
3.9.3. Renal Carcinogenesis Model
3.10. Skin Cancer
3.10.1. Classical Two-Stage Skin Carcinogenesis Model
3.10.2. Ultraviolet B Exposure Model
3.10.3. Genetically Modified Host Model
3.11. Sarcoma
3.11.1. Chemical Irritant Model
3.11.2. Foreign Body-Induced Inflammation Model
3.11.3. Genetically Modified Host Model
4. Clinical Aspects of Inflammation-Related Carcinogenesis
4.1. Evaluation of Systemic Inflammation
4.2. Removing Inflammatory Cells from Systemic Circulation (Therapeutic Apheresis)
4.2.1. Leukocytapheresis
4.2.2. Photopheresis
5. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Okada, F. Gaseous molecules as an endogenous factor in the inflammation-related carcinogenesis model. In Inflammation and Cancer Metabolism, Persulfide Conference 2019, Proceedings pf the 1st International Conference on Persulfide and Sulfur Metabolism in Biology and Medicine, Sendai, Japan, 9–11 September 2019; Takaaki Akaike, Ed.; Redox Week Sendai Office: Sendai, Japan, 2019; pp. 76–77. [Google Scholar]
- Touati, E. When bacteria become mutagenic and carcinogenic: Lessons from H. pylori. Mutat. Res. 2010, 703, 66–70. [Google Scholar] [CrossRef]
- Okada, F. Inflammation-related carcinogenesis: Current findings in epidemiological trends, causes and mechanisms. Yonago Acta Med. 2014, 57, 65–72. [Google Scholar] [PubMed]
- Corrêa, L.H.; Heyn, G.S.; Magalhaes, K.G. The impact of the adipose organ plasticity on inflammation and cancer progression. Cells 2019, 8, 662. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhu, N.; Zhang, C.; Wang, Y.; Wu, H.; Li, Q.; Du, K.; Liao, D.; Qin, L. Friend or foe: Multiple roles of adipose tissue in cancer formation and progression. J. Cell. Physiol. 2019, 234, 21436–21449. [Google Scholar] [CrossRef] [PubMed]
- Quail, D.F.; Dannenberg, A.J. The obese adipose tissue microenvironment in cancer development and progression. Nat. Rev. Endocrinol. 2019, 15, 139–154. [Google Scholar] [CrossRef]
- Okada, F. Beyond foreign-body-induced carcinogenesis: Impact of reactive oxygen species derived from inflammatory cells in tumorigenic conversion and tumor progression. Int. J. Cancer 2007, 121, 2364–2372. [Google Scholar] [CrossRef] [PubMed]
- Page, A.; Cascallana, J.L.; Casanova, M.L.; Navarro, M.; Alameda, J.P.; Pérez, P.; Bravo, A.; Ramírez, A. IKKβ overexpression leads to pathologic lesions in stratified epithelia and exocrine glands and to tumoral transformation of oral epithelia. Mol. Cancer Res. 2011, 9, 1329–1338. [Google Scholar] [CrossRef] [Green Version]
- Soffritti, M.; Belpoggi, F.; Cevolani, D.; Guarino, M.; Padovani, M.; Maltoni, C. Results of long-term experimental studies on the carcinogenicity of methyl alcohol and ethyl alcohol in rats. Ann. N. Y. Acad. Sci. 2002, 982, 46–69. [Google Scholar] [CrossRef] [PubMed]
- Nachiappan, V.; Mufti, S.I.; Eskelson, C.D. Ethanol-mediated promotion of oral carcinogenesis in hamsters: Association with lipid peroxidation. Nutr. Cancer 1993, 20, 293–302. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, X.; Zhang, X.; Sun, Z.; Chen, X. Ethanol promotes chemically induced oral cancer in mice through activation of the 5-lipoxygenase pathway of arachidonic acid metabolism. Cancer Prev. Res. 2011, 4, 1863–1872. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Hou, D.Q.; Xu, S.B.; Zhang, J.Y.; Zhu, L.F.; Wang, Q.; Pan, L.; Yu, M.; Shen, W.L.; Zhu, W.W.; et al. TLR2 deficiency enhances susceptibility to oral carcinogenesis by promoting an inflammatory environment. Am. J. Cancer Res. 2019, 9, 2599–2617. [Google Scholar]
- Corley, D.A.; Kubo, A.; Levin, T.R.; Block, G.; Habel, L.; Rumore, G.; Quesenberry, C.; Buffler, P. Race, ethnicity, sex and temporal differences in Barrett’s oesophagus diagnosis: A large community-based study, 1994–2006. Gut 2009, 58, 182–188. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, S.R.; Yang, G.-Y.; Curtis, S.K.; Reuhl, K.R.; Liu, B.-C.; Mirvish, S.S.; Newmark, H.L.; Yang, C.S. Development of esophageal metaplasia and adenocarcinoma in a rat surgical model without the use of a carcinogen. Carcinogenesis 1997, 18, 2265–2270. [Google Scholar] [CrossRef]
- Fang, H.-Y.; Münch, N.S.; Schottelius, M.; Ingermann, J.; Liu, H.; Schauer, M.; Stangl, S.; Multhoff, G.; Steiger, K.; Gerngroß, C.; et al. CXCR4 is a potential target for diagnostic PET/CT imaging in Barrett’s dysplasia and esophageal adenocarcinoma. Clin. Cancer Res. 2018, 24, 1048–1061. [Google Scholar] [CrossRef] [Green Version]
- Melkamu, T.; Qian, X.; Upadhyaya, P.; O’Sullivan, M.G.; Kassie, F. Lipopolysaccharide enhances mouse lung tumorigenesis: A model for inflammation-driven lung cancer. Vet. Pathol. 2013, 50, 895–902. [Google Scholar] [CrossRef] [PubMed]
- Gavett, S.H.; Parkinson, C.U.; Willson, G.A.; Wood, C.E.; Jarabek, A.M.; Roberts, K.C.; Kodavanti, U.P.; Dodd, D.E. Persistent effects of Libby amphibole and amosite asbestos following subchronic inhalation in rats. Part. Fibre Toxicol. 2016, 13, 17. [Google Scholar] [CrossRef] [Green Version]
- Blanco, D.; Vicent, S.; Fraga, M.F.; Fernandez-Garcia, I.; Freire, J.; Lujambio, A.; Esteller, M.; Ortiz-De-Solorzano, C.; Pio, R.; Lecanda, F.; et al. Molecular analysis of a multistep lung cancer model induced by chronic inflammation reveals epigenetic regulation of p16, activation of the DNA damage response pathway. Neoplasia 2007, 9, 840–852. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Futakuchi, M.; Iigo, M.; Fukamachi, K.; Alexander, D.B.; Shimizu, H.; Sakai, Y.; Tamano, S.; Furukawa, F.; Uchino, T.; et al. Involvement of macrophage inflammatory protein 1α (MIP1α) in promotion of rat lung and mammary carcinogenic activity of nanoscale titanium dioxide particles administered by intra-pulmonary spraying. Carcinogenesis 2010, 31, 927–935. [Google Scholar] [CrossRef]
- Balansky, R.; Ganchev, G.; Iltcheva, M.; Nikolov, M.; Maestra, S.; Micale, R.; D’Agostini, F.; Steele, V.; Flora, S. Modulation by licofelone and celecoxib of experimentally induced cancer and preneoplastic lesions in mice exposed to cigarette smoke. Curr. Cancer Drug Targets 2015, 15, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Moghaddam, S.J.; Li, H.; Cho, S.-N.; Dishop, M.K.; Wistuba, I.I.; Ji, L.; Kurie, J.M.; Dickey, B.F.; DeMayo, F.J. Promotion of lung carcinogenesis by chronic obstructive pulmonary disease–like airway inflammation in a K-ras–induced mouse model. Am. J. Respir. Cell Mol. Biol. 2009, 40, 443–453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freire, J.; Ajona, D.; De Biurrun, G.; Agorreta, J.; Segura, V.; Guruceaga, E.; Bleau, A.-M.; Pio, R.; Blanco, D.; Montuenga, L.M. Silica-induced chronic inflammation promotes lung carcinogenesis in the context of an immunosuppressive microenvironment. Neoplasia 2013, 15, 913–924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, M.; Zhang, P.; Huang, L.; Shao, H.; Duan, S.; Li, C.; Zhang, Q.; Wang, W.; Wu, Y.; Wang, J.; et al. Is NLRP3 or NLRP6 inflammasome activation associated with inflammation-related lung tumorigenesis induced by benzo(a)pyrene and lipopolysaccharide? Ecotoxicol. Environ. Saf. 2019, 185, 109687. [Google Scholar] [CrossRef]
- Huang, L.; Zhang, P.; Duan, S.; Shao, H.; Gao, M.; Zhang, Q.; Feng, F. The comparison of two mouse models of inflammation-related lung tumorigenesis induced by benzo(a)pyrene and lipopolysaccharide. Exp. Anim. 2019, 68, 301–306. [Google Scholar] [CrossRef] [PubMed]
- Malkinson, A.M.; Koski, K.M.; Evans, W.A.; Festing, M.F. Butylated hydroxytoluene exposure is necessary to induce lung tumors in BALB mice treated with 3-methylcholanthrene. Cancer Res. 1997, 57, 2832–2834. [Google Scholar] [PubMed]
- Liu, J.; Cho, S.-N.; Wu, S.-P.; Jin, N.; Moghaddam, S.J.; Gilbert, J.L.; Wistuba, I.; DeMayo, F.J. Mig-6 deficiency cooperates with oncogenic Kras to promote mouse lung tumorigenesis. Lung Cancer 2017, 112, 47–56. [Google Scholar] [CrossRef]
- Li, Y.; Du, H.; Qin, Y.; Roberts, J.; Cummings, O.W.; Yan, C. Activation of the signal transducers and activators of the transcription 3 pathway in alveolar epithelial cells induces inflammation and adenocarcinomas in mouse lung. Cancer Res. 2007, 67, 8494–8503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bullock, F.D.; Curtis, M.R. Spontaneous tumors of the rat. J. Cancer Res. 1930, 14, 1–115. [Google Scholar] [CrossRef]
- Nozaki, K.; Shimizu, N.; Ikehara, Y.; Inoue, M.; Tsukamoto, T.; Inada, K.-I.; Tanaka, H.; Kumagai, T.; Kaminishi, M.; Tatematsu, M. Effect of early eradication on Helicobacter pylori-related gastric carcinogenesis in Mongolian gerbils. Cancer Sci. 2003, 94, 235–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weis, V.G.; Goldenring, J.R. Current understanding of SPEM and its standing in the preneoplastic process. Gastric Cancer 2009, 12, 189–197. [Google Scholar] [CrossRef]
- Peek, R.M., Jr. Helicobacter pylori strain-specific modulation of gastric mucosal cellular turnover: Implications for carcinogenesis. J. Gastroenterol. 2002, 37, 10–16. [Google Scholar] [CrossRef]
- Hahm, K.-B.; Song, Y.-J.; Oh, T.-Y.; Lee, J.-S.; Surh, Y.-J.; Kim, Y.-B.; Yoo, B.-M.; Kim, J.-H.; Ha, S.-U.; Nahm, K.-T.; et al. Chemoprevention of Helicobacter pylori-associated Gastric Carcinogenesis in a mouse model; is it possible? J. Biochem. Mol. Biol. 2003, 36, 82–94. [Google Scholar] [CrossRef] [Green Version]
