Soybean Protein Extraction by Alcalase and Flavourzyme, Combining Thermal Pretreatment for Enteral Feeding Product
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Soybean
2.1.2. Enzyme and Reagent
2.2. Methods
2.2.1. Preparation of Soybean Protein Hydrolysate
2.2.2. Enzymatic Hydrolysis of Soybean
- -
- Process 1: only enzymatic hydrolysis
- -
- Process 2: the combination of thermal treatment and enzymatic hydrolysis.
2.2.3. Enzyme Activity Determination
2.2.4. Molecular Mass Distribution
2.2.5. Statistical Analysis
3. Results and Discussion
3.1. Enzyme Selection for Soybean Hydrolysis
3.2. Single Factor Analysis for the Soluble Protein Extraction by Flavourzyme without Thermal Pre-Treatment
3.2.1. Soybean/Water Ratio (w/w)
3.2.2. Enzyme Content
3.2.3. pH
3.2.4. Hydrolysis Temperature
3.2.5. Hydrolysis Duration
3.3. Single Factor Analysis for the Soluble Protein Extraction Using Thermal Treatment and Enzymatic Hydrolysis
3.3.1. Duration of Thermal Pre-Treatment of Soybean
3.3.2. Comparison of the SPRE in the Enzymatic Hydrolysis with and without Thermal Treatment
3.3.3. Beans/Water Ratio
3.3.4. Enzyme Content
3.3.5. pH
3.3.6. Hydrolysis Temperature
3.3.7. Hydrolysis Duration
3.4. Optimizing Protein Hydrolysis
3.4.1. Flavourzyme-Catalyzed Hydrolysis
3.4.2. Alcalase-Catalyzed Hydrolysis
3.5. Evaluating the Quality of Hydrolyzed Soup at Optimal Conditions
3.5.1. Molecular Mass Distribution
3.5.2. Amino Acids Determination
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Korhonen, H.; Pihlanto, A. Food-derived bioactive peptides opportunities for designing future foods. Food Res. Dev. 2003, 9, 1297–1308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kilara, A.; Panyam, D. Peptides from milk proteins and their properties. Crit. Rev. Food Sci. Nutr. 2003, 43, 607–633. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, R.; Meisel, H. Food-derived peptides with biogogical activity: From research to food applications. Curr. Opin. Biotechnol. 2007, 18, 103–109. [Google Scholar] [CrossRef]
- Siemensma, A.; Weijer, W.; Bak, H. The important of peptide lengths in hypoallergenic infant formulae. Trends Food Sci. Technol. 1993, 4, 16–21. [Google Scholar] [CrossRef]
- Grimble, G.; Rees, R.; Keohane, P.; Cartwright, T.; Desreumaux, M.; Silk, D. Effects of peptide chain length on absorption of egg protein hydrolysates in the normal human jejunum. Gastroenterology 1987, 92, 136–142. [Google Scholar] [CrossRef]
- Levine, A.; Labuza, T.; Morley, J. Food technology: A Primer for physicians. N. Engl. J. Med. 1985, 312, 628–634. [Google Scholar] [CrossRef]
- Scheppach, W.; Burghardt, W.; Bartram, P.; Kasper, H. Addition of dietary fiber to liquid formula diets: The pros and cons. J. Parenter. Enter. Nutr. 1990, 14, 204–209. [Google Scholar] [CrossRef]
- Kapadia, S.A.; Raimundo, A.H.; Grimble, G.K.; Aimer, P.; Silk, D.B.A. Influence of three different fibre supplemented enteral diets on bowel function and short-chain fatty acid production. J. Parenter. Enter. Nutr. 1995, 19, 63–68. [Google Scholar] [CrossRef]
- Lien, K.A.; McBurney, M.I.; Beyde, B.I.; Thompson, A.B.R.; Sauer, W.C. Ileal recovery of nutrients and mucinin humans fed total enteral formulas supplemented with soy fibren. Am. J. Clin. Nutr. 1996, 63, 584–595. [Google Scholar] [CrossRef] [Green Version]
