Polar Head Modified Phospholipids by Phospholipase D-Catalyzed Transformations of Natural Phosphatidylcholine for Targeted Applications: An Overview
Abstract
:1. Introduction
2. Polar Head Modification
2.1. Natural PLs
2.1.1. Phosphatidylserine
2.1.2. Phosphatidylglycerol and Cardiolipin
2.1.3. Phosphatidylethanolamine
2.2. Synthetic PLs
2.2.1. 6-Phosphatidyl-l-Ascorbic Acid
2.2.2. Cyclic Hydroxylated Polar Head Phospholipids
2.2.3. Phosphatidylated Terpenes
2.2.4. Phosphatidyltyrosol
2.2.5. Phosphatidyl Saccharides
2.2.6. 1-Phosphatidyl-β-d-glucose
2.2.7. Phosphatidyl-Batyl Alcohol
2.2.8. Phosphatidylhydroxybutyrate
2.2.9. Phosphatidylpanthenol
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nickels, J.D.; Smith, J.C.; Cheng, X. Lateral organization, bilayer asymmetry, and inter-leaflet coupling of biological membranes. Chem. Phys. Lipids 2015, 192, 87–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dowhan, W.; Bogdanov, M.; Mileykovskaya, E. CHAPTER 1—Functional roles of lipids in membranes. In Biochemistry of Lipids, Lipoproteins and Membranes, 5th ed.; Vance, D.E., Vance, J.E., Eds.; Elsevier: San Diego, CA, USA, 2008; pp. 1–37. [Google Scholar] [CrossRef]
- Vance, D.E.; Vance, J.E. CHAPTER 8—Phospholipid biosynthesis in eukaryotes. In Biochemistry of Lipids, Lipoproteins and Membranes, 5th ed.; Vance, D.E., Vance, J.E., Eds.; Elsevier: San Diego, CA, USA, 2008; pp. 213–244. [Google Scholar] [CrossRef]
- Isabel, E.-S.; Arantxa, R.-C.; Susana, M.; Agustin, R.-G.; Jose, M.O.; de Ana Ramirez, M. Beneficial Effects of Bioactive Phospholipids: Genomic Bases. Curr. Nutr. Food Sci. 2011, 7, 145–154. [Google Scholar] [CrossRef]
- Falconi, M.; Ciccone, S.; D’Arrigo, P.; Viani, F.; Sorge, R.; Novelli, G.; Patrizi, P.; Desideri, A.; Biocca, S. Design of a novel LOX-1 receptor antagonist mimicking the natural substrate. Biochem. Biophys. Res. Commun. 2013, 438, 340–345. [Google Scholar] [CrossRef] [Green Version]
- Niezgoda, N.; Gliszczyñska, A.; Gladkowski, W.; Kempiñska, K.; Wietrzyk, J.; Wawrzeñczyk, C. Phosphatidylcholine with cis-9, trans-11 and trans-10, cis-12 Conjugated Linoleic Acid Isomers: Synthesis and Cytotoxic Studies. Aust. J. Chem. 2015, 68, 1065–1075. [Google Scholar] [CrossRef] [Green Version]
- D’Arrigo, P.; Scotti, M. Lysophospholipids: Synthesis and Biological Aspects. Curr. Org. Chem. 2013, 17, 812–830. [Google Scholar] [CrossRef]
- Küllenberg, D.; Taylor, L.A.; Schneider, M.; Massing, U. Health effects of dietary phospholipids. Lipids Health Dis. 2012, 11, 3. [Google Scholar] [CrossRef] [Green Version]
- Schverer, M.; O′Mahony, S.M.; O’Riordan, K.J.; Donoso, F.; Roy, B.L.; Stanton, C.; Dinan, T.G.; Schellekens, H.; Cryan, J.F. Dietary phospholipids: Role in cognitive processes across the lifespan. Neurosci. Biobehav. Rev. 2020, 111, 183–193. [Google Scholar] [CrossRef]