- Peek, R.M. Helicobacter pylori infection and disease: From humans to animal models. Dis. Model. Mech. 2008, 1, 50–55. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.-W.; Rao, V.P.; Rogers, A.B.; Ge, Z.; Erdman, S.E.; Whary, M.T.; Fox, J.G. Wild-type and interleukin-10-deficient regulatory T cells reduce effector T-cell-mediated gastroduodenitis in Rag2−/− mice, but only wild-type regulatory T cells suppress helicobacter pylori gastritis. Infect. Immun. 2007, 75, 2699–2707. [Google Scholar] [CrossRef] [Green Version]
- Kodama, Y.; Ozaki, K.; Sano, T.; Matsuura, T.; Akagi, H.; Narama, I. Induction of squamous cell carcinoma of forestomach in diabetic rats by single alloxan treatment. Cancer Sci. 2006, 97, 1023–1030. [Google Scholar] [CrossRef]
- Mason, R.C.; Taylor, P.R.; Filipe, M.I.; McColl, I. Pancreaticoduodenal secretions and the genesis of gastric stump carcinoma in the rat. Gut 1988, 29, 830–834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tebbutt, N.C.; Giraud, A.S.; Inglese, M.; Jenkins, B.; Waring, P.; Clay, F.J.; Malki, S.; Alderman, B.M.; Grail, D.; Hollande, F.; et al. Reciprocal regulation of gastrointestinal homeostasis by SHP2 and STAT-mediated trefoil gene activation in gp130 mutant mice. Nat. Med. 2002, 8, 1089–1097. [Google Scholar] [CrossRef]
- Tu, S.; Bhagat, G.; Cui, G.; Takaishi, S.; Kurt-Jones, E.A.; Rickman, B.; Betz, K.S.; Penz-Oesterreicher, M.; Bjorkdahl, O.; Fox, J.G.; et al. Overexpression of interleukin-1β induces gastric inflammation and cancer and mobilizes myeloid-derived suppressor cells in mice. Cancer Cell 2008, 14, 408–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Omar, E.M.; Carrington, M.; Chow, W.H.; McColl, K.E.; Bream, J.H.; Young, H.A.; Herrera, J.; Lissowska, J.; Yuan, C.C.; Rothman, N.; et al. The role of interleukin-1 polymorphisms in the pathogenesis of gastric cancer. Nature 2001, 412, 99–100. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Liu, C.; Ip, B.C.; Hu, K.-Q.; Smith, D.E.; Greenberg, A.S.; Wang, X.-D. Tumor progression locus 2 ablation suppressed hepatocellular carcinoma development by inhibiting hepatic inflammation and steatosis in mice. J. Exp. Clin. Cancer Res. 2015, 34, 138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiu, A.P.; Tschida, B.R.; Sham, T.-T.; Lo, L.H.; Moriarity, B.S.; Li, X.-X.; Lo, R.C.; Hinton, D.E.; Rowlands, D.K.; Chan, C.-O.; et al. HBx-K130M/V131I promotes liver cancer in transgenic mice via AKT/FOXO1 signaling pathway and arachidonic acid metabolism. Mol. Cancer Res. 2019, 17, 1582–1593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buendia, M.-A.; Neuveut, C. Hepatocellular carcinoma. Cold Spring Harb. Perspect. Med. 2015, 5, a021444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anfuso, B.; El-Khobar, K.E.; Ie, S.I.; Avellini, C.; Radillo, O.; Raseni, A.; Tiribelli, C.; Sukowati, C.H.C. Activation of hepatic stem cells compartment during hepatocarcinogenesis in a HBsAg HBV-transgenic mouse model. Sci. Rep. 2018, 8, 13168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussain, S.P.; Hofseth, L.J.; Harris, C.C. Radical causes of cancer. Nat. Rev. Cancer 2003, 3, 276–285. [Google Scholar] [CrossRef]
- Koike, K. Molecular basis of hepatitis C virus-associated hepatocarcinogenesis: Lessons from animal model studies. Clin. Gastroenterol. Hepatol. 2005, 3, S132–S135. [Google Scholar] [CrossRef]
- McGivern, D.R.; Lemon, S.M. Virus-specific mechanisms of carcinogenesis in hepatitis C virus associated liver cancer. Oncogene 2011, 30, 1969–1983. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Togashi, Y.; Sato, S.; Emoto, T.; Kang, J.-H.; Takeichi, N.; Kobayashi, H.; Kojima, Y.; Une, Y.; Uchino, J. Abnormal copper accumulation in non-cancerous and cancerous liver tissues of LEC rats developing hereditary hepatitis and spontaneous hepatoma. Jpn. J. Cancer Res. 1991, 82, 490–492. [Google Scholar] [CrossRef]
- Li, Y.; Togashi, Y.; Sato, S.; Emoto, T.; Kang, J.H.; Takeichi, N.; Kobayashi, H.; Kojima, Y.; Une, Y.; Uchino, J. Spontaneous hepatic copper accumulation in Long-Evans Cinnamon rats with hereditary hepatitis. A model of Wilson’s disease. J. Clin. Investig. 1991, 87, 1858–1861. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, Y.; Heiny, M.E.; Shimizu, N.; Aoki, T.; Gitlin, J.D. Expression of the Wilson disease gene is deficient in the Long-Evans Cinnamon rat. Biochem. J. 1994, 301, 1–4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gouveia, M.J.; Pakharukova, M.Y.; Laha, T.; Sripa, B.; Maksimova, G.A.; Rinaldi, G.; Brindley, P.J.; Mordvinov, V.A.; Amaro, T.; Santos, L.L.; et al. Infection with Opisthorchis felineus induces intraepithelial neoplasia of the biliary tract in a rodent model. Carcinogenesis 2017, 38, 929–937. [Google Scholar] [CrossRef]
- Khoontawad, J.; Pairojkul, C.; Rucksaken, R.; Pinlaor, P.; Wongkham, C.; Yongvanit, P.; Pugkhem, A.; Jones, A.; Plieskatt, J.; Potriquet, J.; et al. Differential protein expression marks the transition from infection withopisthorchis viverrinito cholangiocarcinoma. Mol. Cell. Proteom. 2017, 16, 911–923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prakobwong, S.; Khoontawad, J.; Yongvanit, P.; Pairojkul, C.; Hiraku, Y.; Sithithaworn, P.; Pinlaor, P.; Aggarwal, B.B.; Pinlaor, S. Curcumin decreases cholangiocarcinogenesis in hamsters by suppressing inflammation-mediated molecular events related to multistep carcinogenesis. Int. J. Cancer 2011, 129, 88–100. [Google Scholar] [CrossRef] [PubMed]
- Chan, I.S.; Guy, C.D.; Machado, M.V.; Wank, A.; Kadiyala, V.; Michelotti, G.; Choi, S.; Swiderska-Syn, M.; Karaca, G.; Pereira, T.A.; et al. Alcohol Activates the hedgehog pathway and induces related procarcinogenic processes in the alcohol-preferring rat model of hepatocarcinogenesis. Alcohol. Clin. Exp. Res. 2014, 38, 787–800. [Google Scholar] [CrossRef]
- Yip-Schneider, M.T.; Doyle, C.J.; McKillop, I.H.; Wentz, S.C.; Brandon-Warner, E.; Matos, J.M.; Sandrasegaran, K.; Saxena, R.; Hennig, M.E.; Wu, H.; et al. Alcohol induces liver neoplasia in a novel alcohol-preferring rat model. Alcohol. Clin. Exp. Res. 2011, 35, 2216–2225. [Google Scholar] [CrossRef] [Green Version]
- Ip, B.C.; Wang, X.-D. Non-alcoholic steatohepatitis and hepatocellular carcinoma: Implications for lycopene intervention. Nutrients 2013, 6, 124–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyazaki, T.; Shirakami, Y.; Kubota, M.; Ideta, T.; Kochi, T.; Sakai, H.; Tanaka, T.; Moriwaki, H.; Shimizu, M. Sodium alginate prevents progression of non-alcoholic steatohepatitis and liver carcinogenesis in obese and diabetic mice. Oncotarget 2016, 7, 10448–10458. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, Y.; Suzuki, W.; Shimada, T.; Iizuka, S.; Nakamura, S.; Nagata, M.; Fujimoto, M.; Tsuneyama, K.; Hokao, R.; Miyamoto, K.-I.; et al. Dose dependent development of diabetes mellitus and non-alcoholic steatohepatitis in monosodium glutamate-induced obese mice. Life Sci. 2009, 85, 490–498. [Google Scholar] [CrossRef]
- Ma, C.; Kesarwala, A.H.; Eggert, T.; Medina-Echeverz, J.; Kleiner, D.E.; Jin, P.; Stroncek, D.F.; Terabe, M.; Kapoor, V.; Elgindi, M.; et al. NAFLD causes selective CD4+ T lymphocyte loss and promotes hepatocarcinogenesis. Nature 2016, 531, 253–257. [Google Scholar] [CrossRef] [Green Version]
- Shachaf, C.M.; Kopelman, A.M.; Arvanitis, C.; Karlsson, Å.; Beer, S.; Mandl, S.; Bachmann, M.H.; Borowsky, A.D.; Ruebner, B.; Cardiff, R.D.; et al. MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer. Nature 2004, 431, 1112–1117. [Google Scholar] [CrossRef] [PubMed]
- Sagawa, H.; Naiki-Ito, A.; Kato, H.; Naiki, T.; Yamashita, Y.; Suzuki, S.; Sato, S.; Shiomi, K.; Kato, A.; Kuno, T.; et al. Connexin 32 and luteolin play protective roles in non-alcoholic steatohepatitis development and its related hepatocarcinogenesis in rats. Carcinogenesis 2015, 36, 1539–1549. [Google Scholar] [CrossRef] [PubMed]
- Nakae, D. Endogenous liver carcinogenesis in the rat. Pathol. Int. 1999, 49, 1028–1042. [Google Scholar] [CrossRef]
- Coia, H.; Ma, N.; Hou, Y.; Dyba, M.D.; Fu, Y.; Cruz, M.I.; Benitez, C.; Graham, G.T.; McCutcheon, J.N.; Zheng, Y.-L.; et al. Prevention of lipid peroxidation–derived cyclic DNA adduct and mutation in high-fat diet–induced hepatocarcinogenesis by Theaphenon E. Cancer Prev. Res. 2018, 11, 665–676. [Google Scholar] [CrossRef] [Green Version]
- Ip, B.C.; Hu, K.-Q.; Liu, C.; Smith, D.E.; Obin, M.S.; Ausman, L.M.; Wang, X.-D. Lycopene metabolite, apo-10′-lycopenoic acid, inhibits diethylnitrosamine-initiated, high fat diet–promoted hepatic inflammation and tumorigenesis in mice. Cancer Prev. Res. 2013, 6, 1304–1316. [Google Scholar] [CrossRef] [Green Version]
- Patterson, M.M.; Rogers, A.B.; Fox, J.G. Experimental Helicobacter marmotae infection in A/J mice causes enterohepatic disease. J. Med. Microbiol. 2010, 59, 1235–1241. [Google Scholar] [CrossRef] [Green Version]
- Chen, N.; Nishio, N.; Ito, S.; Tanaka, Y.; Sun, Y.; Isobe, K.-I. Growth arrest and DNA damage-inducible protein (GADD34) enhanced liver inflammation and tumorigenesis in a diethylnitrosamine (DEN)-treated murine model. Cancer Immunol. Immunother. 2015, 64, 777–789. [Google Scholar] [CrossRef]
