HPVE6-USP46 Mediated Cdt2 Stabilization Reduces Set8 Mediated H4K20-Methylation to Induce Gene Expression Changes
Abstract
:Simple Summary
Abstract
1. Introduction
2. Results
2.1. E6-USP46 Mediated Stabilization of Cdt2 Leads to Set8 Degradation and Loss of H4K20 Methylation in HPV Positive Cancers
2.2. E6-USP46 Mediated Set8 Downregulation Is Required for Induction of EGFR and a Subset of Its Target Genes
2.3. Recombinant HPV-E6 Activates Enzymatic Activity of USP46 In-Vitro
2.4. Multiple Domains of Cdt2 Protein Are Required for Its stabilization by E6-USP46 Complex
3. Discussion
4. Materials and Methods
4.1. Cell Culture
4.2. Cell Cycle Synchronization following HPV-E6 Depletion and Overexpression
4.3. Immunohistochemistry
4.4. Immunoblotting
4.5. Purification of the Recombinant E6, USP46 and UAF1 Proteins
4.6. Deubiqutination Assay
4.7. Cdt2 Deletion Constructs
4.8. Total RNA Isolation, cDNA Synthesis and qPCR
4.9. RNA Seq Sample and Library Preparation
4.10. mRNA Sequencing Analysis
4.11. Chromatin Immunoprecipitation Sequencing Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Martel, C.; Plummer, M.; Vignat, J.; Franceschi, S. Worldwide burden of cancer attributable to HPV by site, country and HPV type. Int. J. Cancer 2017, 141, 664–670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bedell, M.A.; Jones, K.H.; Grossman, S.R.; Laimins, L.A. Identification of human papillomavirus type 18 transforming genes in immortalized and primary cells. J. Virol. 1989, 63, 1247–1255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durst, M.; Gissmann, L.; Ikenberg, H.; Hausen, H.Z. A papillomavirus DNA from a cervical carcinoma and its prevalence in cancer biopsy samples from different geographic regions. Proc. Natl. Acad. Sci. USA 1983, 80, 3812–3815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yim, E.-K.; Park, J.-S. The role of HPV E6 and E7 oncoproteins in HPV-associated cervical carcinogenesis. Cancer Res. Treat. 2005, 37, 319–324. [Google Scholar] [CrossRef] [Green Version]
- Crook, T.; Vousden, K.H.; Tidy, J.A. Degradation of p53 can be targeted by HPV E6 sequences distinct from those required for p53 binding and trans-activation. Cell 1991, 67, 547–556. [Google Scholar] [CrossRef]
- Phelps, W.C.; Yee, C.L.; Munger, K.; Howley, P.M. The human papillomavirus type 16 E7 gene encodes transactivation and trans-formation functions similar to those of adenovirus E1A. Cell 1988, 53, 539–547. [Google Scholar] [CrossRef]
- Bedell, M.A.; Jones, K.H.; A Laimins, L. The E6-E7 region of human papillomavirus type 18 is sufficient for transformation of NIH 3T3 and rat-1 cells. J. Virol. 1987, 61, 3635–3640. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, S.; Kanda, T.; Yoshiike, K. Human papillomavirus type 16 transformation of primary human embryonic fibroblasts requires expression of open reading frames E6 and E7. J. Virol. 1989, 63, 965–969. [Google Scholar] [CrossRef] [Green Version]
- Sedman, S.A.; Barbosa, M.S.; Vass, W.C.; Hubbert, N.L.; Haas, J.A.; Lowy, D.R.; Schiller, J.T. The full-length E6 protein of human pap-illomavirus type 16 has transforming and trans-activating activities and cooperates with E7 to immortalize keratinocytes in culture. J. Virol. 1991, 65, 4860–4866. [Google Scholar] [CrossRef] [Green Version]