- Baldassarre, F.; Allegretti, C.; Tessaro, D.; Carata, E.; Citti, C.; Vergaro, V.; Nobile, C.; Cannazza, G.; D’Arrigo, P.; Mele, A.; et al. Biocatalytic Synthesis of Phospholipids and Their Application as Coating Agents for CaCO3 Nano–crystals: Characterization and Intracellular Localization Analysis. ChemistrySelect 2016, 1, 6507–6514. [Google Scholar] [CrossRef]
- Ishii, F.; Nii, T. Chapter 22—Lipid emulsions and lipid vesicles prepared from various phospholipids as drug carriers. In Colloid and Interface Science in Pharmaceutical Research and Development; Ohshima, H., Makino, K., Eds.; Elsevier: San Diego, CA, USA, 2014; pp. 469–501. [Google Scholar] [CrossRef]
- Khan, I.; Elhissi, A.; Shah, M.; Alhnan, M.A.; Ahmed, W. Liposome-based carrier systems and devices used for pulmonary drug delivery. In Biomaterials and Medical Tribology; Davim, J.P., Ed.; Woodhead Publishing: Cambridge, UK, 2013; pp. 395–443. [Google Scholar] [CrossRef]
- Li, J.; Wang, X.; Zhang, T.; Wang, C.; Huang, Z.; Luo, X.; Deng, Y. A review on phospholipids and their main applications in drug delivery systems. Asian J. Pharm. Sci. 2015, 10, 81–98. [Google Scholar] [CrossRef]
- Yadav, S.; Sharma, A.K.; Kumar, P. Nanoscale Self-Assembly for Therapeutic Delivery. Front. Bioeng. Biotechnol. 2020, 8. [Google Scholar] [CrossRef]
- Allen, T.M.; Cullis, P.R. Liposomal drug delivery systems: From concept to clinical applications. Adv. Drug Deliv. Rev. 2013, 65, 36–48. [Google Scholar] [CrossRef]
- Sercombe, L.; Veerati, T.; Moheimani, F.; Wu, S.Y.; Sood, A.K.; Hua, S. Advances and Challenges of Liposome Assisted Drug Delivery. Front. Pharmacol. 2015, 6. [Google Scholar] [CrossRef] [Green Version]
- Ozturk, B.; McClements, D.J. Progress in natural emulsifiers for utilization in food emulsions. Curr. Opin. Food Sci. 2016, 7, 1–6. [Google Scholar] [CrossRef]
- Koprivnjak, O.; Škevin, D.; Valić, S.; Majetić, V.; Petričević, S.; Ljubenkov, I. The antioxidant capacity and oxidative stability of virgin olive oil enriched with phospholipids. Food Chem. 2008, 111, 121–126. [Google Scholar] [CrossRef]
- Cui, L.; Decker, E.A. Phospholipids in foods: Prooxidants or antioxidants? J. Sci. Food Agric. 2016, 96, 18–31. [Google Scholar] [CrossRef] [PubMed]
- Zabielska-Koczywąs, K.; Lechowski, R. The Use of Liposomes and Nanoparticles as Drug Delivery Systems to Improve Cancer Treatment in Dogs and Cats. Molecules 2017, 22, 2167. [Google Scholar] [CrossRef] [Green Version]
- D’Arrigo, P.; Fasoli, E.; Pedrocchi-Fantoni, G.; Rossi, C.; Saraceno, C.; Tessaro, D.; Servi, S. A practical selective synthesis of mixed short/long chains glycerophosphocholines. Chem. Phys. Lipids 2007, 147, 113–118. [Google Scholar] [CrossRef]
- Gładkowski, W.; Chojnacka, A.; Kiełbowicz, G.; Trziszka, T.; Wawrzeńczyk, C. Isolation of Pure Phospholipid Fraction from Egg Yolk. J. Am. Oil Chem. Soc. 2012, 89, 179–182. [Google Scholar] [CrossRef]
- Weber, E.J. Compositions of commercial corn and soybean lecithins. J. Am. Oil Chem. Soc. 1981, 58, 898–901. [Google Scholar] [CrossRef]
- Robert, C.; Couëdelo, L.; Vaysse, C.; Michalski, M.-C. Vegetable lecithins: A review of their compositional diversity, impact on lipid metabolism and potential in cardiometabolic disease prevention. Biochimie 2020, 169, 121–132. [Google Scholar] [CrossRef]