- Fujii, Y.; Segawa, R.; Kimura, M.; Wang, L.; Ishii, Y.; Yamamoto, R.; Morita, R.; Mitsumori, K.; Shibutani, M. Inhibitory effect of α-lipoic acid on thioacetamide-induced tumor promotion through suppression of inflammatory cell responses in a two-stage hepatocarcinogenesis model in rats. Chem. Biol. Interactions 2013, 205, 108–118. [Google Scholar] [CrossRef]
- Sun, L.; Beggs, K.; Borude, P.; Edwards, G.; Bhushan, B.; Walesky, C.; Roy, N.; Manley, M.W.; Gunewardena, S.; O’Neil, M.; et al. Bile acids promote diethylnitrosamine-induced hepatocellular carcinoma via increased inflammatory signaling. Am. J. Physiol. Gastrointest. l Liver Physiol. 2016, 311, G91–G104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagano, K.; Sasaki, T.; Umeda, Y.; Nishizawa, T.; Ikawa, N.; Ohbayashi, H.; Arito, H.; Yamamoto, S.; Fukushima, S. Inhalation carcinogenicity and chronic toxicity of carbon tetrachloride in rats and mice. Inhal. Toxicol. 2007, 19, 1089–1103. [Google Scholar] [CrossRef]
- Ni, H.-M.; Woolbright, B.L.; Williams, J.; Copple, B.; Cui, W.; Luyendyk, J.P.; Jaeschke, H.; Ding, W.-X. Nrf2 promotes the development of fibrosis and tumorigenesis in mice with defective hepatic autophagy. J. Hepatol. 2014, 61, 617–625. [Google Scholar] [CrossRef] [Green Version]
- Mitra, A.; Yan, J.; Xia, X.; Zhou, S.; Chen, J.; Mishra, L.; Li, S. IL6-mediated inflammatory loop reprograms normal to epithelial-mesenchymal transition+metastatic cancer stem cells in preneoplastic liver of transforming growth factor beta-deficient β2-spectrin+/−mice. Hepatology 2017, 65, 1222–1236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, I.; Morimura, K.; Shah, Y.; Yang, Q.; Ward, J.M.; Gonzalez, F.J. Spontaneous hepatocarcinogenesis in farnesoid X receptor-null mice. Carcinogenesis 2006, 28, 940–946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, X.; Fu, J.; Xu, A.; Yu, L.; Zhu, J.; Dai, R.; Su, B.; Luo, T.; Li, N.; Qin, W.; et al. Gankyrin drives malignant transformation of chronic liver damage-mediated fibrosis via the Rac1/JNK pathway. Cell Death Dis. 2015, 6, e1751. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, M.; Sakai, H.; Shirakami, Y.; Iwasa, J.; Yasuda, Y.; Kubota, M.; Takai, K.; Tsurumi, H.; Tanaka, T.; Moriwaki, H. Acyclic retinoid inhibits diethylnitrosamine-induced liver tumorigenesis in obese and diabetic C57BLKS/J- +Leprdb/+Leprdb Mice. Cancer Prev. Res. 2011, 4, 128–136. [Google Scholar] [CrossRef] [Green Version]
- Faggioli, F.; Palagano, E.; Di Tommaso, L.; Donadon, M.; Marrella, V.; Recordati, C.; Mantero, S.; Villa, A.; Vezzoni, P.; Cassani, B. B lymphocytes limit senescence-driven fibrosis resolution and favor hepatocarcinogenesis in mouse liver injury. Hepatology 2018, 67, 1970–1985. [Google Scholar] [CrossRef] [Green Version]
- Takai, A.; Toyoshima, T.; Uemura, M.; Kitawaki, Y.; Marusawa, H.; Hiai, H.; Yamada, S.; Okazaki, I.M.; Honjo, T.; Chiba, T.; et al. A novel mouse model of hepatocarcinogenesis triggered by AID causing deleterious p53 mutations. Oncogene 2008, 28, 469–478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carrière, C.; Young, A.L.; Gunn, J.R.; Longnecker, D.S.; Korc, M. Acute pancreatitis markedly accelerates pancreatic cancer progression in mice expressing oncogenic Kras. Biochem. Biophys. Res. Commun. 2009, 382, 561–565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, L.; Liou, G.-Y.; Schmitt, D.M.; Storz, P.; Zhang, J.-S.; Billadeau, D.D. Glycogen synthase kinase-3β ablation limits pancreatitis-induced acinar-to-ductal metaplasia. J. Pathol. 2017, 243, 65–77. [Google Scholar] [CrossRef] [PubMed]
- Philip, B.; Roland, C.L.; Daniluk, J.; Liu, Y.; Chatterjee, D.; Gomez, S.B.; Ji, B.; Huang, H.; Wang, H.; Fleming, J.B.; et al. A High-fat diet activates oncogenic kras and COX2 to induce development of pancreatic ductal adenocarcinoma in mice. Gastroenterology 2013, 145, 1449–1458. [Google Scholar] [CrossRef] [Green Version]
- Kohno, H.; Suzuki, R.; Sugie, S.; Tanaka, T. Beta-Catenin mutations in a mouse model of inflammation-related colon carcinogenesis induced by 1,2-dimethylhydrazine and dextran sodium sulfate. Cancer Sci. 2005, 96, 69–76. [Google Scholar] [CrossRef]
- Tanaka, T.; Kohno, H.; Suzuki, R.; Yamada, Y.; Sugie, S.; Mori, H. A novel inflammation-related mouse colon carcinogenesis model induced by azoxymethane and dextran sodium sulfate. Cancer Sci. 2003, 94, 965–973. [Google Scholar] [CrossRef]
- Yamada, M.; Ohkusa, T.; Okayasu, I. Occurrence of dysplasia and adenocarcinoma after experimental chronic ulcerative colitis in hamsters induced by dextran sulphate sodium. Gut 1992, 33, 1521–1527. [Google Scholar] [CrossRef] [Green Version]
- Zak, S.; Treven, J.; Nash, N.; Gutierrez, L.S. Lack of thrombospondin-1 increases angiogenesis in a model of chronic inflammatory bowel disease. Int. J. Colorectal Dis. 2007, 23, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Okayasu, I.; Ohkusa, T.; Kajiura, K.; Kanno, J.; Sakamoto, S. Promotion of colorectal neoplasia in experimental murine ulcerative colitis. Gut 1996, 39, 87–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fazio, V.M.; De Robertis, M.; Massi, E.; Poeta, M.L.; Carotti, S.; Morini, S.; Cecchetelli, L.; Signori, E. The AOM/DSS murine model for the study of colon carcinogenesis: From pathways to diagnosis and therapy studies. J. Carcinog. 2011, 10, 9. [Google Scholar] [CrossRef]
- Suzuki, R.; Kohno, H.; Sugie, S.; Nakagama, H.; Tanaka, T. Strain differences in the susceptibility to azoxymethane and dextran sodium sulfate-induced colon carcinogenesis in mice. Carcinogenesis 2006, 27, 162–169. [Google Scholar] [CrossRef]
- de Moreno de Leblanc, A.; Perdigón, G. The application of probiotic fermented milks in cancer and intestinal inflammation. Proc. Nutr. Soc. 2010, 69, 421–428. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Y.; Dai, X.; Li, K.; Gui, G.; Liu, J.; Yang, H. Clostridium butyricum partially regulates the development of colitis-associated cancer through miR-200c. Cell. Mol. Biol. 2017, 63, 59–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nyuyki, K.D.; Beiderbeck, D.I.; Lukas, M.; Neumann, I.D.; Reber, S.O. Chronic subordinate colony housing (CSC) as a model of chronic psychosocial stress in male rats. PLoS ONE 2012, 7, e52371. [Google Scholar] [CrossRef] [Green Version]
- Reber, S.O.; Langgartner, D.; Foertsch, S.; Postolache, T.T.; Brenner, L.A.; Guendel, H.; Lowry, C.A. Chronic subordinate colony housing paradigm: A mouse model for mechanisms of PTSD vulnerability, targeted prevention, and treatment—2016 Curt Richter Award Paper. Psychoneuroendocrinology 2016, 74, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Peters, S.; Grunwald, N.; Rümmele, P.; Endlicher, E.; Lechner, A.; Neumann, I.D.; Obermeier, F.; Reber, S.O. Chronic psychosocial stress increases the risk for inflammation-related colon carcinogenesis in male mice. Stress 2012, 15, 403–415. [Google Scholar] [CrossRef] [PubMed]
- Shirakami, Y.; Shimizu, M.; Kubota, M.; Araki, H.; Tanaka, T.; Moriwaki, H.; Seishima, M. Chemoprevention of colorectal cancer by targeting obesity-related metabolic abnormalities. World J. Gastroenterol. 2014, 20, 8939–8946. [Google Scholar]
- Matsui, S.; Okabayashi, K.; Tsuruta, M.; Shigeta, K.; Seishima, R.; Ishida, T.; Kondo, T.; Suzuki, Y.; Hasegawa, H.; Shimoda, M.; et al. Interleukin-13 and its signaling pathway is associated with obesity-related colorectal tumorigenesis. Cancer Sci. 2019, 110, 2156–2165. [Google Scholar] [CrossRef]
- Hintze, K.J.; Benninghoff, A.D.; Ward, R.E. Formulation of the Total Western Diet (TWD) as a basal diet for rodent cancer studies. J. Agric. Food Chem. 2021, 60, 6736–6742. [Google Scholar] [CrossRef]
- Sido, A.; Radhakrishnan, S.; Kim, S.W.; Eriksson, E.; Shen, F.; Li, Q.; Bhat, V.; Reddivari, L.; Vanamala, J.K. A food-based approach that targets interleukin-6, a key regulator of chronic intestinal inflammation and colon carcinogenesis. J. Nutr. Biochem. 2017, 43, 11–17. [Google Scholar] [CrossRef] [Green Version]
- Newmark, H.; Yang, K.; Lipkin, M.; Kopelovich, L.; Liu, Y.; Fan, K.; Shinozaki, H. A Western-style diet induces benign and malignant neoplasms in the colon of normal C57Bl/6 mice. Carcinogenesis 2001, 22, 1871–1875. [Google Scholar] [CrossRef] [Green Version]
- Hursting, S.D.; Slaga, T.J.; Fischer, S.M.; DiGiovanni, J.; Phang, J.M. Mechanism-based cancer prevention approaches: Targets, examples, and the use of transgenic mice. J. Natl. Cancer Inst. 1999, 91, 215–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, S.; Yin, Y.; Wang, Q.; Wang, L. Dual gene deficient models of ApcMin/+ mouse in assessing molecular mechanisms of intestinal carcinogenesis. Biomed. Pharmacother. 2018, 108, 600–609. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, T. Preclinical cancer chemoprevention studies using animal model of inflammation-associated colorectal carcinogenesis. Cancers 2012, 4, 673–700. [Google Scholar] [CrossRef] [Green Version]
