Monoclonal Antibodies and Antibody Drug Conjugates in Multiple Myeloma
Abstract
:Simple Summary
Abstract
1. Introduction
2. CD38
3. Anti-CD38 Monoclonal Antibodies
3.1. Mechanism of Action of CD38 Monoclonal Antibodies
3.2. Clinical Efficacy of Anti-CD38 Monotherapy
3.3. Combination Treatment of Anti CD38 and IMID in RRMM
3.4. Combination Treatment of Anti CD38 and PI in RRMM
3.5. Combination Treatment of Anti CD38 in Newly Diagnosed MM (NDMM)
3.6. Toxicity Profiles of Anti-CD38 MoAbs
4. Anti SLAMF-7 Monoclonal Antibodies
4.1. Monotherapy
4.2. Combination Treatment in RRMM
4.3. Combination Treatment in NDMM
5. Antibody Drug Conjugates
6. Conclusions—Beyond the MoAb Therapy
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ADC | antibody drug conjugate |
ADCC | antibody dependent cellular cytotoxicity, |
ADCP | antibody dependent cellular phagocytosis |
APC | antigen presenting cell |
ASCT | autologous stem cell transplantation |
BCMA | B cell maturation antigen |
CDC | complement dependent cytotoxicity |
CR | complete remission |
d/D | dexamethasone |
Dara | daratumumab |
DIRA | daratumumab specific immunofixation reflex assay |
DM1 | mertansine |
DM4 | ravtansine |
EAT-2 | Ewing’s sarcoma-associated transcript 2 |
Elo | elotuzumab |
EMA | European Medicines Agency |
FDA | Food and Drug Administration |
HR | hazard ratio |
IMiD | immunomodulatory drug |
IMWG | International Myeloma Working Group |
IRR | infusion related reaction |
Isa | isatuximab |
K | carfilzomib |
m | month |
MMAF | monomethyl auristatin F |
MoAb | monoclonal antibody |
MRD | minimal residual disease |
NDMM | newly diagnosed multiple myeloma |
NK | natural killer |
NR | not reached |
ORR | overall response rate |
P | pomalidomide |
PI | proteasome inhibitor |
PFS | progression free survival |
PN | peripheral neuropathy |
R | lenalidomide |
RBC | red blood cell |
RRMM | relapsed/refractory multiple myeloma |
SLAMF-7 | Signaling Lymphocyte Activation Molecule Family 7 |
TE | transplant eligible |
TE | transplant eligible |
V | bortezomib |
VGPR | very good partial remission |
References
- Palumbo, A.; Avet-Loiseau, H.; Oliva, S.; Lokhorst, H.M.; Goldschmidt, H.; Rosinol, L.; Richardson, P.; Caltagirone, S.; Lahuerta, J.J.; Facon, T.; et al. Revised International Staging System for Multiple Myeloma: A Report From International Myeloma Working Group. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2015, 33, 2863–2869. [Google Scholar] [CrossRef] [PubMed]
- Reinherz, E.L.; Kung, P.C.; Goldstein, G.; Levey, R.H.; Schlossman, S.F. Discrete Stages of Human Intrathymic Differentiation: Analysis of Normal Thymocytes and Leukemic Lymphoblasts of T-Cell Lineage. Proc. Natl. Acad. Sci. USA 1980, 77, 1588–1592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malavasi, F.; Deaglio, S.; Funaro, A.; Ferrero, E.; Horenstein, A.L.; Ortolan, E.; Vaisitti, T.; Aydin, S. Evolution and Function of the ADP Ribosyl Cyclase/CD38 Gene Family in Physiology and Pathology. Physiol. Rev. 2008, 88, 841–886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krejcik, J.; Casneuf, T.; Nijhof, I.S.; Verbist, B.; Bald, J.; Plesner, T.; Syed, K.; Liu, K.; van de Donk, N.W.C.J.; Weiss, B.M.; et al. Daratumumab Depletes CD38+ Immune Regulatory Cells, Promotes T-Cell Expansion, and Skews T-Cell Repertoire in Multiple Myeloma. Blood 2016, 128, 384–394. [Google Scholar] [CrossRef] [Green Version]
- Stocker, N.; Gaugler, B.; Ricard, L.; de Vassoigne, F.; Marjanovic, Z.; Mohty, M.; Malard, F. Daratumumab Prevents Programmed Death Ligand-1 Expression on Antigen-Presenting Cells in de Novo Multiple Myeloma. Cancer Med. 2020, 9, 2077–2084. [Google Scholar] [CrossRef]
- Chauhan, D.; Singh, A.V.; Brahmandam, M.; Carrasco, R.; Bandi, M.; Hideshima, T.; Bianchi, G.; Podar, K.; Tai, Y.-T.; Mitsiades, C.; et al. Functional Interaction of Plasmacytoid Dendritic Cells with Multiple Myeloma Cells: A Therapeutic Target. Cancer Cell 2009, 16, 309–323. [Google Scholar] [CrossRef] [Green Version]
- Morandi, F.; Airoldi, I.; Marimpietri, D.; Bracci, C.; Faini, A.C.; Gramignoli, R. CD38, a Receptor with Multifunctional Activities: From Modulatory Functions on Regulatory Cell Subsets and Extracellular Vesicles, to a Target for Therapeutic Strategies. Cells 2019, 8, 1527. [Google Scholar] [CrossRef] [Green Version]
- Horenstein, A.L.; Quarona, V.; Toscani, D.; Costa, F.; Chillemi, A.; Pistoia, V.; Giuliani, N.; Malavasi, F. Adenosine Generated in the Bone Marrow Niche Through a CD38-Mediated Pathway Correlates With Progression of Human Myeloma. Mol. Med. 2016, 22, 694–704. [Google Scholar] [CrossRef] [Green Version]
- Marlein, C.R.; Piddock, R.E.; Mistry, J.J.; Zaitseva, L.; Hellmich, C.; Horton, R.H.; Zhou, Z.; Auger, M.J.; Bowles, K.M.; Rushworth, S.A. CD38-Driven Mitochondrial Trafficking Promotes Bioenergetic Plasticity in Multiple Myeloma. Cancer Res. 2019, 79, 2285–2297. [Google Scholar] [CrossRef] [Green Version]
- Partida-Sánchez, S.; Cockayne, D.A.; Monard, S.; Jacobson, E.L.; Oppenheimer, N.; Garvy, B.; Kusser, K.; Goodrich, S.; Howard, M.; Harmsen, A.; et al. Cyclic ADP-Ribose Production by CD38 Regulates Intracellular Calcium Release, Extracellular Calcium Influx and Chemotaxis in Neutrophils and Is Required for Bacterial Clearance in Vivo. Nat. Med. 2001, 7, 1209–1216. [Google Scholar] [CrossRef]
- Partida-Sánchez, S.; Goodrich, S.; Kusser, K.; Oppenheimer, N.; Randall, T.D.; Lund, F.E. Regulation of Dendritic Cell Trafficking by the ADP-Ribosyl Cyclase CD38: Impact on the Development of Humoral Immunity. Immunity 2004, 20, 279–291. [Google Scholar] [CrossRef] [Green Version]
- Raab, M.S.; Engelhardt, M.; Blank, A.; Goldschmidt, H.; Agis, H.; Blau, I.W.; Einsele, H.; Ferstl, B.; Schub, N.; Röllig, C.; et al. MOR202, a Novel Anti-CD38 Monoclonal Antibody, in Patients with Relapsed or Refractory Multiple Myeloma: A First-in-Human, Multicentre, Phase 1-2a Trial. Lancet Haematol. 2020, 7, e381–e394. [Google Scholar] [CrossRef]
- Fedyk, E.R.; Zhao, L.; Koch, A.; Smithson, G.; Estevam, J.; Chen, G.; Lahu, G.; Roepcke, S.; Lin, J.; Mclean, L. Safety, Tolerability, Pharmacokinetics and Pharmacodynamics of the Anti-CD38 Cytolytic Antibody TAK-079 in Healthy Subjects. Br. J. Clin. Pharmacol. 2020, 86, 1314–1325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van de Donk, N.W.C.J.; Richardson, P.G.; Malavasi, F. CD38 Antibodies in Multiple Myeloma: Back to the Future. Blood 2018, 131, 13–29. [Google Scholar] [CrossRef] [PubMed]
- De Weers, M.; Tai, Y.-T.; van der Veer, M.S.; Bakker, J.M.; Vink, T.; Jacobs, D.C.H.; Oomen, L.A.; Peipp, M.; Valerius, T.; Slootstra, J.W.; et al. Daratumumab, a Novel Therapeutic Human CD38 Monoclonal Antibody, Induces Killing of Multiple Myeloma and Other Hematological Tumors. J. Immunol. 2011, 186, 1840–1848. [Google Scholar] [CrossRef]