- Munger, K.; Phelps, W.C.; Bubb, V.; Howley, P.; Schlegel, R. The E6 and E7 genes of the human papillomavirus type 16 together are necessary and sufficient for transformation of primary human keratinocytes. J. Virol. 1989, 63, 4417–4421. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, E.; Freese, U.K.; Gissmann, L.; Mayer, W.; Roggenbuck, B.; Stremlau, A.; Hausen, H.Z. Structure and transcription of human papillomavirus sequences in cervical carcinoma cells. Nat. Cell Biol. 1985, 314, 111–114. [Google Scholar] [CrossRef]
- Gu, W.; Putral, L.N.; Hengst, K.; Minto, K.; Saunders, N.; Leggatt, G.; McMillan, N.A.J. Inhibition of cervical cancer cell growth in vitro and in vivo with lentiviral-vector delivered short hairpin RNA targeting human papillomavirus E6 and E7 oncogenes. Cancer Gene Ther. 2006, 13, 1023–1032. [Google Scholar] [CrossRef]
- Tan, T.M.C.; Ting, R.C.Y. In Vitro and in Vivo Inhibition of Human Papillomavirus Type 16 E6 and E7 Genes. Cancer Res. 1995, 55, 4599–4605. [Google Scholar]
- Yamato, K.; Yamada, T.; Kizaki, M.; Ui-Tei, K.; Natori, Y.; Fujino, M.; Nishihara, T.; Ikeda, Y.; Nasu, Y.; Saigo, K.; et al. New highly potent and specific E6 and E7 siRNAs for treatment of HPV16 positive cervical cancer. Cancer Gene Ther. 2007, 15, 140–153. [Google Scholar] [CrossRef] [Green Version]
- Kiran, S.; Dar, A.; Singh, S.K.; Lee, K.Y.; Dutta, A. The Deubiquitinase USP46 Is Essential for Proliferation and Tumor Growth of HPV-Transformed Cancers. Mol. Cell 2018, 72, 823–835.e5. [Google Scholar] [CrossRef] [Green Version]
- Ohashi, M.; Holthaus, A.M.; Calderwood, M.A.; Lai, C.Y.; Krastins, B.; Sarracino, D.; Johannsen, E. The EBNA3 Family of Epstein-Barr Virus Nuclear Proteins Associates with the USP46/USP12 Deubiquitination Complexes to Regulate Lympho-blastoid Cell Line Growth. PLoS Pathog. 2015, 11, e1004822. [Google Scholar] [CrossRef]
- Lehoux, M.; Gagnon, D.; Archambault, J. E1-Mediated Recruitment of a UAF1-USP Deubiquitinase Complex Facilitates Human Papillomavirus DNA Replication. J. Virol. 2014, 88, 8545–8555. [Google Scholar] [CrossRef] [Green Version]
- Dahlberg, C.L.; Juo, P. The WD40-repeat Proteins WDR-20 and WDR-48 Bind and activate the Deubiquitinating Enzyme USP-46 to promote the abundance of the Glutamate Receptor GLR-1 in the ventral Nerve Cord of Caenorhabditis elegans. J. Biol. Chem. 2014, 289, 3444–3456. [Google Scholar] [CrossRef] [Green Version]
- Yin, J.; Schoeffler, A.J.; Wickliffe, K.; Newton, K.; Starovasnik, M.A.; Dueber, E.C.; Harris, S.F. Structural Insights into WD-Repeat 48 Activation of Ubiquitin-Specific Protease 46. Structure 2015, 23, 2043–2054. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Zapien, D.; Ruiz, F.X.; Poirson, J.; Mitschler, A.; Ramirez, J.; Forster, A.; Cousido-Siah, A.; Masson, M.; Vande Pol, S.; Podjarny, A.; et al. Structure of the E6/E6AP/p53 complex required for HPV-mediated degradation of p53. Nature 2016, 529, 541–545. [Google Scholar] [CrossRef] [Green Version]