- Fodde, R.; Smits, R. Disease model: Familial adenomatous polyposis. Trends Mol. Med. 2001, 7, 369–373. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Q. Application of the ApcMin/+ mouse model for studying inflammation-associated intestinal tumor. Biomed. Pharmacother. 2015, 71, 216–221. [Google Scholar] [CrossRef] [PubMed]
- Slocum, S.L.; Kensler, T.W. Nrf2: Control of sensitivity to carcinogens. Arch. Toxicol. 2011, 85, 273–284. [Google Scholar] [CrossRef] [PubMed]
- Tomkovich, S.; Yang, Y.; Winglee, K.; Gauthier, J.; Mühlbauer, M.; Sun, X.; Mohamadzadeh, M.; Liu, X.; Martin, P.; Wang, G.P.; et al. Locoregional effects of microbiota in a preclinical model of colon carcinogenesis. Cancer Res. 2017, 77, 2620–2632. [Google Scholar] [CrossRef] [Green Version]
- Ito, K.; Ishigamori, R.; Mutoh, M.; Ohta, T.; Imai, T.; Takahashi, M. A y allele promotes azoxymethane-induced colorectal carcinogenesis by macrophage migration in hyperlipidemic/diabetic KK mice. Cancer Sci. 2013, 104, 835–843. [Google Scholar] [CrossRef]
- Ye, Q.; Zheng, Y.; Fan, S.; Qin, Z.; Li, N.; Tang, A.; Ai, F.; Zhang, X.; Bian, Y.; Dang, W.; et al. Lactoferrin deficiency promotes colitis-associated colorectal dysplasia in mice. PLoS ONE 2014, 9, e103298. [Google Scholar] [CrossRef] [PubMed]
- Osburn, W.O.; Kensler, T.W. Nrf2 signaling: An adaptive response pathway for protection against environmental toxic insults. Mutat. Res. 2008, 659, 31–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Binder Gallimidi, A.; Nussbaum, G.; Hermano, E.; Weizman, B.; Meirovitz, A.; Vlodavsky, I.; Götte, M.; Elkin, M. Syndecan-1 deficiency promotes tumor growth in a murine model of colitis-induced colon carcinoma. PLoS ONE 2017, 12, e0174343. [Google Scholar] [CrossRef] [PubMed]
- Zha, L.; Garrett, S.; Sun, J. Salmonella infection in chronic inflammation and gastrointestinal cancer. Diseases 2019, 7, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okada, F.; Kawaguchi, T.; Habelhah, H.; Kobayashi, T.; Tazawa, H.; Takeichi, N.; Kitagawa, T.; Hosokawa, M. Conversion of human colonic adenoma cells to adenocarcinoma cells through inflammation in nude mice. Lab. Investig. 2000, 80, 1617–1628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanda, Y.; Kawaguchi, T.; Kuramitsu, Y.; Kitagawa, T.; Kobayashi, T.; Takahashi, N.; Tazawa, H.; Habelhah, H.; Hamada, J.-I.; Kobayashi, M.; et al. Fascin regulates chronic inflammation-related human colon carcinogenesis by inhibiting cell anoikis. Proteomics 2014, 14, 1031–1041. [Google Scholar] [CrossRef]
- Kanda, Y.; Kawaguchi, T.; Osaki, M.; Onuma, K.; Ochiya, T.; Kitagawa, T.; Okada, F. Fascin protein stabilization by miR-146a implicated in the process of a chronic inflammation-related colon carcinogenesis model. Inflamm. Res. 2018, 67, 839–846. [Google Scholar] [CrossRef]
- Steiner, J.L.; Davis, J.M.; McClellan, J.; Guglielmotti, A.; Murphy, E. Effects of the MCP-1 synthesis inhibitor bindarit on tumorigenesis and inflammatory markers in the C3(1)/SV40Tag mouse model of breast cancer. Cytokine 2014, 66, 60–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santiago, L.; Castro, M.; Pardo, J.; Arias, M. Mouse model of colitis-associated colorectal cancer (CAC): Isolation and characterization of mucosal-associated lymphoid cells. Methods Mol. Biol. 2019, 1884, 189–202. [Google Scholar] [CrossRef] [Green Version]
- Hamada, J.; Takeichi, N.; Okada, F.; Ren, J.; Li, X.; Hosokawa, M.; Kobayashi, H. Progression of weakly malignant clone cells derived from rat mammary carcinoma by host cells reactive to plastic plates. Jpn. J. Cancer Res. 1992, 83, 483–490. [Google Scholar] [CrossRef] [PubMed]
- Hamada, J.-I.; Nakata, D.; Nakae, D.; Kobayashi, Y.; Akai, H.; Konishi, Y.; Okada, F.; Shibata, T.; Hosokawa, M.; Moriuchi, T. Increased oxidative DNA damage in mammary tumor cells by continuous epidermal growth factor stimulation. J. Natl. Cancer Inst. 2001, 93, 214–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagayasu, H.; Hamada, J.; Nakata, D.; Shibata, T.; Kobayashi, M.; Hosokawa, M.; Takeichi, N. Reversible and irreversible tumor progression of a weakly malignant rat mammary carcinoma cell line by in vitro exposure to epidermal growth factor. Int. J. Oncol. 1998, 12, 197–399. [Google Scholar] [CrossRef]
- Lucchini, F.; Sacco, M.G.; Hu, N.; Villa, A.; Brown, J.; Cesano, L.; Mangiarini, L.; Rindi, G.; Kindl, S.; Sessa, F.; et al. Early and multifocal tumors in breast, salivary, Harderian and epididymal tissues developed in MMTY-Neu transgenic mice. Cancer Lett. 1992, 64, 203–209. [Google Scholar] [CrossRef]
- Calogero, R.A.; Cordero, F.; Forni, G.; Cavallo, F. Inflammation and breast cancer. Inflammatory component of mammary carcinogenesis in ErbB2 transgenic mice. Breast Cancer Res. 2007, 9, 211. [Google Scholar] [CrossRef] [PubMed]
- Sangaletti, S.; Tripodo, C.; Ratti, C.; Piconese, S.; Porcasi, R.; Salcedo, R.; Trinchieri, G.; Colombo, M.P.; Chiodoni, C. Oncogene-driven intrinsic inflammation induces leukocyte production of tumor necrosis factor that critically contributes to mammary carcinogenesis. Cancer Res. 2010, 70, 7764–7775. [Google Scholar] [CrossRef] [Green Version]
- Guy, C.T.; Cardiff, R.D.; Muller, W.J. Induction of mammary tumors by expression of polyomavirus middle T oncogene: A transgenic mouse model for metastatic disease. Mol. Cell. Biol. 1992, 12, 954–961. [Google Scholar] [CrossRef] [Green Version]
- Franklin, R.A.; Liao, W.; Sarkar, A.; Kim, M.V.; Bivona, M.R.; Liu, K.; Pamer, E.G.; Li, M.O. The cellular and molecular origin of tumor-associated macrophages. Science 2014, 344, 921–925. [Google Scholar] [CrossRef] [Green Version]
- Yamashita, S.; Suzuki, S.; Nomoto, T.; Kondo, Y.; Wakazono, K.; Tsujino, Y.; Sugimura, T.; Shirai, T.; Homma, Y.; Ushijima, T. Linkage and microarray analyses of susceptibility genes in ACI/Seg rats: A model for prostate cancers in the aged. Cancer Res. 2005, 65, 2610–2616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reyes, I.; Reyes, N.; Iatropoulos, M.; Mittelman, A.; Geliebter, J. Aging-associated changes in gene expression in the ACI rat prostate: Implications for carcinogenesis. Prostate 2005, 63, 169–186. [Google Scholar] [CrossRef] [PubMed]
- Özten, N.; Horton, L.; Lasano, S.; Bosland, M.C. Selenomethionine and α-tocopherol do not inhibit prostate carcinogenesis in the testosterone plus estradiol–treated NBL rat model. Cancer Prev. Res. 2010, 3, 371–380. [Google Scholar] [CrossRef] [Green Version]
- Lesovaya, E.A.; Kirsanov, K.I.; Antoshina, E.E.; Trukhanova, L.S.; Gorkova, T.G.; Shipaeva, E.V.; Salimov, R.M.; Belitsky, G.A.; Blagosklonny, M.V.; Yakubovskaya, M.G.; et al. Rapatar, a nanoformulation of rapamycin, decreases chemically-induced benign prostate hyperplasia in rats. Oncotarget 2015, 6, 9718–9727. [Google Scholar] [CrossRef] [Green Version]
- Smith, D.A.; Kiba, A.; Zong, Y.; Witte, O.N. Interleukin-6 and oncostatin-M synergize with the PI3K/AKT pathway to promote aggressive prostate malignancy in mouse and human tissues. Mol. Cancer Res. 2013, 11, 1159–1165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ray, D.; Nelson, T.A.; Fu, C.-L.; Patel, S.; Gong, D.N.; Odegaard, J.I.; Hsieh, M.H. Transcriptional profiling of the bladder in urogenital schistosomiasis reveals pathways of inflammatory fibrosis and urothelial compromise. PLOS Neglected Trop. Dis. 2012, 6, e1912. [Google Scholar] [CrossRef]
- Ebina, Y.; Okada, S.; Hamazaki, S.; Ogino, F.; Midorikawa, O.; Li, J.-L. Nephrotoxicity and renal cell carcinoma after use of iron- and aluminum-nitrilotriacetate complexes in rats. J. Natl. Cancer Inst. 1986, 76, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Kasprzak, K.S.; Diwan, B.A.; Rice, J.M. Iron accelerates while magnesium inhibits nickel-induced carcinogenesis in the rat kidney. Toxicology 1994, 90, 129–140. [Google Scholar] [CrossRef]
- Chaudhary, S.C.; Waseem, M.; Rana, M.; Xu, H.; Kopelovich, L.; Elmets, C.A.; Athar, M. Naproxen inhibits UVB-induced Basal cell and squamous cell carcinoma development in Ptch1+/−/SKH-1 hairless mice. Photochem. Photobiol. 2017, 93, 1016–1024. [Google Scholar] [CrossRef]
- Kong, Y.-H.; Xu, S.-P. Salidroside prevents skin carcinogenesis induced by DMBA/TPA in a mouse model through suppression of inflammation and promotion of apoptosis. Oncol. Rep. 2018, 39, 2513–2526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bishayee, A. Cancer prevention and treatment with resveratrol: From rodent studies to clinical trials. Cancer Prev. Res. 2009, 2, 409–418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marks, F.; Fürstenberger, G.; Heinzelmann, T.; Müller-Decker, K. Mechanisms in tumor promotion: Guidance for risk assessment and cancer chemoprevention. Toxicol. Lett. 1995, 82–83, 907–917. [Google Scholar] [CrossRef]
- Chaudhary, S.C.; Tang, X.; Arumugam, A.; Li, C.; Srivastava, R.K.; Weng, Z.; Xu, J.; Zhang, X.; Kim, A.L.; McKay, K.; et al. Shh and p50/Bcl3 signaling crosstalk drives pathogenesis of BCCs in gorlin syndrome. Oncotarget 2015, 6, 36789–36814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kunisada, M.; Hosaka, C.; Takemori, C.; Nakano, E.; Nishigori, C. CXCL1 Inhibition regulates UVB-induced skin inflammation and tumorigenesis in Xpa-deficient mice. J. Investig. Dermatol. 2017, 137, 1975–1983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okada, F.; Hosokawa, M.; Hasegawa, J.; Ishikawa, M.; Chiba, I.; Nakamura, Y.; Kobayashi, H. Regression mechanisms of mouse fibrosarcoma cells after in vitro exposure to quercetin: Diminution of tumorigenicity with a corresponding decrease in the production of prostaglandin E2. Cancer Immunol. Immunother. 1990, 31, 358–364. [Google Scholar] [CrossRef]