- Overdijk, M.B.; Verploegen, S.; Bögels, M.; van Egmond, M.; Lammerts van Bueren, J.J.; Mutis, T.; Groen, R.W.J.; Breij, E.; Martens, A.C.M.; Bleeker, W.K.; et al. Antibody-Mediated Phagocytosis Contributes to the Anti-Tumor Activity of the Therapeutic Antibody Daratumumab in Lymphoma and Multiple Myeloma. mAbs 2015, 7, 311–321. [Google Scholar] [CrossRef]
- Zhu, C.; Song, Z.; Wang, A.; Srinivasan, S.; Yang, G.; Greco, R.; Theilhaber, J.; Shehu, E.; Wu, L.; Yang, Z.-Y.; et al. Isatuximab Acts Through Fc-Dependent, Independent, and Direct Pathways to Kill Multiple Myeloma Cells. Front. Immunol. 2020, 11, 1771. [Google Scholar] [CrossRef]
- Deckert, J.; Wetzel, M.-C.; Bartle, L.M.; Skaletskaya, A.; Goldmacher, V.S.; Vallée, F.; Zhou-Liu, Q.; Ferrari, P.; Pouzieux, S.; Lahoute, C.; et al. SAR650984, a Novel Humanized CD38-Targeting Antibody, Demonstrates Potent Antitumor Activity in Models of Multiple Myeloma and Other CD38+ Hematologic Malignancies. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2014, 20, 4574–4583. [Google Scholar] [CrossRef] [Green Version]
- Moreno, L.; Perez, C.; Zabaleta, A.; Manrique, I.; Alignani, D.; Ajona, D.; Blanco, L.; Lasa, M.; Maiso, P.; Rodriguez, I.; et al. The Mechanism of Action of the Anti-CD38 Monoclonal Antibody Isatuximab in Multiple Myeloma. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2019, 25, 3176–3187. [Google Scholar] [CrossRef] [Green Version]
- Sahinbegovic, H.; Jelinek, T.; Hrdinka, M.; Bago, J.R.; Turi, M.; Sevcikova, T.; Kurtovic-Kozaric, A.; Hajek, R.; Simicek, M. Intercellular Mitochondrial Transfer in the Tumor Microenvironment. Cancers 2020, 12, 1787. [Google Scholar] [CrossRef]
- Krejcik, J.; Frerichs, K.A.; Nijhof, I.S.; van Kessel, B.; van Velzen, J.F.; Bloem, A.C.; Broekmans, M.E.C.; Zweegman, S.; van Meerloo, J.; Musters, R.J.P.; et al. Monocytes and Granulocytes Reduce CD38 Expression Levels on Myeloma Cells in Patients Treated with Daratumumab. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2017, 23, 7498–7511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, H.C.; Stevenaert, F.; Krejcik, J.; der Borght, K.V.; Smets, T.; Bald, J.; Abraham, Y.; Ceulemans, H.; Chiu, C.; Vanhoof, G.; et al. High-Parameter Mass Cytometry Evaluation of Relapsed/Refractory Multiple Myeloma Patients Treated with Daratumumab Demonstrates Immune Modulation as a Novel Mechanism of Action. Cytom. A 2019, 95, 279–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lokhorst, H.M.; Plesner, T.; Laubach, J.P.; Nahi, H.; Gimsing, P.; Hansson, M.; Minnema, M.C.; Lassen, U.; Krejcik, J.; Palumbo, A.; et al. Targeting CD38 with Daratumumab Monotherapy in Multiple Myeloma. N. Engl. J. Med. 2015, 373, 1207–1219. [Google Scholar] [CrossRef] [PubMed]
- Lonial, S.; Weiss, B.M.; Usmani, S.Z.; Singhal, S.; Chari, A.; Bahlis, N.J.; Belch, A.; Krishnan, A.; Vescio, R.A.; Mateos, M.V.; et al. Daratumumab Monotherapy in Patients with Treatment-Refractory Multiple Myeloma (SIRIUS): An Open-Label, Randomised, Phase 2 Trial. Lancet Lond. Engl. 2016, 387, 1551–1560. [Google Scholar] [CrossRef]
- Usmani, S.Z.; Weiss, B.M.; Plesner, T.; Bahlis, N.J.; Belch, A.; Lonial, S.; Lokhorst, H.M.; Voorhees, P.M.; Richardson, P.G.; Chari, A.; et al. Clinical Efficacy of Daratumumab Monotherapy in Patients with Heavily Pretreated Relapsed or Refractory Multiple Myeloma. Blood 2016, 128, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Usmani, S.Z.; Nahi, H.; Plesner, T.; Weiss, B.M.; Bahlis, N.J.; Belch, A.; Voorhees, P.M.; Laubach, J.P.; van de Donk, N.W.C.J.; Ahmadi, T.; et al. Daratumumab Monotherapy in Patients with Heavily Pretreated Relapsed or Refractory Multiple Myeloma: Final Results from the Phase 2 GEN501 and SIRIUS Trials. Lancet Haematol. 2020, 7, e447–e455. [Google Scholar] [CrossRef]
- Dimopoulos, M.A.; Bringhen, S.; Anttila, P.M.; Capra, M.; Cavo, M.; Cole, C.E.; Gasparetto, C.; Hungria, V.T.; Jenner, M.W.; Vorobyev, V.I.; et al. Isatuximab as Monotherapy and Combined with Dexamethasone in Patients with Relapsed/Refractory Multiple Myeloma. Blood 2020. [Google Scholar] [CrossRef]
- Krishnan, A.Y.; Patel, K.K.; Hari, P.; Jagannath, S.; Niesvizky, R.; Silbermann, R.W.; Berg, D.; Lin, J.; Fedyk, E.R.; Palumbo, A.; et al. Preliminary Results from a Phase 1b Study of TAK-079, an Investigational Anti-CD38 Monoclonal Antibody (MAb) in Patients with Relapsed/ Refractory Multiple Myeloma (RRMM). Blood 2019, 134, 140. [Google Scholar] [CrossRef]
- Lagrue, K.; Carisey, A.; Morgan, D.J.; Chopra, R.; Davis, D.M. Lenalidomide Augments Actin Remodeling and Lowers NK-Cell Activation Thresholds. Blood 2015, 126, 50–60. [Google Scholar] [CrossRef] [Green Version]
- Nijhof, I.S.; Groen, R.W.J.; Noort, W.A.; van Kessel, B.; de Jong-Korlaar, R.; Bakker, J.; van Bueren, J.J.L.; Parren, P.W.H.I.; Lokhorst, H.M.; van de Donk, N.W.C.J.; et al. Preclinical Evidence for the Therapeutic Potential of CD38-Targeted Immuno-Chemotherapy in Multiple Myeloma Patients Refractory to Lenalidomide and Bortezomib. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2015, 21, 2802–2810. [Google Scholar] [CrossRef] [Green Version]
- Van de Donk, N.W.C.J.; Usmani, S.Z. CD38 Antibodies in Multiple Myeloma: Mechanisms of Action and Modes of Resistance. Front. Immunol. 2018, 9. [Google Scholar] [CrossRef] [PubMed]
- Van der Veer, M.S.; de Weers, M.; van Kessel, B.; Bakker, J.M.; Wittebol, S.; Parren, P.W.H.I.; Lokhorst, H.M.; Mutis, T. Towards Effective Immunotherapy of Myeloma: Enhanced Elimination of Myeloma Cells by Combination of Lenalidomide with the Human CD38 Monoclonal Antibody Daratumumab. Haematologica 2011, 96, 284–290. [Google Scholar] [CrossRef] [Green Version]
- Dimopoulos, M.A.; Oriol, A.; Nahi, H.; San-Miguel, J.; Bahlis, N.J.; Usmani, S.Z.; Rabin, N.; Orlowski, R.Z.; Komarnicki, M.; Suzuki, K.; et al. Daratumumab, Lenalidomide, and Dexamethasone for Multiple Myeloma. N. Engl. J. Med. 2016, 375, 1319–1331. [Google Scholar] [CrossRef] [Green Version]
- Bahlis, N.J.; Dimopoulos, M.A.; White, D.J.; Benboubker, L.; Cook, G.; Leiba, M.; Ho, P.J.; Kim, K.; Takezako, N.; Moreau, P.; et al. Daratumumab plus Lenalidomide and Dexamethasone in Relapsed/Refractory Multiple Myeloma: Extended Follow-up of POLLUX, a Randomized, Open-Label, Phase 3 Study. Leukemia 2020, 34, 1875–1884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dimopoulos, M.A.; San-Miguel, J.; Belch, A.; White, D.; Benboubker, L.; Cook, G.; Leiba, M.; Morton, J.; Ho, P.J.; Kim, K.; et al. Daratumumab plus Lenalidomide and Dexamethasone versus Lenalidomide and Dexamethasone in Relapsed or Refractory Multiple Myeloma: Updated Analysis of POLLUX. Haematologica 2018, 103, 2088–2096. [Google Scholar] [CrossRef] [Green Version]
- Dimopoulos, M.A.; Terpos, E.; Boccadoro, M.; Delimpasi, S.; Beksac, M.; Katodritou, E.; Moreau, P.; Baldini, L.; Symeonidis, A.; Bila, J.; et al. Apollo: Phase 3 Randomized Study of Subcutaneous Daratumumab Plus Pomalidomide and Dexamethasone (D-Pd) Versus Pomalidomide and Dexamethasone (Pd) Alone in Patients (Pts) with Relapsed/Refractory Multiple Myeloma (RRMM). Blood 2020, 136, 5–6. [Google Scholar] [CrossRef]