- Klang, V.; Valenta, C. Lecithin-based nanoemulsions. J. Drug Deliv. Sci. Technol. 2011, 21, 55–76. [Google Scholar] [CrossRef]
- Gliszczyńska, A.; Niezgoda, N.; Gładkowski, W.; Świtalska, M.; Wietrzyk, J. Isoprenoid-phospholipid conjugates as potential therapeutic agents: Synthesis, characterization and antiproliferative studies. PLoS ONE 2017, 12, e0172238. [Google Scholar] [CrossRef] [PubMed]
- Eibl, H. Synthesis of glycerophospholipids. Chem. Phys. Lipids 1980, 26, 405–429. [Google Scholar] [CrossRef]
- Ali, S.; Bittman, R. Facile diacylation of glycidyl tosylate. Chiral synthesis of symmetric-chain glycerophospholipids. J. Org. Chem. 1988, 53, 5547–5549. [Google Scholar] [CrossRef]
- D’Arrigo, P.; Servi, S. Synthesis of Lysophospholipids. Molecules 2010, 15, 1354. [Google Scholar] [CrossRef] [Green Version]
- Lindberg, J.; Ekeroth, J.; Konradsson, P. Efficient Synthesis of Phospholipids from Glycidyl Phosphates. J. Org. Chem. 2002, 67, 194–199. [Google Scholar] [CrossRef]
- Fasoli, E.; Arnone, A.; Caligiuri, A.; D’Arrigo, P.; de Ferra, L.; Servi, S. Tin-mediated synthesis of lyso-phospholipids. Org. Biomol. Chem. 2006, 4, 2974–2978. [Google Scholar] [CrossRef]
- Massing, U.; Eibl, H. New optically pure dimethylacetals of glyceraldehydes and their application for lipid and phospholipid synthesis. Chem. Phys. Lipids 1995, 76, 211–224. [Google Scholar] [CrossRef]
- D’Arrigo, P.; De Ferra, L.; Piergianni, V.; Selva, A.; Servi, S.; Strini, A. Preparative transformation of natural phospholipids catalysed by phospholipase D from Streptomyces. J. Chem. Soc. Perkin Trans. 1 1996, 2651–2656. [Google Scholar] [CrossRef]
- Adlercreutz, P.; Virto, C.; Persson, M.; Vaz, S.; Adlercreutz, D.; Svensson, I.; Wehtje, E. Enzymatic conversions of polar lipids. Principles, problems and solutions. J. Mol. Catal. B Enzym. 2001, 11, 173–178. [Google Scholar] [CrossRef]
- Bornscheuer, U.T. Enzymes in Lipid Modification. Annu. Rev. Food Sci. Technol. 2018, 9, 85–103. [Google Scholar] [CrossRef] [PubMed]
- Anthonsen, T.; D’Arrigo, P.; Pedrocchi-Fantoni, G.; Secundo, F.; Servi, S.; Sundby, E. Phospholipids hydrolysis in organic solvents catalysed by immobilised phospholipase C. J. Mol. Catal. B Enzym. 1999, 6, 125–132. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, M.; Xu, W.; Zhang, W.; Zhang, T.; Guang, C.; Mu, W. Microbial phospholipase D: Identification, modification and application. Trends Food Sci. Technol. 2020, 96, 145–156. [Google Scholar] [CrossRef]
- Kolesnikov, Y.S.; Nokhrina, K.P.; Kretynin, S.V.; Volotovski, I.D.; Martinec, J.; Romanov, G.A.; Kravets, V.S. Molecular structure of phospholipase D and regulatory mechanisms of its activity in plant and animal cells. Biochem. Mosc. 2012, 77, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Bargmann, B.O.R.; Munnik, T. The role of phospholipase D in plant stress responses. Curr. Opin. Plant Biol. 2006, 9, 515–522. [Google Scholar] [CrossRef] [Green Version]