- Okada, F.; Hosokawa, M.; Hamada, J.-I.; Hasegawa, J.; Mizutani, M.; Takeichi, N.; Kobayashi, H. Progression of a weakly tumorigenic mouse fibrosarcoma at the site of early phase of inflammation caused by plastic plates. Jpn. J. Cancer Res. 1993, 84, 1230–1236. [Google Scholar] [CrossRef] [PubMed]
- Okada, F.; Hosokawa, M.; Hamada, J.-I.; Hasegawa, J.; Kato, M.; Mizutani, M.; Ren, J.; Takeichi, N.; Kobayashi, H. Malignant progression of a mouse fibrosarcoma by host cells reactive to a foreign body (gelatin sponge). Br. J. Cancer 1992, 66, 635–639. [Google Scholar] [CrossRef] [Green Version]
- Habelhah, H.; Okada, F.; Kobayashi, M.; Nakai, K.; Choi, S.; Hamada, J.-I.; Moriuchi, T.; Kaya, M.; Yoshida, K.; Fujinaga, K.; et al. Increased E1AF expression in mouse fibrosarcoma promotes metastasis through induction of MT1-MMP expression. Oncogene 1999, 18, 1771–1776. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, T.; Okada, F.; Fujii, N.; Tomita, N.; Ito, S.; Tazawa, H.; Aoyama, T.; Choi, S.K.; Shibata, T.; Fujita, H.; et al. Thymosin-β4 regulates motility and metastasis of malignant mouse fibrosarcoma cells. Am. J. Pathol. 2002, 160, 869–882. [Google Scholar] [CrossRef]
- Tazawa, H.; Okada, F.; Kobayashi, T.; Tada, M.; Mori, Y.; Une, Y.; Sendo, F.; Kobayashi, M.; Hosokawa, M. Infiltration of neutrophils is required for acquisition of metastatic phenotype of benign murine fibrosarcoma cells: Implication of inflammation-associated carcinogenesis and tumor progression. Am. J. Pathol. 2003, 163, 2221–2232. [Google Scholar] [CrossRef]
- Okada, F.; Kobayashi, M.; Tanaka, H.; Kobayashi, T.; Tazawa, H.; Iuchi, Y.; Onuma, K.; Hosokawa, M.; Dinauer, M.C.; Hunt, N.H. The role of nicotinamide adenine dinucleotide phosphate oxidase-derived reactive oxygen species in the acquisition of metastatic ability of tumor cells. Am. J. Pathol. 2006, 169, 294–302. [Google Scholar] [CrossRef] [Green Version]
- Ma, Q.; Cavallin, L.E.; Yan, B.; Zhu, S.; Duran, E.M.; Wang, H.; Hale, L.P.; Dong, C.; Cesarman, E.; Mesri, E.A.; et al. Antitumorigenesis of antioxidants in a transgenic Rac1 model of Kaposi’s sarcoma. Proc. Natl. Acad. Sci. USA 2009, 106, 8683–8688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tazawa, H.; Tatemichi, M.; Sawa, T.; Gilibert, I.; Ma, N.; Hiraku, Y.; Donehower, L.A.; Ohgaki, H.; Kawanishi, S.; Ohshima, H. Oxidative and nitrative stress caused by subcutaneous implantation of a foreign body accelerates sarcoma development in Trp53+/- mice. Carcinogenesis 2007, 28, 191–198. [Google Scholar] [CrossRef] [Green Version]
- Guerra, C.; Schuhmacher, A.J.; Cañamero, M.; Grippo, P.J.; Verdaguer, L.; Pérez-Gallego, L.; Dubus, P.; Sandgren, E.P.; Barbacid, M. Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. Cancer Cell 2007, 11, 291–302. [Google Scholar] [CrossRef] [Green Version]
- Ashi, K.W.; Inagaki, T.; Fujimoto, Y.; Fukuda, Y. Induction by degraded carrageenan of colorectal tumors in rats. Cancer Lett. 1978, 4, 171–176. [Google Scholar] [CrossRef]
- Devapatla, B.; Sanders, J.; Samuelson, D.J. Genetically determined inflammatory-response related cytokine and chemokine transcript profiles between mammary carcinoma resistant and susceptible rat strains. Cytokine 2012, 59, 223–227. [Google Scholar] [CrossRef] [Green Version]
- Fabian, R.J.; Abraham, R.; Coulston, F.; Golberg, L. Carrageenan-induced squamous metaplasia of the rectal mucosa in the rat. Gastroenterology 1973, 65, 265–276. [Google Scholar] [CrossRef]
- Cater, D.B. The carcinogenic action of carrageenin in rats. Br. J. Cancer 1961, 15, 607–614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okayasu, I.; Yamada, M.; Mikami, T.; Yoshida, T.; Kanno, J.; Ohkusa, T. Dysplasia and carcinoma development in a repeated dextran sulfate sodium-induced colitis model. J. Gastroenterol. Hepatol. 2002, 17, 1078–1083. [Google Scholar] [CrossRef] [Green Version]
- Hirono, I.; Kuhara, K.; Yamaji, T.; Hosaka, S.; Golberg, L. Induction of colorectal squamous cell carcinomas in rats by dextran sulfate sodium. Carcinogenesis 1982, 3, 353–355. [Google Scholar] [CrossRef]
- Hirono, I.; Kuhara, K.; Hosaka, S.; Tomizawa, S.; Golberg, L. Induction of intestinal tumors in rats by dextran sulfate sodium. J. Natl. Cancer Inst. 1981, 66, 579–583. [Google Scholar] [PubMed]
- Sugie, S.; Mori, Y.; Okumura, A.; Yoshimi, N.; Okamoto, K.; Sato, S.; Tanaka, T.; Mori, H. Promoting and synergistic effects of chrysazin on 1,2-dimethylhydrazine-induced carcinogenesis in male ICR/CD-1 mice. Carcinogenesis 1994, 15, 1175–1179. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, T.; Kohno, H.; Yoshitani, S.; Takashima, S.; Okumura, A.; Murakami, A.; Hosokawa, M. Ligands for peroxisome proliferator-activated receptors alpha and gamma inhibit chemically induced colitis and formation of aberrant crypt foci in rats. Cancer Res. 2001, 61, 2424–2428. [Google Scholar] [PubMed]
- Khor, T.O.; Huang, M.-T.; Prawan, A.; Liu, Y.; Hao, X.; Yu, S.; Cheung, W.K.L.; Chan, J.Y.; Reddy, B.S.; Yang, C.S.; et al. Increased susceptibility of Nrf2 knockout mice to colitis-associated colorectal cancer. Cancer Prev. Res. 2008, 1, 187–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lowe, E.L.; Crother, T.R.; Rabizadeh, S.; Hu, B.; Wang, H.; Chen, S.; Shimada, K.; Wong, M.H.; Michelsen, K.S.; Arditi, M. Toll-like receptor 2 signaling protects mice from tumor development in a mouse model of colitis-induced cancer. PLoS One 2010, 5, e13027. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Ding, Y.W.; Yang, G.Y.; Bondoc, F.; Lee, M.J.; Yang, C.S. Oxidative damage in an esophageal adenocarcinoma model with rats. Carcinogenesis 2000, 21, 257–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EhrnstrÖm, R.A.; Veress, B.; Arvidsson, S.; Sternby, N.H.; Andersson, T.; LindstrÖm, C.G. Dietary supplementation of carbonate promotes spontaneous tumorigenesis in a rat gastric stump model. Scand. J. Gastroenterol. 2006, 41, 12–20. [Google Scholar] [CrossRef]
- Ambade, A.; Satishchandran, A.; Gyongyosi, B.; Lowe, P.; Szabo, G. Adult mouse model of early hepatocellular carcinoma promoted by alcoholic liver disease. World J. Gastroenterol. 2016, 22, 4091–4108. [Google Scholar] [CrossRef] [PubMed]
- Escrich, R.; Costa, I.; Moreno, M.; Cubedo, M.; Vela, E.; Escrich, E.; Moral, R. A high-corn-oil diet strongly stimulates mammary carcinogenesis, while a high-extra-virgin-olive-oil diet has a weak effect, through changes in metabolism, immune system function and proliferation/apoptosis pathways. J. Nutr. Biochem. 2019, 64, 218–227. [Google Scholar] [CrossRef] [PubMed]
- Bosland, M.C.; Ford, H.; Horton, L. Induction at high incidence of ductal prostate adenocarcinomas in NBL/Cr and Sprague-Dawley Hsd: SD rats treated with a combination of testosterone and estradiol-17 beta or diethylstilbestrol. Carcinogenesis 1995, 16, 1311–1317. [Google Scholar] [CrossRef]
- Mauad, T.H.; van Nieuwkerk, C.M.J.; Dingemans, K.P.; Smit, J.J.M.; Schinkel, A.H.; Notenboom, R.G.E.; van den Bergh Weerman, M.A.; Verkruisen, R.P.; Groen, A.K.; Elferink, R.P.J.O.; et al. Mice with homozygous disruption of the mdr2 P-glycoprotein gene. A novel animal model for studies of nonsuppurative inflammatory cholangitis and hepatocarcinogenesis. Am. J. Pathol. 1994, 145, 1237–1245. [Google Scholar] [PubMed]
- Green, J.E.; Shibata, M.A.; Yoshidome, K.; Liu, M.L.; Jorcyk, C.; Anver, M.R.; Wigginton, J.; Wiltrout, R.; Shibata, E.; Kaczmarczyk, S.; et al. The C3(1)/SV40 T-antigen transgenic mouse model of mammary cancer: Ductal epithelial cell targeting with multistage progression to carcinoma. Oncogene 2000, 19, 1020–1027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isaacs, J.T. The aging ACI/Seg versus Copenhagen male rat as a model system for the study of prostatic carcinogenesis. Cancer Res. 1984, 44, 5785–5796. [Google Scholar] [PubMed]
- Ward, J.M.; Reznik, G.; Stinson, S.F.; Lattuada, C.P.; Longfellow, D.G.; Cameron, T.P. Histogenesis and morphology of naturally occurring prostatic carcinoma in the ACI/segHapBR rat. Lab. Invest. 1980, 43, 517–522. [Google Scholar] [PubMed]
- Nakane, H.; Takeuchi, S.; Yuba, S.; Saijo, M.; Nakatsu, Y.; Murai, H.; Nakatsuru, Y.; Ishikawa, T.; Hirota, S.; Kitamura, Y.; et al. High incidence of ultraviolet-B-or chemical-carcinogen-induced skin tumours in mice lacking the xeroderma pigmentosum group A gene. Nature 1995, 377, 165–168. [Google Scholar] [CrossRef]
- Cai, X.; Carlson, J.; Stoicov, C.; Li, H.; Wang, T.C.; Houghton, J. Helicobacter felis eradication restores normal architecture and inhibits gastric cancer progression in C57BL/6 mice. Gastroenterology 2005, 128, 1937–1952. [Google Scholar] [CrossRef] [PubMed]