- Rays, N.; Seehofer, D.; Theruvath, T.; Schiller, R.A.; Langrehr, J.; Jonas, S.; Bengmark, S.; Neuhaus, P. Supply of pre-and probiotics reduces bacterial infection rates after liver transplantation a randomized, double-blindtrial. Am. J. Transplant. 2005, 5, 125. [Google Scholar] [CrossRef]
- Frankenfield, D.; Beyer, P. Soy polysaccharide effect on diarrhoea in tube-fed, head injured patients. Am. J. Clin. Nutr. 1989, 50, 553–558. [Google Scholar] [CrossRef] [PubMed]
- Aaslyng, M.D.; Larsen, L.M.; Nielsen, P.M. Development of chemical and sensory characteristics during enzymatic hydrolysis of soy. Zeitschrift Für Lebensmitteluntersuchung Und-Forschung A 1999, 208, 50–56. [Google Scholar] [CrossRef]
- Liaset, B.; Julshamn, K.; Espe, M. Chemical composition and theoretical nutritional evaluation of the produced fractions from enzymic hydrolysis of salmon frames with ProtamexTM. Process Biochem. 2003, 38, 1747–1759. [Google Scholar] [CrossRef]
- Kristinsson, H.G.; Rasco, B.A. Fish protein hydrolysates: Production, biochemical, and functional properties. Crit. Rev. Food Sci. Nutr. 2000, 40, 43–81. [Google Scholar] [CrossRef] [PubMed]
- Mæhre, H.; Dalheim, L.; Edvinsen, G.; Elvevoll, E.; Jensen, I.J. Protein determination—Method matters. Foods 2018, 7, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bigio, I.J.; Mourant, J.R. Ultraviolet and visible spectroscopies for tissue diagnostics: Fluorescence spectroscopy and elastic-scatterin spectroscopy. Phys. Med. Biol. 1997, 40, 803. [Google Scholar] [CrossRef]
- Ouano, A.C.; Gel-permeation chromatography. VII. Molecular weight de- tection of GPC effluents. J. Polym. Sci. Part A Polym. Chem. 1972, 10, 2169–2180. [Google Scholar] [CrossRef]
- Seo, W.H.; Lee, H.G.; Baek, H.H. Evaluation of bitterness in enzymatic hydrolysates of soy protein isolate by taste dilution analysis. J. Food Sci. 2008, 73, S41–S46. [Google Scholar] [CrossRef]
- Meinlschmidt, P.; Schweiggert-Weisz, U.; Eisner, P. Soy protein hydrolysates fermentation: Effect of debittering and degradation of major soy allergens. LWT Food Sci. Technol. 2016, 71, 202–212. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, L.; Sun, X.; Zhang, J.; Wang, J.; Li, Y. Study on hydrolysis conditions of flavourzyme in soybean polypeptide alcalase hydrolysate and soybean polypeptide refining process. Adv. J. Food Sci. Technol. 2014, 6, 1027–1032. [Google Scholar] [CrossRef]
- See, S.F.; Hoo, L.L.; Babji, A.S. Optimization of enzymatic hydrolysis of Salmon (Salmo salar) skin by Alcalase. Int. Food Res. J. 2011, 18, 1359–1365. [Google Scholar]
- Tran, T.N.; Tran, N.T.O. Optimization of the processing of basa fish blood. Med. Res. Ho Chi Minh City 2013, 15, 5. [Google Scholar]
- Amiza, M.A.; Ashikin, S.N.; Faazaz, A.L. Optimization of enzymatic protein hydrolysis from silver catfish (Pangasius sp.) frame. Int. Food J. 2011, 18, 775–781. [Google Scholar]
- Hodge, L.; Swain, A.; Faulkner-Hogg, K. Food allergy and intolerance. Aust. Fam. Physician 2009, 38, 705. [Google Scholar]
- Zopf, Y.; Baenkler, H.-W.; Silbermann, A.; Hahn, E.G.; Raithel, M. The differential diagnosis of food intolerance. Dtsch. Arztebl. Int. 2009, 106, 359. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Lee, H.D.; Lee, C.H. Characterization of hydrolysates produced by mild-acid treatment and enzymatic hydrolysis of defatted soybean flour. Food Res. Int. 2001, 34, 217–222. [Google Scholar] [CrossRef]