- Attal, M.; Richardson, P.G.; Rajkumar, S.V.; San-Miguel, J.; Beksac, M.; Spicka, I.; Leleu, X.; Schjesvold, F.; Moreau, P.; Dimopoulos, M.A.; et al. Isatuximab plus Pomalidomide and Low-Dose Dexamethasone versus Pomalidomide and Low-Dose Dexamethasone in Patients with Relapsed and Refractory Multiple Myeloma (ICARIA-MM): A Randomised, Multicentre, Open-Label, Phase 3 Study. Lancet Lond. Engl. 2019, 394, 2096–2107. [Google Scholar] [CrossRef]
- Dimopoulos, M.A.; Leleu, X.; Moreau, P.; Richardson, P.G.; Liberati, A.M.; Harrison, S.J.; Miles Prince, H.; Ocio, E.M.; Assadourian, S.; Campana, F.; et al. Isatuximab plus Pomalidomide and Dexamethasone in Relapsed/Refractory Multiple Myeloma Patients with Renal Impairment: ICARIA-MM Subgroup Analysis. Leukemia 2021, 35, 562–572. [Google Scholar] [CrossRef]
- Schjesvold, F.H.; Richardson, P.G.; Facon, T.; Alegre, A.; Spencer, A.; Jurczyszyn, A.; Sunami, K.; Frenzel, L.; Min, C.-K.; Guillonneau, S.; et al. Isatuximab plus Pomalidomide and Dexamethasone in Elderly Patients with Relapsed/Refractory Multiple Myeloma: ICARIA-MM Subgroup Analysis. Haematologica 2020. [Google Scholar] [CrossRef] [PubMed]
- Serrano-del Valle, A.; Anel, A.; Naval, J.; Marzo, I. Immunogenic Cell Death and Immunotherapy of Multiple Myeloma. Front. Cell Dev. Biol. 2019, 7. [Google Scholar] [CrossRef] [PubMed]
- Palumbo, A.; Chanan-Khan, A.; Weisel, K.; Nooka, A.K.; Masszi, T.; Beksac, M.; Spicka, I.; Hungria, V.; Munder, M.; Mateos, M.V.; et al. Daratumumab, Bortezomib, and Dexamethasone for Multiple Myeloma. N. Engl. J. Med. 2016, 375, 754–766. [Google Scholar] [CrossRef]
- Spencer, A.; Lentzsch, S.; Weisel, K.; Avet-Loiseau, H.; Mark, T.M.; Spicka, I.; Masszi, T.; Lauri, B.; Levin, M.-D.; Bosi, A.; et al. Daratumumab plus Bortezomib and Dexamethasone versus Bortezomib and Dexamethasone in Relapsed or Refractory Multiple Myeloma: Updated Analysis of CASTOR. Haematologica 2018, 103, 2079–2087. [Google Scholar] [CrossRef] [Green Version]
- Dimopoulos, M.; Quach, H.; Mateos, M.-V.; Landgren, O.; Leleu, X.; Siegel, D.; Weisel, K.; Yang, H.; Klippel, Z.; Zahlten-Kumeli, A.; et al. Carfilzomib, Dexamethasone, and Daratumumab versus Carfilzomib and Dexamethasone for Patients with Relapsed or Refractory Multiple Myeloma (CANDOR): Results from a Randomised, Multicentre, Open-Label, Phase 3 Study. Lancet Lond. Engl. 2020, 396, 186–197. [Google Scholar] [CrossRef]
- Dimopoulos, M.A.; Quach, H.; Mateos, M.-V.; Landgren, O.; Leleu, X.; Siegel, D.S.; Weisel, K.; Gavriatopoulou, M.; Oriol, A.; Rabin, N.K.; et al. Carfilzomib, Dexamethasone, and Daratumumab Versus Carfilzomib and Dexamethasone in Re-lapsed or Refractory Multiple Myeloma: Updated Efficacy and Safety Results of the Phase 3 Candor Study. Blood 2020, 136, 26–27. [Google Scholar] [CrossRef]
- Moreau, P.; Dimopoulos, M.A.; Mikhael, J.; Yong, K.; Capra, M.; Facon, T.; Hajek, R.; Spicka, I.; Risse, M.-L.; Asset, G.; et al. Isatuximab Plus Carfilzomib And Dexamethasone vs Carfilzomib And Dexame-Thasone in Relapsed/Refractory Multiple Myeloma (Ikema): Interim Analysis of a Phase 3, Randomized, Open-Label Study. Available online: https://library.ehaweb.org/eha/2020/eha25th/303392/philippe.moreau.isatuximab.plus.carfilzomib.and.dexamethasone.vs.carfilzomib.html (accessed on 9 February 2021).
- Martin, T.; Mikhael, J.; Hajek, R.; Kim, K.; Suzuki, K.; Hulin, C.; Garg, M.; Quach, H.; Sia, H.; George, A.; et al. Depth of Response and Response Kinetics of Isatuximab Plus Carfilzomib and Dexamethasone in Relapsed Multiple Myeloma: Ikema Interim Analysis. Blood 2020, 136, 7–8. [Google Scholar] [CrossRef]
- Capra, M.; Martin, T., III; Moreau, P.; Baker, R.; Pour, L.; Min, C.-K.; Leleu, X.; Mohty, M.; Reinoso Segura, M.; Turgut, M.; et al. Isatuximab Plus Carfilzomib and Dexamethasone Versus Carfilzomib and Dexamethasone in Relapsed Multiple Myeloma Patients with Renal Impairment: Ikema Subgroup Analysis. Blood 2020, 136, 46–47. [Google Scholar] [CrossRef]
- Nijhof, I.S.; Casneuf, T.; van Velzen, J.; van Kessel, B.; Axel, A.E.; Syed, K.; Groen, R.W.J.; van Duin, M.; Sonneveld, P.; Minnema, M.C.; et al. CD38 Expression and Complement Inhibitors Affect Response and Resistance to Daratumumab Therapy in Myeloma. Blood 2016, 128, 959–970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mateos, M.-V.; Richardson, P.G.; Schlag, R.; Khuageva, N.K.; Dimopoulos, M.A.; Shpilberg, O.; Kropff, M.; Spicka, I.; Petrucci, M.T.; Palumbo, A.; et al. Bortezomib plus Melphalan and Prednisone Compared with Melphalan and Prednisone in Previously Untreated Multiple Myeloma: Updated Follow-up and Impact of Subsequent Therapy in the Phase III VISTA Trial. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2010, 28, 2259–2266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mateos, M.-V.; Cavo, M.; Blade, J.; Dimopoulos, M.A.; Suzuki, K.; Jakubowiak, A.; Knop, S.; Doyen, C.; Lucio, P.; Nagy, Z.; et al. Overall Survival with Daratumumab, Bortezomib, Melphalan, and Prednisone in Newly Diagnosed Multiple Myeloma (ALCYONE): A Randomised, Open-Label, Phase 3 Trial. Lancet Lond. Engl. 2020, 395, 132–141. [Google Scholar] [CrossRef]
- Mateos, M.-V.; Dimopoulos, M.A.; Cavo, M.; Suzuki, K.; Jakubowiak, A.; Knop, S.; Doyen, C.; Lucio, P.; Nagy, Z.; Kaplan, P.; et al. Daratumumab plus Bortezomib, Melphalan, and Prednisone for Untreated Myeloma. N. Engl. J. Med. 2018, 378, 518–528. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.K.; Facon, T.; Usmani, S.Z.; Plesner, T.; Orlowski, R.Z.; Touzeau, C.; Basu, S.; Bahlis, N.J.; Goldschmidt, H.; O’Dwyer, M.E.; et al. Updated Analysis of Daratumumab Plus Lenalidomide and Dexamethasone (D-Rd) Versus Le-nalidomide and Dexamethasone (Rd) in Patients with Transplant-Ineligible Newly Diagnosed Multiple Myeloma (NDMM): The Phase 3 Maia Study. Blood 2020, 136, 24–26. [Google Scholar] [CrossRef]
- Facon, T.; Kumar, S.; Plesner, T.; Orlowski, R.Z.; Moreau, P.; Bahlis, N.; Basu, S.; Nahi, H.; Hulin, C.; Quach, H.; et al. Daratumumab plus Lenalidomide and Dexamethasone for Untreated Myeloma. N. Engl. J. Med. 2019, 380, 2104–2115. [Google Scholar] [CrossRef]
- Giri, S.; Grimshaw, A.; Bal, S.; Godby, K.; Kharel, P.; Djulbegovic, B.; Dimopoulos, M.A.; Facon, T.; Usmani, S.Z.; Mateos, M.-V.; et al. Evaluation of Daratumumab for the Treatment of Multiple Myeloma in Patients With High-Risk Cytogenetic Factors: A Systematic Review and Meta-Analysis. JAMA Oncol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Moreau, P.; Attal, M.; Hulin, C.; Arnulf, B.; Belhadj, K.; Benboubker, L.; Béné, M.C.; Broijl, A.; Caillon, H.; Caillot, D.; et al. Bortezomib, Thalidomide, and Dexamethasone with or without Daratumumab before and after Autologous Stem-Cell Transplantation for Newly Diagnosed Multiple Myeloma (CASSIOPEIA): A Randomised, Open-Label, Phase 3 Study. Lancet Lond. Engl. 2019, 394, 29–38. [Google Scholar] [CrossRef]