- Summers, J.; Smolec, J.M.; Snyder, R. A virus similar to human hepatitis B virus associated with hepatitis and hepatoma in woodchucks. Proc. Natl. Acad. Sci. USA 1978, 75, 4533–4537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moriya, K.; Fujie, H.; Shintani, Y.; Yotsuyanagi, H.; Tsutsumi, T.; Ishibashi, K.; Matsuura, Y.; Kimura, S.; Miyamura, T.; Koike, K. The core protein of hepatitis C virus induces hepatocellular carcinoma in transgenic mice. Nat. Med. 1998, 4, 1065–1067. [Google Scholar] [CrossRef]
- Thamavit, W.; Bhamarapravati, N.; Sahaphong, S.; Vajrasthira, S.; Angsubhakorn, S. Effects of dimethylnitrosamine on induction of cholangiocarcinoma in Opisthorchis viverrini-infected Syrian golden hamsters. Cancer Res. 1978, 38, 4634–4639. [Google Scholar] [PubMed]
- Lakatos, H.F.; Burgess, H.A.; Thatcher, T.H.; Redonnet, M.R.; Hernady, E.; Williams, J.P.; Sime, P.J. Oropharyngeal aspiration of a silica suspension produces a superior model of silicosis in the mouse when compared to intratracheal instillation. Exp. Lung Res. 2006, 32, 181–199. [Google Scholar] [CrossRef] [PubMed]
- Dupré, A.; Malik, H.Z. Inflammation and cancer: What a surgical oncologist should know. Eur. J. Surg. Oncol. 2018, 44, 566–570. [Google Scholar] [CrossRef]
- Asegaonkar, S.B.; Asegaonkar, B.N.; Takalkar, U.V.; Advani, S.H.; Thorat, A.P. C-reactive protein and breast cancer: New insights from old molecule. Int. J. Breast Cancer 2015, 2015, 145647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, L.; Liu, S.; Zhang, S.; Chen, Q.; Zhang, M.; Quan, P.; Lu, J.; Sun, X. C-reactive protein and risk of breast cancer: A systematic review and meta-analysis. Sci. Rep. 2015, 5, 10508. [Google Scholar] [CrossRef]
- Guo, Y.-Z.; Pan, L.; Du, C.-J.; Ren, D.-Q.; Xie, X.-M. Association between c-reactive protein and risk of cancer: A meta-analysis of prospective cohort studies. Asian Pac. J. Cancer Prev. 2013, 14, 243–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heikkilä, K.; Ebrahim, S.; Lawlor, D.A. A systematic review of the association between circulating concentrations of C reactive protein and cancer. J. Epidemiol. Community Health 2007, 61, 824–833. [Google Scholar] [CrossRef]
- Krznarić, Ž.; Markoš, P.; Ćepulić, B.G.; Čuković-Čavka, S.; Domislović, V.; Bojanić, I.; Barišić, A.; Kekez, D. Leukocytapheresis in the management of severe steroid-dependent ulcerative colitis. Acta Clin. Croat. 2019, 58, 529–534. [Google Scholar] [CrossRef]
- Kuzmina, Z.; Stroncek, D.; Pavletic, S.Z. Extracorporeal photopheresis as a therapy for autoimmune diseases. J. Clin. Apher. 2015, 30, 224–237. [Google Scholar] [CrossRef] [PubMed]
- Reiche, E.M.V.; Morimoto, H.K.; Nunes, S.M.V. Stress and depression-induced immune dysfunction: Implications for the development and progression of cancer. Int. Rev. Psychiatry 2005, 17, 515–527. [Google Scholar] [CrossRef]
Host/Strain | Genetic Manipulation | Carcinogen | Irritant or Manipulation | Incidence and Duration | Inflammatory Reaction | Reference |
---|---|---|---|---|---|---|
Swiss H mouse | No | No | Mainstream cigarette smoke | Lung adenosquamous carcinomas (52%), bronchioloalveolar carcinoma (20%), squamous cell carcinoma (18%), and squamous cell carcinoma in situ (5%) at 30 weeks | Mainstream cigarette smokes evoke chronic inflammation in the lungs | [20] |
C57BL/6 mouse | No | B[a]p | LPS | Lung tumors (97%) at 30 weeks | ↑ IL-1β, cleaved IL-1β, IL-18, NLRP3, NLRP6, and caspase-1 | [23] |
A/J mouse | No | NNK | LPS | Lung tumors (100%) at 27 weeks | LPS induces recruitment of macrophages and located at the periphery of the tumors ↑ NF-kB | [16] |
C57BL/6 mouse | No | B[a]p | LPS | Non-small cell lung cancers (almost 100%) at 30 weeks | Acceleration of tumor malignancy by LPS-induced inflammation | [24] |
BALB mouse | No | MCA | Butylated hydroxytoluene | Lung tumor (100%) at 20 weeks | Butylated hydroxytoluene-induced inflammation | [25] |
WBN/Kob rat | No | No | Alloxan | Forestomach well-differentiated squamous cell carcinoma (20%) at 50 weeks | Accumulation of neutrophils and stimulation of superoxide production ↑ iNOS and COX-2 | [35] |
CD-1 mouse neonatal | No | No | Monosodium glutamate | HCC (43%) at 54 weeks | Infiltration of neutrophils, lymphocytes, and fibrosis | [57] |
CD-1 mouse neonatal | No | DEN | Monosodium glutamate | Foci of cellular alteration (100%), adenoma (80%), and HCC (50%) at 21 weeks | Infiltration of macrophages and ROS ↑ TNF-α, IL-1ß, IL-6, F4/80 and CCL2 | [56] |
F344 rat | No | DEN | Thioacetamine | Pre-neoplastic hepatocellular lesions and glutathione S-transferase placental (GST-P) form at 8 weeks | Induction of hepatic macrophages and CD3+ T cells ↑ IL-1ß, COX-2, HO-1, and MMP-12 | [66] |
C57BL/6 mouse | Gankyrinhep TG | No | CCl4 | Hepatic tumors at 16 weeks | Chronic inflammation and fibrosis ↑ TGF-β, Collagen-1, and TIMP1 | [72] |
F344 rat | No | No | CCl4 | HCC (6%) and hepatic altered cell foci at 104 weeks | Cirrhosis, fibrosis, and fatty changes | [68] |
FVB mouse | K-rasG12D | No | Caerulein | Pancreatic cancer develop in K-rasG12D mice at 48 weeks. Caerulein shortened to 11 weeks. Caerulein formed high-grade pre-malignant PanIN at 4 weeks, and low-grade PanIN at 8 weeks and developed PDAC | There were foci of cancer cells that were surrounded by a reactive stroma characterized by smooth muscle actin expression | [76] |
C57BL/6 mouse | K-rasG12V | No | Caerulein | Pancreatic cancer never developed in K-rasG12V mice at least until 80 weeks. Caerulein developed PDAC (100%) at 32 weeks | Caerulein induces chronic pancreatitis and fibrosis. Inflammatory infiltrates consisting of neutrophils and eosinophils, CD3+ T cells and B cells, and macrophages | [144] |
Sprague-Dawley rat | No | No | Carrageenan | Colorectal squamous cell carcinoma (20%), adenocarcinoma (13%), adenoma (5%), and metaplasia (98%) at 96 weeks | Induction of colitis | [145] |
Wister Furth rat | No | DMBA | No | Mammary carcinoma resistant strain | ↑CX3CL1, IL11RA, IL-4, C3, CCL11, ITGB2, CXCL12, and CXCR7 ↓ CCL20 | [146] |
Sprague-Dawley rat | No | No | Carrageenan | Rectal squamous metaplasia and colonic adenomatous polyps at 24 weeks | Acute and chronic inflammatory, in which aggregation of macrophages in the lamina propria and submucosa | [147] |
Wister rat | No | No | Carrageenin | Sarcomas (15%) at 93 weeks and 28% at 118 weeks | Neutrophils and macrophages with phagocytosed carrageenin, fibroblasts and mature collagen fibers were formed | [148] |
Syrian hamster | No | No | DSS | Colorectal adenocarcinoma (50%), adenoma (13%), and dysplasia (50%) at 26 weeks | Infiltration of neutrophils | [81] |
CBA mouse | No | No | DSS | Colorectal adenocarcinoma (8%) and dysplasia (52%) at 27 weeks | Focal inflammatory cell infiltration including neutrophils and gland loss or crypt abscess formation; mucosal ulceration was observed by DSS treatment | [149] |
ACI rat | No | No | DSS | Colorectal papilloma (53%), adenoma (3%), squamous cell carcinoma (13%), adenocarcinoma (17%), cecum adenocarcinoma (3%), and intestinal tumor (73%) formed until 94 weeks | [150] | |
ACI rat | No | No | DSS | Colon adenoma (19%), adenocarcinoma (19%), papilloma (12%), cecum adenoma (23%), adenocarcinoma (8%), and intestinal tumor (58%) until 31 weeks | Infiltration of inflammatory cells and hemorrhage | [151] |
C57BL/6 mouse | TSP-1−/− | No | DSS | Colonic dysplasia (66%) at 12 weeks | No significant changes in inflammation were observed between the genotypes; myeloperoxidase (MPO) activity was higher in the colon of TSP-1−/− mice ↑ VEGF and bFGF | [82] |
CD-1 mouse | No | DMH | Chrysazin | Colonic adenocarcinoma (48%) and adenoma (57%) at 54 weeks | Mucosal gland was hypertrophic and infiltration of inflammatory cells with fibrosis in submucosal areas | [152] |
C57BL/6 mouse | KK-Ay | AOM | No | Aberrant crypt foci (ACF) (100%) and colorectal tumor including well- and moderate-differentiated adenocarcinoma, and mucinous carcinoma (87%) at 25 weeks | Macrophage infiltration ↑ CSF1, IL-1ß, MCP1, and OPN | [103] |
CBA mouse | No | AOM | DSS | Colorectal tumors at 11 weeks | Infiltration of inflammatory cells on the left side of the large intestine followed by the transverse colon | [83] |
CD-1 mouse | No | AOM | DSS | Colonic adenocarcinoma (100%) and adenoma (38%) at 20 weeks | β-catenin-, COX2- and iNOS-positive inflammatory cells were infiltrated into mucosal ulceration | [80] |
F344 rat | No | AOM | DSS | Aberrant crypts foci at 6 weeks | - | [153] |
C57BL/6 mouse | No | AOM | DSS Chronic subordinate colony housing | Colonic dysplasia (100%) at 27 weeks | Increase regulatory CD3+FoxP3+ cells within mesenteric lymph node ↑ TNF, FoxP3, COX-2, and ß-catenin ↓ IFN-γ | [90] |
C57BL/6 mouse | Lf−/− | AOM | DSS | Colonic dysplasia (31%) at 18 weeks | Acceleration of colitis ↑ IL-1ß, IL-6, CXCL1, MCP1, TNF-α, IFN-γ, NF-κB, and COX-2 | [104] |
C57BL/6 mouse | Nrf2−/− | AOM | DSS | Colonic tumors (93%) at 20 weeks and tumors consisted of adenomas (20%) and adenocarcinomas (80%) | Increased stromal nitrotyrosine-positive cells ↑ COX-2 (PGE2) and 5-LOX (LTB4) | [154] |
C57BL/6 mouse | Syndecan-1−/− | AOM | DSS | Colonic adenomas (100%) with high-grade dysplasia at 9 weeks | Severe inflammation especially macrophage infiltration ↑ IL-6 and CCL2 | [106] |