- Subileau, M.; Jan, A.-H.; Dubreucq, E. Chapter 3—Lipases/Acyltransferases for Lipid Modification in Aqueous Media. In Lipid Modification by Enzymes and Engineered Microbes; Bornscheuer, U.T., Ed.; AOCS Press: Urbana, IL, USA, 2018; pp. 45–68. [Google Scholar] [CrossRef]
- D’Arrigo, P.; Servi, S. Using phospholipases for phospholipid modification. Trends Biotechnol. 1997, 15, 90–96. [Google Scholar] [CrossRef]
- Cerminati, S.; Paoletti, L.; Aguirre, A.; Peirú, S.; Menzella, H.G.; Castelli, M.E. Industrial uses of phospholipases: Current state and future applications. Appl. Microbiol. Biotechnol. 2019, 103, 2571–2582. [Google Scholar] [CrossRef]
- Joensuu, M.; Wallis, T.P.; Saber, S.H.; Meunier, F.A. Phospholipases in neuronal function: A role in learning and memory? J. Neurochem. 2019, 153, e14918. [Google Scholar] [CrossRef]
- Servi, S. Phospholipases as synthetic catalysts. Top. Curr. Chem. 1999, 200, 127–158. [Google Scholar]
- D’Arrigo, P.; de Ferra, L.; Piergianni, V.; Ricci, A.; Scarcelli, D.; Servi, S. Phospholipase D from Streptomyces catalyses the transfer of secondary alcohols. J. Chem. Soc. Chem. Commun. 1994, 1709–1710. [Google Scholar] [CrossRef]
- Allegretti, C.; Bono, A.; D’Arrigo, P.; Denuccio, F.; De Simeis, D.; Di Lecce, G.; Serra, S.; Tessaro, D.; Viola, M. Valorization of Corn Seed Oil Acid Degumming Waste for Phospholipids Preparation by Phospholipase D-Mediated Processes. Catalysts 2020, 10, 809. [Google Scholar] [CrossRef]
- Carrea, G.; D’Arrigo, P.; Mazzotti, M.; Secundo, F.; Servi, S. On the kinetic mechanism of phospholipase D from Streptomyces SP. in an emulsion system. Biocatal. Biotransform. 1997, 15, 251–264. [Google Scholar] [CrossRef]
- Bossi, L.; D’Arrigo, P.; Pedrocchi-Fantoni, G.; Mele, A.; Servi, S.; Leiros, I. The substrate requirements of phospholipase D. J. Mol. Catal. B Enzym. 2001, 11, 433–438. [Google Scholar] [CrossRef]
- D’Arrigo, P.; Fasoli, E.; Pedrocchi-Fantoni, G.; Servi, S.; Tessaro, D. Membrane assisted coupled enzyme system for phospholipid modification. Enzym. Microb. Technol. 2005, 37, 435–440. [Google Scholar] [CrossRef]
- Secundo, F.; Carrea, G.; D’Arrigo, P.; Servi, S. Evidence for an Essential Lysyl Residue in Phospholipase D from Streptomyces sp. by Modification with Diethyl Pyrocarbonate and Pyridoxal 5-Phosphate. Biochemistry 1996, 35, 9631–9636. [Google Scholar] [CrossRef]
- Leiros, I.; Hough, E.; D’Arrigo, P.; Carrea, G.; Pedrocchi-Fantoni, G.; Secundo, F.; Servi, S. Crystallization and preliminary X-ray diffraction studies of phospholipase D from Streptomyces sp. Acta Crystallogr. Sect. D Biol. Crystallogr. 2000, 56, 466–468. [Google Scholar] [CrossRef]
- Carrea, G.; D’Arrigo, P.; Secundo, F.; Servi, S. Purification and applications of a phospholipase D from a new strain of Streptomyces. Biotechnol. Lett. 1997, 19, 1083–1085. [Google Scholar] [CrossRef]