- Fokkema, C.; van der Holt, B.; van Duin, M.; Wester, R.; Cupedo, T.; Moreau, P.; Vermeulen, J.; Broyl, A.; Sonneveld, P. Peripheral Neuropathy in the Cassiopeia Study. Blood 2020, 136, 48. [Google Scholar] [CrossRef]
- Voorhees, P.M.; Kaufman, J.L.; Laubach, J.; Sborov, D.W.; Reeves, B.; Rodriguez, C.; Chari, A.; Silbermann, R.; Costa, L.J.; Anderson, L.D.; et al. Daratumumab, Lenalidomide, Bortezomib, and Dexamethasone for Transplant-Eligible Newly Diagnosed Multiple Myeloma: The GRIFFIN Trial. Blood 2020, 136, 936–945. [Google Scholar] [CrossRef]
- Kaufman, J.L.; Laubach, J.P.; Sborov, D.; Reeves, B.; Rodriguez, C.; Chari, A.; Silbermann, R.W.; Costa, L.J.; Anderson, L.D., Jr.; Nathwani, N.; et al. Daratumumab (DARA) Plus Lenalidomide, Bortezomib, and Dexamethasone (RVd) in Pa-tients with Transplant-Eligible Newly Diagnosed Multiple Myeloma (NDMM): Updated Analysis of Griffin after 12 Months of Maintenance Therapy. Blood 2020, 136, 45–46. [Google Scholar] [CrossRef]
- Sonneveld, P.; Broijl, A.; Gay, F.; Boccadoro, M.; Einsele, H.; Blade, J.; Dimopoulos, M.A.; Delforge, M.; Spencer, A.; Hajek, R.; et al. Bortezomib, Lenalidomide, and Dexamethasone (VRd) ± Daratumumab (DARA) in Patients (Pts) with Transplant-Eligible (TE) Newly Diagnosed Multiple Myeloma (NDMM): A Multicenter, Randomized, Phase III Study (PERSEUS). J. Clin. Oncol. 2019, 37, TPS8055. [Google Scholar] [CrossRef]
- Kambhampati, S.; Wong, S.W.; Martin, T., III; Wolf, J.L.; Choudhry, P.; Karlon, W.; Wiita, A.P.; Shah, N. Phase II Study of Daratumumab in Combination with Azacitidine and Dexamethasone in Relapsed/Refractory Multiple Myeloma Pa-tients Previously Treated with Daratumumab: Darazadex. Blood 2020, 136, 27–28. [Google Scholar] [CrossRef]
- Nooka, A.K.; Gleason, C.; Sargeant, M.O.; Walker, M.; Watson, M.; Panjic, E.H.; Lonial, S. Managing Infusion Reactions to New Monoclonal Antibodies in Multiple Myeloma: Daratumumab and Elotuzumab. J. Oncol. Pract. 2018, 14, 414–422. [Google Scholar] [CrossRef]
- Barr, H.; Dempsey, J.; Waller, A.; Huang, Y.; Williams, N.; Sharma, N.; Benson, D.M.; Rosko, A.E.; Efebera, Y.A.; Hofmeister, C.C. Ninety-Minute Daratumumab Infusion Is Safe in Multiple Myeloma. Leukemia 2018, 32, 2495–2518. [Google Scholar] [CrossRef]
- Lombardi, J.; Boulin, M.; Devaux, M.; Cransac, A.; Pistre, P.; Pernot, C.; Payssot, A.; Lafon, I.; Caillot, D.; Gueneau, P. Safety of Ninety-Minute Daratumumab Infusion. J. Oncol. Pharm. Pract. 2020, 1078155220951231. [Google Scholar] [CrossRef]
- Terpos, E.; Engelhardt, M.; Cook, G.; Gay, F.; Mateos, M.-V.; Ntanasis-Stathopoulos, I.; van de Donk, N.W.C.J.; Avet-Loiseau, H.; Hajek, R.; Vangsted, A.J.; et al. Management of Patients with Multiple Myeloma in the Era of COVID-19 Pandemic: A Consensus Paper from the European Myeloma Network (EMN). Leukemia 2020, 34, 2000–2011. [Google Scholar] [CrossRef]
- Mateos, M.-V.; Nahi, H.; Legiec, W.; Grosicki, S.; Vorobyev, V.; Spicka, I.; Hungria, V.; Korenkova, S.; Bahlis, N.; Flogegard, M.; et al. Subcutaneous versus Intravenous Daratumumab in Patients with Relapsed or Refractory Multiple Myeloma (COLUMBA): A Multicentre, Open-Label, Non-Inferiority, Randomised, Phase 3 Trial. Lancet Haematol. 2020, 7, e370–e380. [Google Scholar] [CrossRef]
- Chari, A.; Rodriguez-Otero, P.; McCarthy, H.; Suzuki, K.; Hungria, V.; Sureda Balari, A.; Perrot, A.; Hulin, C.; Magen, H.; Iida, S.; et al. Subcutaneous Daratumumab plus Standard Treatment Regimens in Patients with Multiple Myeloma across Lines of Therapy (PLEIADES): An Open-Label Phase II Study. Br. J. Haematol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Manjappa, S.; Fox, R.; Reese, J.; Firoozamand, A.; Schmikla, H.; Nall, S.; Kolk, M.; Caimi, P.F.; Driscoll, J.J.; de Lima, M.; et al. Impact of Daratumumab on Stem Cell Collection, Graft Composition and Engraftment Among Multiple Myeloma Patients Undergoing Autologous Stem Cell Transplant. Blood 2020, 136, 35–37. [Google Scholar] [CrossRef]
- Ma, X.; Wong, S.W.; Zhou, P.; Chaulagain, C.P.; Doshi, P.; Klein, A.K.; Sprague, K.; Kugelmass, A.; Toskic, D.; Warner, M.; et al. Daratumumab Binds to Mobilized CD34+ Cells of Myeloma Patients in Vitro without Cytotoxicity or Impaired Progenitor Cell Growth. Exp. Hematol. Oncol. 2018, 7. [Google Scholar] [CrossRef] [PubMed]
- Luan, D.; Christos, P.J.; Ancharski, M.; Guarneri, D.; Pearse, R.; Rossi, A.C.; Shore, T.B.; Mayer, S.; Phillips, A.A.; Hsu, J.; et al. Timing of Daratumumab Administered Pre-Mobilization in Multiple Myeloma Impacts Pre-Harvest Peripheral Blood CD34+ Cell Counts and Plerixafor Use. Blood 2020, 136, 15–16. [Google Scholar] [CrossRef]
- Nahi, H.; Chrobok, M.; Gran, C.; Lund, J.; Gruber, A.; Gahrton, G.; Ljungman, P.; Wagner, A.K.; Alici, E. Infectious Complications and NK Cell Depletion Following Daratumumab Treatment of Multiple Myeloma. PLoS ONE 2019, 14, e0211927. [Google Scholar] [CrossRef] [Green Version]
- Drgona, L.; Gudiol, C.; Lanini, S.; Salzberger, B.; Ippolito, G.; Mikulska, M. ESCMID Study Group for Infections in Compromised Hosts (ESGICH) Consensus Document on the Safety of Targeted and Biological Therapies: An Infectious Diseases Perspective (Agents Targeting Lymphoid or Myeloid Cells Surface Antigens [II]: CD22, CD30, CD33, CD38, CD40, SLAMF-7 and CCR4). Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2018, 24 (Suppl. 2), S83–S94. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.; Vaisman, A.; Hota, S.S.; Bennett, S.; Trudel, S.; Reece, D.; Tiedemann, R.E. Listeria Susceptibility in Patients With Multiple Myeloma Receiving Daratumumab-Based Therapy. JAMA Oncol. 2020, 6, 293–294. [Google Scholar] [CrossRef]
- Tai, M.-H.; Ammann, E.M.; Kaila, S.; Pericone, C.; Singh, A.; Lin, T.S.; Davies, F.E. Use of Anti-Infective Prophylaxis in Newly Diagnosed and Relapsed/Refractory Multiple Myeloma Patients Initiating Treatment with Daratumumab. Blood 2020, 136, 23–24. [Google Scholar] [CrossRef]
- Ludwig, H.; Boccadoro, M.; Moreau, P.; San-Miguel, J.; Cavo, M.; Pawlyn, C.; Zweegman, S.; Facon, T.; Driessen, C.; Hajek, R.; et al. Recommendations for Vaccination in Multiple Myeloma: A Consensus of the European Myeloma Network. Leukemia 2021, 35, 31–44. [Google Scholar] [CrossRef] [PubMed]
- Mohyuddin, G.R.; Aziz, M.; McClune, B.; Abdallah, A.-O.; Qazilbash, M. Antibiotic Prophylaxis for Patients with Newly Diagnosed Multiple Myeloma: Systematic Review and Meta-Analysis. Eur. J. Haematol. 2020, 104, 420–426. [Google Scholar] [CrossRef]
- Gavriatopoulou, M.; Ntanasis-Stathopoulos, I.; Korompoki, E.; Terpos, E.; Dimopoulos, M.A. SARS-CoV-2 Vaccines in Patients With Multiple Myeloma. HemaSphere 2021, 5, e547. [Google Scholar] [CrossRef] [PubMed]
- Van de Donk, N.W.C.J.; Otten, H.G.; El Haddad, O.; Axel, A.; Sasser, A.K.; Croockewit, S.; Jacobs, J.F.M. Interference of Daratumumab in Monitoring Multiple Myeloma Patients Using Serum Immunofixation Electrophoresis Can Be Abrogated Using the Daratumumab IFE Reflex Assay (DIRA). Clin. Chem. Lab. Med. 2016, 54, 1105–1109. [Google Scholar] [CrossRef]