C57BL/6 mouse | TLR2−/− | AOM | DSS | Large colorectal tumors, higher grade dysplasia (carcinoma in situ), and ACF at 9 weeks | Increased inflammatory cell infiltration ↑ IL-6, IL-17A, and phospho-STAT3 | [155] |
C57BL/6 mouse | No | AOM | TNBS | Aberrant crypts foci at 6 weeks | Severe colonic inflammation, mainly neutrophils and edema of submucosal and muscle layers | [87] |
Wister rat | No | No | Ferric nitrilotriacetate | Renal adenoma or adenomatous hyperplasia (58%) and adenocarcinoma (54%) at 36 weeks | Acute nephrotoxicity in the proximal tubular epithelium and ROS generation by Fe2+ through Fenton reaction | [127] |
F344 rat | No | No | Nickel subsulfide plus magnesium carbonate or iron | Renal mesenchymal tumors formed nickel alone (63%), nickel + magnesium (20%), and nickel + iron (60%) until 104 weeks | Nickel induced necrosis, inflammation (macrophages), fibrosis in the proximal tubular epithelium at the injection site | [128] |
SKH-1 hairless mouse | Ptch1+/− | No | UVB | Basal cell carcinoma (100%) at 30 weeks | Recruitment of macrophages, neutrophils, mast cells, myeloid-derived suppressor cells (MDSCs), dendritic cells, NK cells, T cells, and B cells | [133] |
Balb/c nude mouse | Xpa−/− | No | UVB | Skin tumor formation at 25 weeks | Neutrophil infiltration and ROS generation ↑ CXCL1, PGE2, TNF-α, and 8-OHdG | [134] |
Host/Strain | Genetic Manipulation | Carcinogen | Irritant or Manipulation | Incidence and Duration | Inflammatory Reaction | Reference |
---|---|---|---|---|---|---|
Sprague-Dawley rat | No | NNN | Esophageal duodenal anastomosis and iron | Esophageal adenocarcinoma (73%) at 30 weeks | Severe inflammation of the esophagoduodenal junction, as epithelial erosion and ulcer with infiltration of lymphocytes, eosinophils, and macrophages | [14] |
Sprague-Dawley rat | No | No | Esophageal duodenal anastomosis | Esophageal adenocarcinoma (60%) at 35 weeks | Severe inflammation (lymphocytes, eosinophils, and macrophages) ↑ IL-1ß, IL-6, and IL-8 | [156] |
Wister rat | No | No | Gastroduodenostomy | Gastric carcinoma (71%) at 36 weeks | Pancreaticoduodenal secretions act as irritant and inducing inflammation | [36] |
Wister rat | No | No | Gastrojejunostomy and NaHCO3 | Gastric adenocarcinoma developed by supplementation with none (12%), CaHPO42H2O (4%), NaCl (17%), NaHCO3 (54%), CaCO3 (61%) at 40 weeks | Inducing inflammatory reaction | [157] |
Sprague-Dawley rat | No | DEN | Methionine-choline-deficient diet | Pre-neoplastic GST-P-positive foci from 2 weeks | Hepatic fibrosis with fat deposition and inflammation. Clusters of neutrophils/monocytes and ROS production ↑ NF-kB, IL-6, TGF-β, Col1a1, TIMP1, and TIMP2; ↓ IkB-alpha | [60] |
FVB mouse | Myc TG | No | Methionine-choline-deficient diet | Liver tumors at 14 weeks | Selective loss of intrahepatic CD4+ but not CD8+ T cells. CD4+ T cells generate mitochondrially derived ROS | [59] |
F344 rat | No | No | Choline-deficient, L-amino acid-defined diet | HCC (100%) until 96 weeks | Chronic inflammation, fibrosis, and cirrhosis ↑ TNF-α, IL-1-β, NF-kB, TGF-β, and COX-2 | [61] |
C57BL/6 mouse | No | DEN | High carbohydrate diet | HCC (100%) at 30 weeks | Hepatic inflammatory foci ↑ IL-1β, IL-18, Mcp1, Nalp3, JNK1/2, and ERK1/2 | [40] |
C57BL/6 mouse | No | No | High fat diet | HCC (42%) at 80 weeks | Lipid peroxidation and steatosis, NAFLD/NASH, fibrosis was developed, but no cirrhosis was formed | [62] |
C57BL/6 mouse | No | DEN | High fat diet | HCC (100%) at 24 weeks | Hepatic inflammatory foci ↑ TNF-α, IL-1ß, IL-6, NF-kB, caspase-1, and STAT3; ↓ SIRT1 and AMPK | [63] |
C57BL/6 mouse | No | DEN | Alcohol and Lieber-DeCarli alcohol diet | Hepatic hyperplasia at 13 weeks and alpha fetoprotein expression at 15 weeks | Infiltration of neutrophils and M2 macrophages and formation of liver fibrosis | [158] |
Wister rat | Selectively bred for alcohol-preference | No | Lieber-DeCarli alcohol diet | Hepatic tumors (83%) at 72 weeks | Activation of Kupffer cells and increase oxidative stress | [54] |
Sprague-Dawley rat | No | No | Ethanol | Oral cancer developed offspring male (30%) and female (39%) rats at 179 weeks | - | [9] |
C57BL/6 mouse | No | 4-NQO | Ethanol | Tongue squamous cell carcinoma (43%), severe dysplasia (5%), mild dysplasia (33%), and hyperplasia (19%) at 24 weeks | 5-LOX and COX-2 positive inflammatory cells, especially mast cells were infiltrated | [11] |
C57BL/6 mouse | No | DEN | Cholic acid | Hepatic adenoma, dysplastic nodules, and well-differentiated HCC at 40 weeks | Inflammatory cell infiltration ↑ TNF-α, IL-1-β, and NF-kB | [67] |
Mouse | K-rasG12D | No | High-fat diet | PanIN-2 and PanIN-3 lesions in the pancreas formed at 10 weeks | High-fat diet increases inflammatory reaction including fibrosis, stromal collagen, macrophage infiltration, and K-ras activation ↑ COX-2 | [78] |
Pig | No | No | High-calorie diet | Early biomarkers of colon cancer risk, IL-6 and Ki-67 are increased at 13 weeks | Activation of IL-6 signaling (IL-1α, Akt3, PI3KR4, PIK3R5, MAPK10, and MAP2K2) | [94] |
C57BL/6 mouse | No | No | Stress diet (High fat, low calcium, vitamin D, and methyl-donor nutrient) | Colorectal carcinoma (4%), tubulovillous adenoma (17%), tubular adenoma (8%), flat adenoma (13%) at 72 weeks | Eosinophils and basophils are infiltrated and formed nodules | [95] |
Sprague-Dawley rat | No | DMBA | High-fat diet | Mammary tumors formed high corn oil-based diet (100%) and high olive oil-based diet (75%) at 35 weeks | Stromal reaction ↑ Il-1-α and TGF-β | [159] |
Wister rat | No | No | Testosterone or prolactin | Testosterone- and prolactin-induced hyperplasia in ventral lobes and lateral/dorsal lobes, respectively | Prolactin induced leukocyte infiltration in prostate gland | [124] |
NBL rat | No | No | Testosterone (T) plus estradiol-17β (E) or Diethylstilbestrol (D) | Prostate adenocarcinoma (83–100%), pituitary adenoma (100%) in T and E treated; Prostate adenocarcinoma (85–100%), pituitary adenoma (100%) in T and D-treated rats at 13 weeks | Inflammation in the lateral prostate lobes and pituitary organs | [160] |
Sprague-Dawley rat | No | No | Testosterone (T) plus estradiol-17β (E) or Diethylstilbestrol (D) | Prostate adenocarcinoma (11–33%), pituitary adenoma (100%) in T and E treated; Prostate adenocarcinoma (17–66%), pituitary adenoma (100%) in T and D treated rats at 11 weeks | Inflammation in the lateral prostate lobes and pituitary organs | [160] |
NBL rat | No | No | Testosterone plus estradiol-17β | Prostate adenocarcinoma (90%), pituitary tumor (100%), and mammary cancer (27%) at 54 weeks | Focal dysplastic and inflamed lesions were formed in the lateral prostate lobes by inflammation-mediated ROS | [123] |
Host/Strain | Genetic Manipulation | Carcinogen | Irritant or Manipulation | Incidence and Duration | Inflammatory Reaction | Reference |
---|---|---|---|---|---|---|
C57BL/6 mouse | TLR2−/− | 4-NQO | No | Atypical hyperplasia/carcinoma in situ (63%) and tongue carcinoma (25%) at 24 weeks | Macrophage infiltration ↑ IL-4, IL-6, IL-10, and IL-13 | [12] |
B6D2F1 mouse | IKKß Tg | No | No | Oral squamous cell carcinoma (10%) and carcinoma in situ (71%) | Oral carcinogenesis was caused by inflammatory granulocytes, macrophages, and B cells other than T cells, B cells, and NK cells | [8] |
C57BL/6 mouse | human IL-1β TG | No | No | Columnar metaplasia (90%) before 60 weeks and high-grade esophageal dysplasia (20%) before 88 weeks | The inflammatory cell population contains CXCR4+ leukocytes (neutrophils and CD3+ T cells). No difference was observed in B cells, innate lymphoid cells, and NK-cells | [15] |
129Sv-C57BL/6 mouse | Mig-6d/dK-rasG12D | No | No | Lung adenoma, atypical adenomatous, and hyperplasia within 16 weeks | Infiltration of WBC, lymphocytes, neutrophils, and macrophages ↑ CSF2, MIP1a, IL-13a1, TNFR2, COX2, and IL-18 | [26] |
Mouse | CCSP-rtTA/(tetO)7- Stat3C TG | No | No | Bronchoalveolar adenocarcinoma after 36 weeks | Lung inflammation including immune cell infiltration and up-regulation of proinflammatory cytokines and chemokines | [27] |
B6D2F1 mouse | IKKß Tg | No | No | Forestomach squamous cell carcinoma (15%) and carcinoma in situ (15%) | Stomach carcinogenesis was caused by inflammatory granulocytes, macrophages, and B cells other than T cells, B cells, and NK cells | [8] |
C57BL/6 mouse | Human IL-1β TG | No | No | Severe hyperplasia (>70%), high-grade dysplasia or well differentiated gastric adenocarcinoma (30%) over 48 weeks | Gastric chronic inflammation by myeloid-derived suppressor cells and independent of T cells and B cells ↑ β-catenin, c-myc, IL-6, TNF-α, and SDF-1α | [38] |
Mouse | gp130Y757F/Y757F | No | No | Gastric adenoma at 16 weeks | Infiltrating lymphocytes in the lamina propria and the intraepithelial compartments | [37] |
C57BL/6 mouse | TNAP-AID TG | No | No | HCC (27%), lung and stomach cancers (7%), and lymphoma (40%) at 90 weeks | AID expression induces inflammatory responses | [75] |
Mouse | Β2-SP+/- | No | No | HCC (40–70%) at 60 weeks | Chronic activation of proinflammatory cytokines (IL-6 and TGF-β) | [70] |
C57BL/6 mouse | Atg5F/F | No | No | Hepatocellular adenoma (100%) at 48 weeks | Increased apoptosis, inflammation, fibrosis, and infiltration of neutrophils and macrophages | [69] |