- Zanier, K.; Ruhlmann, C.; Melin, F.; Masson, M.; Ould M’hamed Ould Sidi, A.; Bernard, X.; Fischer, B.; Brino, L.; Ristriani, T.; Rybin, V.; et al. E6 Proteins from Diverse Papillomaviruses Self-Associate Both In Vitro and In Vivo. J. Mol. Biol. 2010, 396, 90–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pesavento, J.; Yang, H.; Kelleher, N.L.; Mizzen, C.A. Certain and Progressive Methylation of Histone H4 at Lysine 20 during the Cell Cycle. Mol. Cell. Biol. 2008, 28, 468–486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jørgensen, S.; Schotta, G.; Sørensen, C.S. Histone H4 Lysine 20 methylation: Key player in epigenetic regulation of genomic integrity. Nucleic Acids Res. 2013, 41, 2797–2806. [Google Scholar] [CrossRef] [PubMed]
- Uhlén, M.; Fagerberg, L.; Hallström, B.M.; Lindskog, C.; Oksvold, P.; Mardinoglu, A.; Sivertsson, Å.; Kampf, C.; Sjöstedt, E.; Asplund, A.; et al. Tissue-based map of the human proteome. Science 2015, 347, 9203. [Google Scholar] [CrossRef]
- Nikolaou, K.; Moulos, P.; Harokopos, V.; Chalepakis, G.; Talianidis, I. Kmt5a Controls Hepatic Metabolic Pathways by Facil-itating RNA Pol II Release from Promoter-Proximal Regions. Cell Rep. 2017, 20, 909–922. [Google Scholar] [CrossRef] [Green Version]
- Dunham, I.; Kundaje, A.; Aldred, S.F.; Collins, P.J.; Davis, C.A.; Doyle, F.; Epstein, C.B.; Frietze, S.; Harrow, J.; Kaul, R. An integrated encyclopedia of DNA elements in the human genome. Nature 2012, 489, 57–74. [Google Scholar]
- Amit, I.; Citri, A.; Shay, T.; Lu, Y.; Katz, M.; Zhang, F.; Tarcic, G.; Siwak, D.; Lahad, J.; Jacob-Hirsch, J.; et al. A module of negative feedback regulators defines growth factor signaling. Nat. Genet. 2007, 39, 503–512. [Google Scholar] [CrossRef]
- Hoppe-Seyler, K.; Bossler, F.; Braun, J.A.; Herrmann, A.L.; Hoppe-Seyler, F. The HPV E6/E7 Oncogenes: Key Factors for Viral Carcinogenesis and Therapeutic Targets. Trends Microbiol. 2018, 26, 158–168. [Google Scholar] [CrossRef]
- Estêvão, D.; Costa, N.R.; Gil da Costa, R.M.; Medeiros, R. Hallmarks of HPV carcinogenesis: The role of E6, E7 and E5 onco-proteins in cellular malignancy. Biochim. Biophys. Acta Gene Regul. Mech. 2019, 1862, 153–162. [Google Scholar] [CrossRef]
- Soonthornthum, T.; Arias-Pulido, H.; Joste, N.; Lomo, L.; Muller, C.; Rutledge, T.; Verschraegen, C. Epidermal growth factor receptor as a biomarker for cervical cancer. Ann. Oncol. 2011, 22, 2166–2178. [Google Scholar] [CrossRef]
- Iida, K.; Nakayama, K.; Rahman, M.; Ishikawa, M.; Katagiri, A.; Yeasmin, S.; Otsuki, Y.; Kobayashi, H.; Miyazaki, K. EGFR gene amplification is related to adverse clinical outcomes in cervical squamous cell carcinoma, making the EGFR pathway a novel therapeutic target. Br. J. Cancer 2011, 105, 420–427. [Google Scholar] [CrossRef]
- Parida, S.; Pal, I.; Parekh, A.; Thakur, B.; Bharti, R.; Das, S.; Mandal, M. GW627368X inhibits proliferation and induces apoptosis in cervical cancer by interfering with EP4/EGFR interactive signaling. Cell Death Dis. 2016, 7, e2154. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Srirangam, A.; Potter, D.A.; Roman, A. HPV16 E5 protein disrupts the c-Cbl–EGFR interaction and EGFR ubiqui-tination in human foreskin keratinocytes. Oncogene 2005, 24, 2585–2588. [Google Scholar] [CrossRef] [Green Version]