- Thoren, K.L.; Pianko, M.J.; Maakaroun, Y.; Landgren, C.O.; Ramanathan, L.V. Distinguishing Drug from Disease by Use of the Hydrashift 2/4 Daratumumab Assay. J. Appl. Lab. Med. 2019, 3, 857–863. [Google Scholar] [CrossRef] [Green Version]
- Finn, G.; Macé, S.; Campana, F.; Le-Guennec, S.; Muccio, S.; Tavernier, A.; Rouchon, M.-C.; Roccon, A.; Dai, S.; Boutet, V.; et al. Evaluating Isatuximab Interference with Monoclonal Protein Detection By Immuno-Capture and Liquid Chromatography Coupled to High Resolution Mass Spectrometry in the Pivotal Phase 3 Multiple Myeloma Trial, Icaria-MM. Blood 2019, 134, 3143. [Google Scholar] [CrossRef]
- Sullivan, H.C.; Gerner-Smidt, C.; Nooka, A.K.; Arthur, C.M.; Thompson, L.; Mener, A.; Patel, S.R.; Yee, M.; Fasano, R.M.; Josephson, C.D.; et al. Daratumumab (Anti-CD38) Induces Loss of CD38 on Red Blood Cells. Blood 2017, 129, 3033–3037. [Google Scholar] [CrossRef] [Green Version]
- Oostendorp, M.; Lammerts van Bueren, J.J.; Doshi, P.; Khan, I.; Ahmadi, T.; Parren, P.W.H.I.; van Solinge, W.W.; de Vooght, K.M.K. When Blood Transfusion Medicine Becomes Complicated Due to Interference by Monoclonal Antibody Therapy. Transfusion 2015, 55, 1555–1562. [Google Scholar] [CrossRef]
- Chapuy, C.I.; Aguad, M.D.; Nicholson, R.T.; AuBuchon, J.P.; Cohn, C.S.; Delaney, M.; Fung, M.K.; Unger, M.; Doshi, P.; Murphy, M.F.; et al. International Validation of a Dithiothreitol (DTT)-Based Method to Resolve the Daratumumab Interference with Blood Compatibility Testing. Transfusion 2016, 56, 2964–2972. [Google Scholar] [CrossRef]
- Chari, A.; Arinsburg, S.; Jagannath, S.; Satta, T.; Treadwell, I.; Catamero, D.; Morgan, G.; Feng, H.; Uhlar, C.; Khan, I.; et al. Blood Transfusion Management and Transfusion-Related Outcomes in Daratumumab-Treated Patients With Relapsed or Refractory Multiple Myeloma. Clin. Lymphoma Myeloma Leuk. 2018, 18, 44–51. [Google Scholar] [CrossRef] [Green Version]
- Weisel, K. Spotlight on Elotuzumab in the Treatment of Multiple Myeloma: The Evidence to Date. OncoTargets Ther. 2016, 9, 6037–6048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cruz-Munoz, M.-E.; Dong, Z.; Shi, X.; Zhang, S.; Veillette, A. Influence of CRACC, a SLAM Family Receptor Coupled to the Adaptor EAT-2, on Natural Killer Cell Function. Nat. Immunol. 2009, 10, 297–305. [Google Scholar] [CrossRef]
- Hsi, E.D.; Steinle, R.; Balasa, B.; Szmania, S.; Draksharapu, A.; Shum, B.P.; Huseni, M.; Powers, D.; Nanisetti, A.; Zhang, Y.; et al. CS1, a Potential New Therapeutic Antibody Target for the Treatment of Multiple Myeloma. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2008, 14, 2775–2784. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Quintero, L.-A.; Roncagalli, R.; Guo, H.; Latour, S.; Davidson, D.; Veillette, A. EAT-2, a SAP-like Adaptor, Controls NK Cell Activation through Phospholipase Cγ, Ca++, and Erk, Leading to Granule Polarization. J. Exp. Med. 2014, 211, 727–742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishibashi, M.; Soeda, S.; Sasaki, M.; Handa, H.; Imai, Y.; Tanaka, N.; Tanosaki, S.; Ito, S.; Odajima, T.; Sugimori, H.; et al. Clinical Impact of Serum Soluble SLAMF7 in Multiple Myeloma. Oncotarget 2018, 9, 34784–34793. [Google Scholar] [CrossRef] [Green Version]
- Kikuchi, J.; Hori, M.; Iha, H.; Toyama-Sorimachi, N.; Hagiwara, S.; Kuroda, Y.; Koyama, D.; Izumi, T.; Yasui, H.; Suzuki, A.; et al. Soluble SLAMF7 Promotes the Growth of Myeloma Cells via Homophilic Interaction with Surface SLAMF7. Leukemia 2020, 34, 180–195. [Google Scholar] [CrossRef]
- Collins, S.M.; Bakan, C.E.; Swartzel, G.D.; Hofmeister, C.C.; Efebera, Y.A.; Kwon, H.; Starling, G.C.; Ciarlariello, D.; Bhaskar, S.; Briercheck, E.L.; et al. Elotuzumab Directly Enhances NK Cell Cytotoxicity against Myeloma via CS1 Ligation: Evidence for Augmented NK Cell Function Complementing ADCC. Cancer Immunol. Immunother. 2013, 62, 1841–1849. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.-C.; Szmania, S.; van Rhee, F. Profile of Elotuzumab and Its Potential in the Treatment of Multiple Myeloma. Blood Lymphat. Cancer Targets Ther. 2014, 2014, 15–27. [Google Scholar] [CrossRef] [Green Version]
- Kurdi, A.T.; Glavey, S.V.; Bezman, N.A.; Jhatakia, A.; Guerriero, J.L.; Manier, S.; Moschetta, M.; Mishima, Y.; Roccaro, A.; Detappe, A.; et al. Antibody-Dependent Cellular Phagocytosis by Macrophages Is a Novel Mechanism of Action of Elotuzumab. Mol. Cancer Ther. 2018, 17, 1454–1463. [Google Scholar] [CrossRef] [Green Version]
- Zonder, J.A.; Mohrbacher, A.F.; Singhal, S.; van Rhee, F.; Bensinger, W.I.; Ding, H.; Fry, J.; Afar, D.E.H.; Singhal, A.K. A Phase 1, Multicenter, Open-Label, Dose Escalation Study of Elotuzumab in Patients with Advanced Multiple Myeloma. Blood 2012, 120, 552–559. [Google Scholar] [CrossRef]
- Lonial, S.; Dimopoulos, M.; Palumbo, A.; White, D.; Grosicki, S.; Spicka, I.; Walter-Croneck, A.; Moreau, P.; Mateos, M.-V.; Magen, H.; et al. Elotuzumab Therapy for Relapsed or Refractory Multiple Myeloma. N. Engl. J. Med. 2015, 373, 621–631. [Google Scholar] [CrossRef] [Green Version]
- Dimopoulos, M.A.; Lonial, S.; White, D.; Moreau, P.; Weisel, K.; San-Miguel, J.; Shpilberg, O.; Grosicki, S.; Špička, I.; Walter-Croneck, A.; et al. Elotuzumab, Lenalidomide, and Dexamethasone in RRMM: Final Overall Survival Results from the Phase 3 Randomized ELOQUENT-2 Study. Blood Cancer J. 2020, 10, 1–10. [Google Scholar] [CrossRef]
- Dimopoulos, M.A.; Dytfeld, D.; Grosicki, S.; Moreau, P.; Takezako, N.; Hori, M.; Leleu, X.; LeBlanc, R.; Suzuki, K.; Raab, M.S.; et al. Elotuzumab plus Pomalidomide and Dexamethasone for Multiple Myeloma. N. Engl. J. Med. 2018, 379, 1811–1822. [Google Scholar] [CrossRef]
- Thomas, S.K.; Shah, J.J.; Morin, A.; Morphey, A.N.; Lee, H.C.; Manasanch, E.E.; Patel, K.K.; Kaufman, G.P.; Iyer, S.P.; Feng, L.; et al. Update of a Phase II Study of Lenalidomide-Elotuzumab As Maintenance Therapy Post-Autologous Stem Cell Transplant (AuSCT) in Patients (Pts) with Multiple Myeloma (MM). Blood 2020, 136, 46–47. [Google Scholar] [CrossRef]
- Usmani, S.Z.; Hoering, A.; Ailawadhi, S.; Sexton, R.; Lipe, B.; Hita, S.F.; Valent, J.; Rosenzweig, M.; Zonder, J.A.; Dhodapkar, M.; et al. Bortezomib, Lenalidomide, and Dexamethasone with or without Elotuzumab in Patients with Untreated, High-Risk Multiple Myeloma (SWOG-1211): Primary Analysis of a Randomised, Phase 2 Trial. Lancet Haematol. 2021, 8, e45–e54. [Google Scholar] [CrossRef]
- Goldschmidt, H.; Mai, E.K.; Salwender, H.; Bertsch, U.; Miah, K.; Kunz, C.; Fenk, R.; Blau, I.; Scheid, C.; Martin, H.; et al. Bortezomib, Lenalidomide and Dexa-Methasone with or without. Available online: https://library.ehaweb.org/eha/2020/eha25th/295023/hartmut.goldschmidt.bortezomib.lenalidomide.and.dexamethasone.with.or.without (accessed on 21 February 2021).