- Hao, X. Orthogonal test methods applications on testing designs. Sci. Technol. Henan Commun. 1999, 6, 20–22. [Google Scholar]
- Gunst, R.F. Response surface methodology: Process and product optimization using designed experiments. Technometrics 1996, 38, 284–286. [Google Scholar] [CrossRef]
- Zhang, H.F.; Yang, X.H.; Zhao, L.D.; Wang, Y. Ultrasonic-assisted extraction of epimedin C from fresh leaves of Epimedium and extraction mechanism. Innov. Food Sci. Emerg. Technol. 2009, 10, 54–56. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, Q.; Wang, Y.; Cen, Y. Optimum extraction process of polysaccharides from Grateloupia filicina by orthogonal test. Food Sci. 2006, 2, 90–95. [Google Scholar]
- Bucher, C.; Bourgund, U. A fast and efficient response surface approach for structural reliability problems. Struct. Saf. 1990, 7, 57–66. [Google Scholar] [CrossRef]
- Box, G.E.P.; Draper, N.R. A basis for the selection of a response surface design. J. Am. Stat. Assoc. 1990, 54, 622–654. [Google Scholar] [CrossRef]
- Wangtueai, S.; Noomhorm, A. Processing optimization and charaterization of gelatin from lizardfish (Saurida spp.) scales. LWT Food Sci. Technol. 2009, 42, 825–834. [Google Scholar] [CrossRef]
- Abdi, H.; Dzung, N.H. Analysis of Experimental Data; Vietnam National University Publisher: Ho Chi Minh City, Vietnam, 2012. [Google Scholar]
- Zhang, M.N.; Huang, G.R.; Jiang, J.X. Iron binding capacity of dephytinised soy protein isolate hydrolysate as influenced by the degree of hydrolysis and enzyme type. J. Food Sci. Technol. 2014, 51, 994–999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dixit, A.; Antony, J.I.; Sharma, N.K.; Tiwari, R.K. Soybean constituents and their functional benefits. Opportunity, challenge and scope of natural products in medicinal chemistry. Res. Singpost 2011, 367–383. [Google Scholar]
- Kaur, M. Medical Foods from Natural Sources; Springer: New York, NY, USA, 2009. [Google Scholar]
- Casas-Augustench, P.; Salas-Salvado, J. Viscosity and flow-rate of three high-energy, high-fibre enteral nutrition formulas. Nutr. Hosp. 2009, 24, 492–497. [Google Scholar]
- Clemmesen, J.O.; Kondrup, J.; Ott, P. Splanchnic and leg exchange of amino acids and ammonia in acute liver failure. Gastroenterology 2000, 118, 1131–1139. [Google Scholar] [CrossRef]
- Plauth, M.; Cabré, E.; Riggio, O.; Assis-Camilo, M.; Pirlich, M.; Kondrup, J.; DGEM (German Society for Nutritional Medicine); Ferenci, P.; Holm, E.; Dahl, S.V.; et al. ESPEN Guidelines on Enteral Nutrition: Liver disease. Clin. Nutr. 2006, 25, 258–294. [Google Scholar] [CrossRef]
- Plauth, M.; Merli, M.; Kondrup, J.; Weimann, A.; Ferenci, P.; Muller, M.J. ESPEN guidelines for nutrition in liver disease and transplantation. Clin. Nutr. 1997, 16, 43–55. [Google Scholar] [CrossRef]
Enzyme | E/S (%) | pH | Temperature (°C) | Durations | Viscosity (cP) | SPRE (%) |
---|---|---|---|---|---|---|
Protamex | 0.96 | 7 | 55 | 180 | 13.4 ± 0.1 | 18.85 ± 0.11 |
Alcalase | 0.95 | 7 | 60 | 180 | 8.2 ± 0.1 | 29.62 ± 0.003 |
Flavourzyme | 7 mL·100 g−1 | 7 | 50 | 180 | 9.6 ± 0.1 | 58.79 ± 0.21 |
Method | SPRE (%) | Bean/Water (%) | Enzyme | pH | Temperature | Duration | PV |
---|---|---|---|---|---|---|---|