- Straight, S.W.; Hinkle, P.M.; Jewers, R.J.; McCance, D.J. The E5 oncoprotein of human papillomavirus type 16 transforms fibroblasts and effects the downregulation of the epidermal growth factor receptor in keratinocytes. J. Virol. 1993, 67, 4521–4532. [Google Scholar] [CrossRef] [Green Version]
- Abbas, T.; Mueller, A.C.; Shibata, E.; Keaton, M.; Rossi, M.; Dutta, A. CRL1-FBXO11 Promotes Cdt2 Ubiquitylation and Degradation and Degradation and Regulates Pr-Set7/Set8-Mediated Cellular Migration. Mol Cell. 2013, 49, 1147–1158. [Google Scholar] [CrossRef] [Green Version]
- Fischer, E.S.; Scrima, A.; Böhm, K.; Matsumoto, S.; Lingaraju, G.M.; Faty, M.; Yasuda, T.; Cavadini, S.; Wakasugi, M.; Hanaoka, F.; et al. The molecular basis of CRL4DDB2/CSA ubiquitin ligase architecture, targeting, and acti-vation. Cell 2011, 147, 1024–1039. [Google Scholar] [CrossRef] [Green Version]
- Qi, D.; Scholthof, K.B.G. A one-step PCR-based method for rapid and efficient site-directed fragment deletion, insertion, and substitution mutagenesis. J. Virol. Methods 2008, 149, 85–90. [Google Scholar] [CrossRef]
- Bray, N.L.; Pimentel, H.; Melsted, P.; Pachter, L. Erratum: Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 2016, 34, 888. [Google Scholar] [CrossRef] [Green Version]
- Soneson, C.; Love, M.I.; Robinson, M.D. Differential analyses for RNA-seq: Transcript-level estimates improve gene-level in-ferences. F1000Research 2016, 4, 1521. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [Green Version]
- Korotkevich, G.; Sukhov, V.; Budin, N.; Shpak, B.; Maxim, N.A.; Sergushichev, A. Fast Gene Set En-richment Analysis. bioRxiv 2021. [Google Scholar] [CrossRef] [Green Version]
- Benamar, M.; Guessous, F.; Du, K.; Corbett, P.; Obeid, J.; Gioeli, D.; Slingluff, C.L.; Abbas, T. Inactivation of the CRL4-CDT2-SET8/p21 ubiquitylation and degradation axis underlies the therapeutic efficacy of pevonedistat in melanoma. EBioMedicine 2016, 10, 85–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiran, S.; Wilson, B.; Saha, S.; Graff, J.A.; Dutta, A. HPVE6-USP46 Mediated Cdt2 Stabilization Reduces Set8 Mediated H4K20-Methylation to Induce Gene Expression Changes. Cancers 2022, 14, 30. https://doi.org/10.3390/cancers14010030
Kiran S, Wilson B, Saha S, Graff JA, Dutta A. HPVE6-USP46 Mediated Cdt2 Stabilization Reduces Set8 Mediated H4K20-Methylation to Induce Gene Expression Changes. Cancers. 2022; 14(1):30. https://doi.org/10.3390/cancers14010030
Chicago/Turabian StyleKiran, Shashi, Briana Wilson, Shekhar Saha, Julia Ann Graff, and Anindya Dutta. 2022. "HPVE6-USP46 Mediated Cdt2 Stabilization Reduces Set8 Mediated H4K20-Methylation to Induce Gene Expression Changes" Cancers 14, no. 1: 30. https://doi.org/10.3390/cancers14010030
APA StyleKiran, S., Wilson, B., Saha, S., Graff, J. A., & Dutta, A. (2022). HPVE6-USP46 Mediated Cdt2 Stabilization Reduces Set8 Mediated H4K20-Methylation to Induce Gene Expression Changes. Cancers, 14(1), 30. https://doi.org/10.3390/cancers14010030