- Jakubowiak, A.; Offidani, M.; Pégourie, B.; de La Rubia, J.; Garderet, L.; Laribi, K.; Bosi, A.; Marasca, R.; Laubach, J.; Mohrbacher, A.; et al. Randomized Phase 2 Study: Elotuzumab plus Bortezomib/Dexamethasone vs Bortezomib/Dexamethasone for Relapsed/Refractory MM. Blood 2016, 127, 2833–2840. [Google Scholar] [CrossRef] [Green Version]
- Salwender, H.; Bertsch, U.; Weisel, K.; Duerig, J.; Kunz, C.; Benner, A.; Blau, I.W.; Raab, M.S.; Hillengass, J.; Hose, D.; et al. Rationale and Design of the German-Speaking Myeloma Multicenter Group (GMMG) Trial HD6: A Randomized Phase III Trial on the Effect of Elotuzumab in VRD Induction/Consolidation and Lenalidomide Maintenance in Patients with Newly Diagnosed Myeloma. BMC Cancer 2019, 19, 504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McMillan, A.; Warcel, D.; Popat, R. Antibody-Drug Conjugates for Multiple Myeloma. Expert Opin. Biol. Ther. 2020, 1–13. [Google Scholar] [CrossRef]
- Wolska-Washer, A.; Smolewski, P.; Robak, T. Advances in the Pharmacotherapeutic Options for Primary Nodal Peripheral T-Cell Lymphoma. Expert Opin. Pharmacother. 2021. [Google Scholar] [CrossRef]
- Ladha, A.; Hui, G.; Cheung, E.; Berube, C.; Coutre, S.E.; Gotlib, J.; Liedtke, M.; Zhang, T.Y.; Muffly, L.; Mannis, G.N. Routine Use of Gemtuzumab Ozogamicin in 7 + 3-Based Inductions for All “non-Adverse” Risk AML. Leuk. Lymphoma 2021, 1–6. [Google Scholar] [CrossRef]
- Khongorzul, P.; Ling, C.J.; Khan, F.U.; Ihsan, A.U.; Zhang, J. Antibody–Drug Conjugates: A Comprehensive Review. Mol. Cancer Res. 2020, 18, 3–19. [Google Scholar] [CrossRef] [Green Version]
- Gerratana, B. Biosynthesis, Synthesis, and Biological Activities of Pyrrolobenzodiazepines. Med. Res. Rev. 2012, 32, 254–293. [Google Scholar] [CrossRef] [Green Version]
- Doronina, S.O.; Mendelsohn, B.A.; Bovee, T.D.; Cerveny, C.G.; Alley, S.C.; Meyer, D.L.; Oflazoglu, E.; Toki, B.E.; Sanderson, R.J.; Zabinski, R.F.; et al. Enhanced Activity of Monomethylauristatin F through Monoclonal Antibody Delivery: Effects of Linker Technology on Efficacy and Toxicity. Bioconjug. Chem. 2006, 17, 114–124. [Google Scholar] [CrossRef]
- Demel, I.; Bago, J.R.; Hajek, R.; Jelinek, T. Focus on Monoclonal Antibodies Targeting B-Cell Maturation Antigen (BCMA) in Multiple Myeloma: Update 2020. Br. J. Haematol. 2020. [Google Scholar] [CrossRef]
- Tai, Y.-T.; Mayes, P.A.; Acharya, C.; Zhong, M.Y.; Cea, M.; Cagnetta, A.; Craigen, J.; Yates, J.; Gliddon, L.; Fieles, W.; et al. Novel Anti-B-Cell Maturation Antigen Antibody-Drug Conjugate (GSK2857916) Selectively Induces Killing of Multiple Myeloma. Blood 2014, 123, 3128–3138. [Google Scholar] [CrossRef] [PubMed]
- Trudel, S.; Lendvai, N.; Popat, R.; Voorhees, P.M.; Reeves, B.; Libby, E.N.; Richardson, P.G.; Anderson, L.D.; Sutherland, H.J.; Yong, K.; et al. Targeting B-Cell Maturation Antigen with GSK2857916 Antibody-Drug Conjugate in Relapsed or Refractory Multiple Myeloma (BMA117159): A Dose Escalation and Expansion Phase 1 Trial. Lancet Oncol. 2018, 19, 1641–1653. [Google Scholar] [CrossRef]
- Trudel, S.; Lendvai, N.; Popat, R.; Voorhees, P.M.; Reeves, B.; Libby, E.N.; Richardson, P.G.; Hoos, A.; Gupta, I.; Bragulat, V.; et al. Antibody-Drug Conjugate, GSK2857916, in Relapsed/Refractory Multiple Myeloma: An Update on Safety and Efficacy from Dose Expansion Phase I Study. Blood Cancer J. 2019, 9, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lonial, S.; Lee, H.C.; Badros, A.; Trudel, S.; Nooka, A.K.; Chari, A.; Abdallah, A.-O.; Callander, N.; Lendvai, N.; Sborov, D.; et al. Belantamab Mafodotin for Relapsed or Refractory Multiple Myeloma (DREAMM-2): A Two-Arm, Randomised, Open-Label, Phase 2 Study. Lancet Oncol. 2020, 21, 207–221. [Google Scholar] [CrossRef]
- Farooq, A.V.; Degli Esposti, S.; Popat, R.; Thulasi, P.; Lonial, S.; Nooka, A.K.; Jakubowiak, A.; Sborov, D.; Zaugg, B.E.; Badros, A.Z.; et al. Corneal Epithelial Findings in Patients with Multiple Myeloma Treated with Antibody-Drug Conjugate Belantamab Mafodotin in the Pivotal, Randomized, DREAMM-2 Study. Ophthalmol. Ther. 2020, 9, 889–911. [Google Scholar] [CrossRef]
- Lonial, S.; Nooka, A.; Thulasi, P.; Badros, A.Z.; Jeng, B.H.; Callander, N.S.; Sborov, D.; Zaugg, B.E.; Popat, R.; Degli Esposti, S.; et al. Recovery of Ocular Events with Longer-Term Follow-up in the DREAMMM-2 Study of Single-Agent Belantamab Mafodotin (Belamaf) in Patients with Relapsed or Refractory Multiple Myeloma (RRMM). Blood 2020, 136, 26–27. [Google Scholar] [CrossRef]
- Lee, H.C.; Raje, N.S.; Landgren, O.; Upreti, V.V.; Wang, J.; Avilion, A.A.; Hu, X.; Rasmussen, E.; Ngarmchamnanrith, G.; Fujii, H.; et al. Phase 1 Study of the Anti-BCMA Antibody-Drug Conjugate AMG 224 in Patients with Relapsed/Refractory Multiple Myeloma. Leukemia 2021, 35, 255–258. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.K.; Migkou, M.; Bhutani, M.; Spencer, A.; Ailawadhi, S.; Kalff, A.; Walcott, F.; Pore, N.; Gibson, D.; Wang, F.; et al. Phase 1, First-in-Human Study of MEDI2228, a BCMA-Targeted ADC in Patients with Relapsed/Refractory Multiple Myeloma. Blood 2020, 136, 26–27. [Google Scholar] [CrossRef]
- Jagannath, S.; Heffner, L.T.; Ailawadhi, S.; Munshi, N.C.; Zimmerman, T.M.; Rosenblatt, J.; Lonial, S.; Chanan-Khan, A.; Ruehle, M.; Rharbaoui, F.; et al. Indatuximab Ravtansine (BT062) Monotherapy in Patients With Relapsed and/or Refractory Multiple Myeloma. Clin. Lymphoma Myeloma Leuk. 2019, 19, 372–380. [Google Scholar] [CrossRef] [PubMed]
- Kelly, K.R.; Siegel, D.S.; Chanan-Khan, A.A.; Somlo, G.; Heffner, L.T.; Jagannath, S.; Zimmerman, T.; Munshi, N.C.; Madan, S.; Mohrbacher, A.; et al. Indatuximab Ravtansine (BT062) in Combination with Low-Dose Dexamethasone and Lenalidomide or Pomalidomide: Clinical Activity in Patients with Relapsed/Refractory Multiple Myeloma. Blood 2016, 128, 4486. [Google Scholar] [CrossRef]
- Ailawadhi, S.; Kelly, K.R.; Vescio, R.A.; Jagannath, S.; Wolf, J.; Gharibo, M.; Sher, T.; Bojanini, L.; Kirby, M.; Chanan-Khan, A. A Phase I Study to Assess the Safety and Pharmacokinetics of Single-Agent Lorvotuzumab Mertansine (IMGN901) in Patients with Relapsed and/or Refractory CD-56-Positive Multiple Myeloma. Clin. Lymphoma Myeloma Leuk. 2019, 19, 29–34. [Google Scholar] [CrossRef]
- Bruins, W.S.C.; Zheng, W.; Higgins, J.P.; Willert, E.K.; Newcomb, J.; Dash, A.B.; van de Donk, N.W.C.J.; Zweegman, S.; Mutis, T. TAK-169, a Novel Recombinant Immunotoxin Specific for CD38, Induces Powerful Preclinical Activity Against Patient-Derived Multiple Myeloma Cells. Blood 2020, 136, 11–12. [Google Scholar] [CrossRef]