(1) | 52.57 ± 0.27 | 1/6 | 12.5 (mL·100 g−1) | 6.5 | 50 | 120 (min) | 4.6 |
(2) | 54.77 ± 0.22 | 1/6 | 12.5 (mL·100 g−1) | 6.5 | 50 | 180 (min) | 1.9 |
Parameter | −α | −1 | 0 | 1 | +α |
---|---|---|---|---|---|
Enzyme content (X1, mL·100 g−1) | 3 | 5 | 7 | 9 | 11 |
pH (X2) | 5.5 | 6.0 | 6.5 | 7.0 | 7.5 |
Hydrolysis temperature (X3, °C) | 40 | 45 | 50 | 55 | 60 |
Hydrolysis duration (X4, min) | 90 | 120 | 150 | 180 | 210 |
Water/beans ratio (X5, w/w) | 2.0 | 2.5 | 3.0 | 3.5 | 4.0 |
DF | SS | MS | F | P | SD | |
---|---|---|---|---|---|---|
Total | 33 | 87,396.4 | 2648.38 | |||
Constant | 1 | 86,142.4 | 86,142.4 | |||
Total corrected | 32 | 1254.04 | 39.1889 | 6.2601 | ||
Regression | 20 | 1233.39 | 61.6694 | 35.829 | 0.000 | 7.85299 |
Residual | 12 | 20.6546 | 1.72122 | 1.31195 | ||
Lack of Fit | 6 | 13.9706 | 2.32843 | 2.09015 | 0.196 | 1.52592 |
Pure Error | 6 | 6.68401 | 1.114 | 1.05546 | ||
N = 33 | Q2 = | 0.695 | Cond. no. = | 4.871 | ||
DF = 12 | R2 = | 0.984 | RSD = | 1.312 |
Parameter | −α | −1 | 0 | 1 | +α |
---|---|---|---|---|---|
Enzyme content (X1, mL·100 g−1 | 0.5 | 1.0 | 1.5 | 2.0 | 2.5 |
pH (X2) | 6.0 | 6.5 | 7.0 | 7.5 | 8.0 |
Hydrolysis temperature (X3, °C) | 45 | 50 | 55 | 60 | 65 |
Hydrolysis duration (X4, min) | 120 | 150 | 180 | 210 | 240 |
Water/beans (X5, w/w) | 3.5 | 4.0 | 4.5 | 5.0 | 6.0 |
Enzyme | Mw (kDa) | Mn (kDa) | D = Mw/Mn |
---|---|---|---|
Flavourzyme | 3.19 | 2.13 | 1.50 |
Alcalase | 1.52 | 0.623 | 2.43 |
Enzyme | Viscosity (cP) | SPRE (%) | Time Flows through the Inhaler |
---|---|---|---|
Flavourzyme | 7.9 | 61.98 | 10′20″ |
Alcalase | 12.2 | 40.93 | 8′11″ |
Amino Acid | Flavourzyme | Alcalase |
---|---|---|
Alanine | 0.51 | |
Glycine | 0.56 | 0.55 |
Valine | 0.28 | 0.46 |
Leucine | 0.94 | 0.96 |
Isoleucine | 0.25 | 0.44 |
Threonine | 0.40 | 0.44 |
Serine | 0.86 | 1.44 |
Proline | 0.82 | 0.85 |
Aspatic acid | 1.33 | 1.44 |
Methionine | 0.13 | 0.09 |
Tran-4-Hydroproline | 0.06 | 0.06 |
Glutamic acid | 1.64 | 1.89 |
Phenylalanine | 0.67 | 0.88 |
Lysine | 1.06 | 1.06 |
Histidine | 0.51 | 0.60 |
Tyrosine | 0.16 | 0.24 |
Cystine | 0.04 | 0.05 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anh, T.L.Q.; Hoa, N.T.Q.; Nguyen, P.D.T.; Thanh, H.V.; Nguyen, P.B.; Anh, L.T.H.; Dao, D.T.A. Soybean Protein Extraction by Alcalase and Flavourzyme, Combining Thermal Pretreatment for Enteral Feeding Product. Catalysts 2020, 10, 829. https://doi.org/10.3390/catal10080829
Anh TLQ, Hoa NTQ, Nguyen PDT, Thanh HV, Nguyen PB, Anh LTH, Dao DTA. Soybean Protein Extraction by Alcalase and Flavourzyme, Combining Thermal Pretreatment for Enteral Feeding Product. Catalysts. 2020; 10(8):829. https://doi.org/10.3390/catal10080829
Chicago/Turabian StyleAnh, Truong Le Que, Nguyen Thi Quynh Hoa, Pham Dinh Thanh Nguyen, Hoang Van Thanh, Pham Bao Nguyen, Le Thi Hong Anh, and Dong Thi Anh Dao. 2020. "Soybean Protein Extraction by Alcalase and Flavourzyme, Combining Thermal Pretreatment for Enteral Feeding Product" Catalysts 10, no. 8: 829. https://doi.org/10.3390/catal10080829
APA StyleAnh, T. L. Q., Hoa, N. T. Q., Nguyen, P. D. T., Thanh, H. V., Nguyen, P. B., Anh, L. T. H., & Dao, D. T. A. (2020). Soybean Protein Extraction by Alcalase and Flavourzyme, Combining Thermal Pretreatment for Enteral Feeding Product. Catalysts, 10(8), 829. https://doi.org/10.3390/catal10080829