C57BL/6 mouse | +Leprdb/ +Leprdb | DEN | No | Hepatic adenoma (70%) and HCC (10%) at 41 weeks | Chronic inflammation induced by lipids storage ↑ TNF-α, IL-1β, and IL-6 | [73] |
C57BL/6 mouse | mdr−/− | No | No | HCC (80%) at 64 weeks | M1 macrophages, TNF-α, NF-kB, and NO are increased; especially B cells are involved | [74] |
129/OlaHsd mouse | mdr−/− | No | No | Liver nodules at 48 weeks | Nonsuppurative inflammatory cholangitis | [161] |
C57BL/6 mouse | Fxr−/− | No | No | Liver tumors (38%) at 48 weeks. Histological type of HCC (40–70%) at 60 weeks. Pre-neoplastic foci (64%), adenoma (36%), HCC (6%), and mixed HCC & hepatocholangiocellular carcinoma (9%) | Hepatosteatosis-associated chronic inflammation and fibrosis ↑ IL- 1β and β-catenin | [71] |
LEC rat | No | No | No | HCC (100%) at 72 weeks | Fulminant hepatitis induced by spontaneous hepatic copper & iron accumulation and its-mediated ROS generation | [47] |
129SvEV mouse | APCMin/+IL-10−/− | No | No | Colon and cecal tumors at 20 weeks | Correlation between development colorectal cancer and extent of colon inflammation | [102] |
FVB mouse | C3(1)SV40Tag TG | No | No | Mammary tumors (27%) at 21 weeks | Macrophage infiltration ↑ TNF-α, IL-6, IL-10, IL-12, MCP-1, and CD206 | [111] |
FVB mouse | C3(1)SV40Tag TG | No | No | Mammary intraepithelial neoplasia of low grade at 8 weeks, high grade at 12 weeks, and invasive mammary tumors at 16 weeks | - | [162] |
CD1 mouse | neuV664E TG | No | No | Mammary tumors (67%) until 21 weeks | - | [116] |
Balb/c mouse | ERBB2 or HER-2/neu TG | No | No | Mammary in situ carcinomas and invasive cancer between weeks 17 and 22, palpable tumors at 33 weeks | Immune suppressive CD4+CD25+FOXP3+GITR+ Treg cells and CD11b+Gr1+ cells are infiltrated | [117] |
FVB mouse | PyV middle T antigen TG | No | No | Mammary adenocarcinoma (73%) until 25 weeks | - | [119] |
C57BL/6 mouse | PyMT TG | No | No | - | Inflammatory monocyte-derived tumor-associated macrophage suppressed tumor-infiltrating CD8+ T cells | [120] |
ACI/Seg rat | No | No | No | Prostatic cancer (>80%) at 144 weeks | Inflammation and aging-associated ROS | [163] |
ACI/segHapBR rat | No | No | No | Intra-alveolar atypical hyperplasia (35–45%) at 96 weeks, prostatic atypical hyperplasia (95–100%), and invasive prostate carcinoma (35–40%) at 132 weeks | - | [164] |
C57BL/6 mouse | Ptenfl/fl | No | Expressions of IL-6 or oncostatin-M | Oncostatin-M expressing grafts developed poorly differentiated adenocarcinoma | Increased activation of JAK/STAT pathway | [125] |
CD-1 mouse | Loss of XPA | No | No | Skin squamous cell carcinoma (100%) until 34 weeks | Accute inflammatory edema | [165] |
C57BL/6 mouse | RacCA TG | No | No | Kaposi’s sarcomas in male mice at 32 weeks and in female mice at 72 weeks | ↑ IL-6, IL-8, TNF-α, MCP-1, MIP1α, KC, and ROS | [142] |
Host/Strain | Genetic Manipulation | Carcinogen | Irritant or Manipulation | Incidence and Duration | Inflammatory Reaction | Reference |
---|---|---|---|---|---|---|
129Sv-C57BL/6 mouse | CCSPCre-Neo/LSL–K-rasG12D | No | Haemophilus influenzae | Lung papillary adenoma and adenocarcinoma at 48 weeks | Neutrophil, macrophage, and CD8 T cells associated COPD-like airway inflammation | [21] |
Mongolian gerbil | No | MNU | Helicobacter pylori | Gastric carcinoma (56%) and sarcoma (13%) at 75 weeks. Adenocarcinoma consisted of poorly differentiated (22%), signet ring cell (11%), and well-differentiated types (67%) | Active chronic gastritis, erosions, hyperplasia, and marked infiltration of inflammatory cells | [29] |
C57BL/6 mouse | No | MNU | Helicobacter pylori | Gastric (antrum) adenoma (24%), adenocarcinoma (41%) comprised tubular adenocarcinoma (66%) and singlet-ring cell carcinoma (33%) at 50 weeks | Infiltrations of lymphocytes, plasma cells, neutrophils, and eosinophils were present in the lamina propria/submucosa and formation of lymphoid follicles ↑ TNF-α, TGF-ß, IL-6, IFN-γ, and LT-ß | [32] |
C57BL/6 mouse | No | No | Helicobacter felis | Gastric adenocarcinoma (50%) at 12 months and 100% over 60 weeks | Approximately 4 months after infectious inflammation became prominent and seen as both submucosal and intramucosal infiltrates | [166] |
C57BL/6 mouse | Rag2−/− | No | Helicobacter pylori | - | Gastroduodenitis formed extensive infiltration of the mucosa and submucosa with lymphocytes, macrophages, eosinophils, and neutrophils | [34] |
Woodchuck | No | No | Woodchuck hepatitis virus | HCC (23%) around 236 weeks | Active hepatitis including neutrophils, eosinophils, lymphocytes, plasma cells, and histiocytes | [167] |
C57BL/6 mouse | HCV core protein TG | No | No | Hepatic adenoma at 64 weeks and HCC (26–31%) until 76 weeks | Hepatic steatosis, lymphoid follicle formation, and eosinophilic cell infiltration ↑ TNF-α, IL-1β, MAPK, and ROS | [168] |
C57BL/6 mouse | HBV HBsAg TG | No | No | HCC (91%) at 60 weeks | Activation of NF-κB pathway and inflammatory response ↑ ALT, AST, CD34, CD90, CD133, Sca1, Epcam, AFP, SOX9, and NF-κB | [43] |
Syrian golden hamster | No | NDMA | Opisthorchis viverrine | Cholangiofibrosis and cholangiocarcinoma (100%) at 22 weeks | Eosinophils, neutrophils, or macrophages observed in the glandular lumen | [169] |
Syrian golden hamster | No | NDMA | Opisthorchis viverrine | Cholangiocarcinoma (100%) at 24 weeks | Biliary epithelium is markedly inflamed ↑ IL-6 | [52] |
Syrian golden hamster | No | No | Opisthorchis felineus | Biliary intraepithelial neoplasia at 48 weeks | Granulomatous inflammation, monocytes, and eosinophil infiltration in the portal area in response to entrapped parasite eggs | [50] |
Host/Strain | Genetic Manipulation | Carcinogen | Irritant or Manipulation | Incidence and Duration | Inflammatory Reaction | Reference |
---|---|---|---|---|---|---|
C57BL/6 mouse | No | NDMA | Silica | Lung adenocarcinoma (>60%) at 48 weeks | Infiltration of T cells, B cells, neutrophils, and monocyte/macrophage cells | [170] |
Fisher F344/NCr rat | No | No | Silica | Lung tumor (90%) composed of adenocarcinoma (84%), mixed carcinoma (8%), and squamous cell carcinoma (8%) at 68 weeks | Formation of silica granulomas, which consist of aggregates of activated macrophages and lymphoid cells ↑ ILs, TNF-α, TGF-ß, and ROS/NO | [18] |
Balb/c mouse | No | NDMA | Silica | Lung adenoma (75%) at 26 weeks and adenocarcinoma (70%) at 48 weeks | Chronic inflammation ↑ TGF-ß, PD-1, LAG3, MCP-1, and FOXP3 | [22] |
F344 rat | No | No | Libby amphibole asbestos | Bronchiolar/alveolar adenoma or carcinoma (8%) at 31 weeks | Neutrophils and macrophages are predominantly infiltrated ↑ IL-6, IL-18, TNF-α, CXCL1, CXCL2, pAkt, pMEK1/2, and pSTAT3 ↓ IFN-γ | [17] |
F344 rat | No | No | Amosite asbestos | Bronchiolar/alveolar adenoma or carcinoma (4%) at 31 weeks | Neutrophil infiltration ↑ IL-1ß, TNF-α, and CXCL1 | [17] |
Sprague-Dawley rat | human c-Ha-ras 128 Tg | DHPN | Titanium dioxide | Lung alveolar hyperplasia (100%) and adenoma (36%) at 16 weeks | Aggregates of TiO2 were localized exclusively in alveolar macrophages ↑ MIP1α and 8-OHdG | [19] |
KSN nude mouse | No | No | Plastic plate | Colonic adenoma cells converted into moderately differentiated adenocarcinoma (65%) at 21 weeks | Plate-elicited chronic inflammation especially stromal reaction, but not acute inflammation is needed for tumorigenic conversion | [108] |
SHR rat | No | No | Plastic plate | Non-tumorigenic cells converted into tumorigenic mammary tumor (100%) until 12 weeks | Neutrophils and macrophages are infiltrated into the periphery of the implanted plastic plate and proliferation of fibroblasts with lymphoid cells | [113] |
C57BL/6 mouse | No | No | Plastic plate | Nontumorigenic cells converted into tumorigenic sarcoma (58%) until 6 weeks | Early phase of inflammation | [136] |
C57BL/6 mouse | p53+/- | No | Plastic plate | Sarcoma formed in untreated (20%) and implanted with plastic plate (79%) at 70 weeks | Implanted plastic plate were covered by fibrous tissue capsules with accumulation of inflammatory cells in the surrounding stromal tissues ↑ ROS and RNS | [143] |
C57BL/6 mouse | No | No | Gelatin sponge | Nontumorigenic cells converted into tumorigenic sarcoma (59%) until 6 weeks | Gelatin sponge-reactive inflammatory cells converted non-tumorigenic cells into tumorigenic ones | [137] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okada, F.; Izutsu, R.; Goto, K.; Osaki, M. Inflammation-Related Carcinogenesis: Lessons from Animal Models to Clinical Aspects. Cancers 2021, 13, 921. https://doi.org/10.3390/cancers13040921
Okada F, Izutsu R, Goto K, Osaki M. Inflammation-Related Carcinogenesis: Lessons from Animal Models to Clinical Aspects. Cancers. 2021; 13(4):921. https://doi.org/10.3390/cancers13040921
Chicago/Turabian StyleOkada, Futoshi, Runa Izutsu, Keisuke Goto, and Mitsuhiko Osaki. 2021. "Inflammation-Related Carcinogenesis: Lessons from Animal Models to Clinical Aspects" Cancers 13, no. 4: 921. https://doi.org/10.3390/cancers13040921
APA StyleOkada, F., Izutsu, R., Goto, K., & Osaki, M. (2021). Inflammation-Related Carcinogenesis: Lessons from Animal Models to Clinical Aspects. Cancers, 13(4), 921. https://doi.org/10.3390/cancers13040921