- Vogl, D.T.; Kaufman, J.L.; Holstein, S.A.; Nadeem, O.; O’Donnell, E.; Suryanarayan, K.; Collins, S.; Parot, X.; Chaudhry, M. TAK-573, an Anti-CD38/Attenuated Ifnα Fusion Protein, Has Clinical Activity and Modulates the Ifnα Receptor (IFNAR) Pathway in Patients with Relapsed/Refractory Multiple Myeloma. Blood 2020, 136, 37–38. [Google Scholar] [CrossRef]
- Strassz, A.; Raab, M.S.; Orlowski, R.Z.; Kulke, M.; Schiedner, G.; Pahl, A. A First in Human Study Planned to Evaluate Hdp-101, an Anti-BCMA Amanitin Antibody-Drug Conjugate with a New Payload and a New Mode of Action, in Multiple Myeloma. Blood 2020, 136, 34. [Google Scholar] [CrossRef]
- Gandhi, U.H.; Cornell, R.F.; Lakshman, A.; Gahvari, Z.J.; McGehee, E.; Jagosky, M.H.; Gupta, R.; Varnado, W.; Fiala, M.A.; Chhabra, S.; et al. Outcomes of Patients with Multiple Myeloma Refractory to CD38-Targeted Monoclonal Antibody Therapy. Leukemia 2019, 33, 2266–2275. [Google Scholar] [CrossRef] [PubMed]
- Gavriatopoulou, M.; Kastritis, E.; Ntanasis-Stathopoulos, I.; Fotiou, D.; Roussou, M.; Migkou, M.; Ziogas, D.C.; Kanellias, N.; Terpos, E.; Dimopoulos, M.A. The Addition of IMiDs for Patients with Daratumumab-Refractory Multiple Myeloma Can Overcome Refractoriness to Both Agents. Blood 2018, 131, 464–467. [Google Scholar] [CrossRef]
- Oostvogels, R.; Jak, M.; Raymakers, R.; Mous, R.; Minnema, M.C. Efficacy of Retreatment with Immunomodulatory Drugs and Proteasome Inhibitors Following Daratumumab Monotherapy in Relapsed and Refractory Multiple Myeloma Patients. Br. J. Haematol. 2018, 183, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Mateos, M.-V.; Spencer, A.; Nooka, A.K.; Pour, L.; Weisel, K.; Cavo, M.; Laubach, J.P.; Cook, G.; Iida, S.; Benboubker, L.; et al. Daratumumab-Based Regimens are Highly Effective and Well Tolerated in Relapsed or Refractory Multiple Myeloma Regardless of Patient Age: Subgroup Analysis of the Phase 3 CASTOR and POLLUX Studies. Haematologica 2020, 105, 468–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nooka, A.K.; Joseph, N.S.; Kaufman, J.L.; Heffner, L.T.; Gupta, V.A.; Gleason, C.; Boise, L.H.; Lonial, S. Clinical Efficacy of Daratumumab, Pomalidomide, and Dexamethasone in Patients with Relapsed or Refractory Myeloma: Utility of Re-Treatment with Daratumumab among Refractory Patients. Cancer 2019, 125, 2991–3000. [Google Scholar] [CrossRef] [PubMed]
- Becnel, M.R.; Horowitz, S.B.; Thomas, S.K.; Iyer, S.P.; Patel, K.K.; Manasanch, E.E.; Weber, D.M.; Kaufman, G.P.; Lee, H.C.; Orlowski, R.Z. Descriptive Analysis of Isatuximab Use Following Prior Daratumumab in Patients with Relapsed/Refractory Multiple Myeloma. Blood 2020, 136, 20–21. [Google Scholar] [CrossRef]
- Shah, N.; Aiello, J.; Avigan, D.E.; Berdeja, J.G.; Borrello, I.M.; Chari, A.; Cohen, A.D.; Ganapathi, K.; Gray, L.; Green, D.; et al. The Society for Immunotherapy of Cancer Consensus Statement on Immunotherapy for the Treatment of Multiple Myeloma. J. Immunother. Cancer 2020, 8. [Google Scholar] [CrossRef]
- Hoylman, E.; Brown, A.; Perissinotti, A.J.; Marini, B.L.; Pianko, M.; Ye, J.C.; Campagnaro, E.; Nachar, V.R. Optimal Sequence of Daratumumab and Elotuzumab in Relapsed and Refractory Multiple Myeloma. Leuk. Lymphoma 2020, 61, 691–698. [Google Scholar] [CrossRef]
- Frerichs, K.A.; Minnema, M.C.; Levin, M.-D.; Broyl, A.; Bos, G.; Kersten, M.J.; Mutis, T.; Verkleij, C.P.M.; Bosman, P.W.C.; Klein, S.K.; et al. Efficacy and Safety of Daratumumab Combined with All-Trans Retinoic Acid in Relapsed/Refractory Multiple Myeloma; Results of the Phase 1/2 Dara/ATRA Study. Blood 2019, 134, 1826. [Google Scholar] [CrossRef]
- García-Guerrero, E.; Götz, R.; Doose, S.; Sauer, M.; Rodríguez-Gil, A.; Nerreter, T.; Kortüm, K.M.; Pérez-Simón, J.A.; Einsele, H.; Hudecek, M.; et al. Upregulation of CD38 Expression on Multiple Myeloma Cells by Novel HDAC6 Inhibitors Is a Class Effect and Augments the Efficacy of Daratumumab. Leukemia 2021, 35, 201–214. [Google Scholar] [CrossRef]
Drug | Usual Dose | Schedule * | Recommended Premedication |
---|---|---|---|
Daratumumab | 16 mg/kg i.v. or 1800 mg s.c. | Cycle 1–2 days 1,8,15,22, cycles 3–6 days, cycle 7+ day 1 With DVd or D-VMP other schedule | Dexamethasone, antihistamine, acetaminophen, antileukotriene (montelukast) |
Isatuximab | 10 mg/kg i.v. | Cycle 1–4 days 1,8,15,22,29, cycle 4+ days 1,15, cycle 18+ day 1 | Dexamethasone, antihistamine, acetaminophen |
Elotuzumab | 10 mg/kg i.v. | Cycle 1–2 days 1, 8, 15, 22, cycle 3+ days 1,15With Elo-Pd other schedule Increase to 20 mg after cycle 2 | Dexamethasone, antihistamine, acetaminophen |
Belantamab mafodotin | 2.5 mg/kg i.v. | Every 3 weeks | None |
CANDOR (NCT03158688) [43] | IKEMA (NCT03275285) [47] | |||
---|---|---|---|---|
Dara-Kd | Kd | Isa-Kd | Kd | |
Participants | 312 | 154 | 177 | 122 |
Median age (years) | 64 (57–70) | 64.5 (59–71) | 65 (37–86) | 63 (33–90) |
Median No. of prior therapies | 2 (1–2) | 2 (1–4) | 2 (1–4) | 2 (1–4) |
HR cytogenetics | 15% | 17% | 23.5% | 25.2% |
Len refractory | 32% | 36% | 31.8% | 34.1% |
ORR | 84.3% | 74.7% | 86.6% | 82.9% |
≥VGPR | 69.2% | 48.7% | 72.6% | 56.1% |
Study | Regimen | NCT Number | Phase | Population | No. of Patients | Median PL | R Refractory | V Refractory | ≥VGPR | ≥CR | MRD- | PFS |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sirius + GEN501 [26] | Daratumumab | NCT01985126, NCT00574288 | II | RRMM | 148 | 5 | 84% | 85% | 13.5% | 4.7% | NA | 4.0 m |
POLLUX [33] | Dara-Rd vs. Rd | NCT02076009 | III | RRMM | 286/283 | 1 | 3.5 vs. 3.9% | 19.9 vs. 16.3 | 75.8% vs. 44.2% | 43.1% vs. 19.2% | 22.4% vs. 4.9% | 44.5 vs. 17.5 m |
CASTOR [41] | Dara-Vd vs. Vd | NCT02136134 | III | RRMM | 251/247 | 2 | 71.3% vs. 80.2 (exposed) | 67.3% vs. 69.6 % (exposed) | 59.2% vs. 29.1% | 19.2% vs. 9% | NA | 16.7 vs. 7.1 m |
APOLLO [36] | Dara-Pd vs. Pd | NCT03180736 | III | RRMM | 151/153 | 2 | 79.6% | 48.0% | 51.0% vs. 19.6% | 24.5% vs. 3.9% | 9% vs. 2% | 12.4 vs. 6.9 m |
ALCYONE [51] | Dara-VMP vs. VMP | NCT02195479 | III | TI NDMM | 350/356 | 0 | NAP | NAP | 71.1% vs. 49.7% | 42.6% vs. 24.4% | 22.3% vs. 6.2% | 36.4 vs. 19.3 m |
MAIA [53] | Dara-Rd vs. Rd | NCT02252172 | III | TI NDMM | 368/369 | 0 | NAP | NAP | 79.3% vs. 53.1% | 47.6% vs. 24.9% | 24.2% vs. 7.30 | NR vs. 34 m |
CASSIOPEIA [55] | Dara-VTD VTD | NCT02541383 | III | TE NDMM | 543/542 | 0 | NAP | NAP | 83% vs. 78% | 39% vs. 26% | 64% vs. 44% | NR vs. NR |
GRIFFIN [57] | Dara-VRD vs. VRD | NCT02874742 | III | TE NDMM | 104/103 | 0 | NAP | NAP | 90.9% vs. 73.2% | 51.5% vs. 42.3% | 51% vs. 20.4% | NR vs. NR |
[27] | Isa, Isa-D | NCT01084252 | I/II | RRMM | 109/55 | 4 | 70.6% and 61.8% | 65.1% and 67.3% | 9.2% and 20% | 0% | 0% | 4.9 and 10.2 m |
ICARIA [37] | Isa-Pd vs. Pd | NCT02990338 | III | RRMM | 154/153 | 3 | 94.0% vs. 92.0% | 77% vs. 75% | 32.0% vs. 9.0% | 5% vs. 1% | 5% vs. 0% | 11.5 vs. 6.5 m |
Study | NCT Number | Phase | Regimen | Population | Enrollment Estimate | Status |
---|---|---|---|---|---|---|
PERSEUS [59] | NCT03710603 | III | Dara-VRD + ASCT + Dara-VRD consolidation + Dara-R maintenance vs. VRD + ASCT + VRD consolidation + R maintenance | TE NDMM | 690 | Recruitment completed |
EMN18 | NCT03896737 | II | Dara-VCD + 1-2x ASCT + Dara-VCD consolidation vs. VTD + 1-2x ASCT + VTD consolidation + 2nd R maintenance Ixa vs. Dara-Ixa | TE NDMM | 400 | Recruiting |
EMN24 (ISKIA) | NCT04483739 | III | Isa-KRD + ASCT + Isa-KRD consolidation vs. KRD + ASCT + KRD consolidation | TE NDMM | 300 | Recruiting |
NCT02513186 | I | Isa-VCD and Isa-VRd | TI NDMM | 88 | Recruitment completed | |
IMROZ | NCT03319667 | III | Isa-VRd vs. VRd | TI NDMM | 475 | Recruitment completed |
NCT04083898 | I/II | Isa-Bendamustin-Prednisone | RRMM | 37 | Recruiting | |
NCT03194867 | I/II | Isa-celiplimab | RRMM | 109 | Recruitment completed | |
NCT04240054 | II | Isa-VCD | TE NDMM | 41 | Not yet recruiting | |
GMMG HD7 | NCT03617731 | III | Isa-VRD induction + R vs. Isa-R maintenance | TE NDMM | 662 | Not yet recruiting |
LIGHTHOUSE | NCT04649060 | III | Dara-melflufen | RRMM | 240 | Recruiting |
CONFIRM | NCT03836014 | III | Dara-R continuous vs. fixed 24 m duration | NDMM | 434 | Recruiting |
DARAZADEX [60] | NCT04407442 | II | Dara-Azacytidine | RRMM | 23 | Recruiting |
Study | IRR (Any Grade) | Thrombocytopenia (Grade 3 + 4) | Neutropenia (Grade 3 + 4) | Infection (Grade 3 + 4) | Pneumonia (Grade 3 + 4) |
---|---|---|---|---|---|
POLLUX (Dara-Rd, NDMM) | 47.7% | 12.7% | 51.9% | 28.3% | 7.8% |
CASTOR (Dara-Vd, RRMM) | 45.3% | 45.3% | 12.8% | 21.4% | 8.2% |
APOLLO (Dara-Pd, RRMM) | 6% (s.c.) | NR | 68.0% | NR | 13.0% |
ALCYONE (Dara-VMP, NDMM) | 27.7% | 34.4% | 39.9% | 23.1% | 11.3% |
MAIA (Dara-Rd, NDMM) | 40.9% | NR | 50.0% | 32.1% | 13.7% |
CASSIOPEIA (Dara-VTD, NDMM) | 35.0% | 11.0% | 28.0% | 22.0% | 4.0% |
GRIFFIN (Dara-VRd, NDMM) | 42.4% | 16.2% | 41.4% | 23.2% | 8.1% |
ICARIA (Isa-Pd, RRMM) | 38.0% | 16.0% | 61.0% | NR | 16.0% |
CANDOR (Dara-Kd, RRMM) | 40.9% | 24.0% | 9.0% | 29.0% | 12.0% |
IKEMA (Isa-Kd, RRMM) | 44.6% | 19.2% | 23.8% | NR | 32.2% |
Study Regimen | NCT Number | Phase | Population | No. of Patients | m PL | Len Refractory | Bort Refractory | IRR % (Any Grade) | ≥VGPR | ≥CR | PFS |
---|---|---|---|---|---|---|---|---|---|---|---|
Elotuzumab [93] | NCT00425347 | I | RRMM | 35 | 5 | 82.4% exposed | 82.4% exposed | 58.8% | 0 | 0 | NA |
Elo-Rd vs. Rd (ELOQUENT-2) [94] | NCT01239797 | III | RRMM | 321/325 | 2 | 0% | 22% vs. 21% | 10% | 33% vs. 28% | 4% vs. 7% | 19.4 vs. 14.9 m |
Elo-Pd vs. Pd (ELOQUENT-3) [96] | NCT02654132 | II | RRMM | 60/57 | 3 | 90% vs. 84% | 78% vs. 82% | 5% | 20% vs. 9% | 8% vs. 2% | 10.3 vs. 4.7 m |
Elo-Vd vs. Vd [100] | NCT01478048 | II | RRMM | 77/75 | 1-3 | NR | 0% | 5% | 37% vs. 27% | 4% vs. 4% | 9.7 vs. 6.9 m |
Study Regimen | NCT Number | Phase | Population | Enrollment Estimate | Status |
---|---|---|---|---|---|
Elo-Pd + 2nd ASCT | NCT03030261 | II | RRMM | 40 | Recruiting |
Elo-KRd | NCT02969837 | II | NDMM | 55 | Recruiting |
Elo-Rd + ASCT | NCT02843074 | II | TE NDMM | 55 | Completed |
Elo-VRd vs. VRd [98] | NCT01668719 | II | TI NDMM | 100 | Completed |
Elo-VRd + ASCT (GMMG-HD6) [101] | NCT02495922 | III | TE NDMM | 564 | Completed |
Name | Phase | NCT Number | Target Patients | Population | |
---|---|---|---|---|---|
DREAMM-3 | III | Belantamab mafodotin + Pd | NCT04162210 | 380 | RRMM |
DREAMM-4 | I/II | Belantamab mafodotin 2.5/3.4 mg/kg+ pembrolizumab | NCT03848845 | 40 | RRMM |
DREAMM-5 | I/II | Belantamab mafodotin | NCT04126200 | 464 | RRMM |
DREAMM-6 | II | Belantamab mafodotin + Rd of +Vd | NCT04246047 | 123 | RRMM |
DREAMM-7 | III | Belantamab mafodotin + Vd vs. Dara-Vd | NCT04246047 | 478 | RRMM |
DREAMM-8 | III | Belantamab mafodotin + Pd vs. PVd | NCT04484623 | 450 | RRMM |
DREAMM-9 | III | VRD +/- belantamab mafodotin | NCT04091126 | 810 | TI NDMM |
DREAMM-12 | I | Belantamab mafodotin safety in renal impairment | NCT04398680 | 40 | RRMM |
DREAMM-13 | I | Belantamab mafodotin safety in hepatic impariment | NCT04177823 | 40 | RRMM |
Drug | NCT Number | Phase | Target | Payload | Mechanism of Action | No. of Patients | Prior Lines | ORR | Major Toxicities |
---|---|---|---|---|---|---|---|---|---|
Belantamab mafodotin (DREAMM-1) [110] | NCT02064387 | I | BCMA | MMAF | Tubulin inhibitor | 35 | 5 | 60% | Thrombocytopenia, corneal events |
Belantamab mafodotin (DREAMM-2) [112] | NCT03525678 | II | BCMA | MMAF | Tubulin inhibitor | 97/99 | 6/7 | 31%/ 35% | Thrombocytopenia, corneal events |
AMG224 [115] | NCT02561962 | I | BCMA | Mertansine | Tubulin inhibitor | 29/11 | 7 | 21%/ 27% | Thrombocytopenia, fatigue, musculoskeletal pain, myalgia |
MEDI2228 [116] | NCT03489525 | I | BCMA | Pyrrolobenzodiazepine dimer | DNA damage | 82 | 2–11 lines | 61.0% | Photophobia, thrombocytopenia, rash |
Indatuximab-ravtansine [117] | NCT01001442 | I | CD138 | DM4 | Tubulin inhibitor | 35 | 7 | 6% | Diarrhea, fatigue, nausea |
Indatuximab-ravtansine+Rd or+Poma-dex [118] | NCT01638936 | I | CD138 | DM4 | Tubulin inhibitor | 64 | 1–6 lines | 77%/ 79% | Diarrhea, fatigue, and nausea |
Lorvotuzumab-mertansine [119] | NCT00991562 | I | CD56 | DM1 | Tubulin inhibitor | 37 | 1–6 lines | 6% | Neuropathy |
Drug | NCT Number | Phase | Target | Payload | Mechanism of Action |
---|---|---|---|---|---|
CC-99712 | NCT04036461 | I | BCMA | Maytansinoid | Microtubule inhibitor |
TAK-169 [120] | NCT04017130 | I | CD38 | Shiga-like toxin A subunit | Ribosome inactivation |
TAK-573 [121] | NCT03215030 | I | CD38 | Attenuated interferon-α | Direct antiproliferative |
STRO-001 | NCT03424603 | I | CD74 | Maytansinoid | Microtubule inhibitor |
HDP-101 [122] | preclinical | I | BCMA | Amanitin | RNA polymerase II inhibitor |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radocha, J.; van de Donk, N.W.C.J.; Weisel, K. Monoclonal Antibodies and Antibody Drug Conjugates in Multiple Myeloma. Cancers 2021, 13, 1571. https://doi.org/10.3390/cancers13071571
Radocha J, van de Donk NWCJ, Weisel K. Monoclonal Antibodies and Antibody Drug Conjugates in Multiple Myeloma. Cancers. 2021; 13(7):1571. https://doi.org/10.3390/cancers13071571
Chicago/Turabian StyleRadocha, Jakub, Niels W. C. J. van de Donk, and Katja Weisel. 2021. "Monoclonal Antibodies and Antibody Drug Conjugates in Multiple Myeloma" Cancers 13, no. 7: 1571. https://doi.org/10.3390/cancers13071571
APA StyleRadocha, J., van de Donk, N. W. C. J., & Weisel, K. (2021). Monoclonal Antibodies and Antibody Drug Conjugates in Multiple Myeloma. Cancers, 13(7), 1571. https://doi.org/10.3390/cancers13071571