- Carrea, G.; D’Arrigo, P.; Piergianni, V.; Roncaglio, S.; Secundo, F.; Servi, S. Purification and properties of two phospholipases D from Streptomyces sp. Biochim. Et Biophys. Acta Lipids Lipid Metab. 1995, 1255, 273–279. [Google Scholar] [CrossRef]
- Liu, X.; Shiihara, M.; Taniwaki, N.; Shirasaka, N.; Atsumi, Y.; Shiojiri, M. Phosphatidylserine: Biology, Technologies, and Applications. In Polar Lipids; Ahmad, M.U., Xu, X., Eds.; Elsevier: San Diego, CA, USA, 2015; pp. 145–184. [Google Scholar] [CrossRef]
- Juneja, L.R.; Kazuoka, T.; Goto, N.; Yamane, T.; Shimizu, S. Conversion of phosphatidylcholine to phosphatidylserine by various phospholipases D in the presence of l- or d-serine. Biochim. Biophys. Acta Lipids Lipid Metab. 1989, 1003, 277–283. [Google Scholar] [CrossRef]
- D’Arrigo, P.; Cerioli, L.; Chiappe, C.; Panzeri, W.; Tessaro, D.; Mele, A. Improvements in the enzymatic synthesis of phosphatidylserine employing ionic liquids. J. Mol. Catal. B Enzym. 2012, 84, 132–135. [Google Scholar] [CrossRef]
- Duan, Z.-Q.; Hu, F. Highly efficient synthesis of phosphatidylserine in the eco-friendly solvent γ-valerolactone. Green Chem. 2012, 14, 1581–1583. [Google Scholar] [CrossRef]
- Duan, Z.-Q.; Hu, F. Efficient synthesis of phosphatidylserine in 2-methyltetrahydrofuran. J. Biotechnol. 2013, 163, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Xu, L.; Li, Y.; Hao, N.; Yan, M. Bioconversion of Phosphatidylserine by Phospholipase D from Streptomyces racemochromogenes in a Microaqueous Water-Immiscible Organic Solvent. Biosci. Biotechnol. Biochem. 2013, 77, 1939–1941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, S.-L.; Duan, Z.-Q. Insight into enzymatic synthesis of phosphatidylserine in deep eutectic solvents. Catal. Commun. 2016, 82, 16–19. [Google Scholar] [CrossRef]
- Qin, W.; Wu, C.; Song, W.; Chen, X.; Liu, J.; Luo, Q.; Liu, L. A novel high-yield process of phospholipase D-mediated phosphatidylserine production with cyclopentyl methyl ether. Process Biochem. 2018, 66, 146–149. [Google Scholar] [CrossRef]
- Gregoriadis, G. Liposomes for drugs and vaccines. Trends Biotechnol. 1985, 3, 235–241. [Google Scholar] [CrossRef]
- Sakdiset, P.; Okada, A.; Todo, H.; Sugibayashi, K. Selection of phospholipids to design liposome preparations with high skin penetration-enhancing effects. J. Drug Deliv. Sci. Technol. 2018, 44, 58–64. [Google Scholar] [CrossRef] [Green Version]
- Hossann, M.; Wiggenhorn, M.; Schwerdt, A.; Wachholz, K.; Teichert, N.; Eibl, H.; Issels, R.D.; Lindner, L.H. In vitro stability and content release properties of phosphatidylglyceroglycerol containing thermosensitive liposomes. Biochim. Et Biophys. Acta Biomembr. 2007, 1768, 2491–2499. [Google Scholar] [CrossRef] [Green Version]
- Mazela, J.; Merritt, T.A.; Gadzinowski, J.; Sinha, S. Evolution of pulmonary surfactants for the treatment of neonatal respiratory distress syndrome and paediatric lung diseases. Acta Paediatr. 2006, 95, 1036–1048. [Google Scholar] [CrossRef]
- Juneja, L.R.; Hibi, N.; Inagaki, N.; Yamane, T.; Shimizu, S. Comparative study on conversion of phosphatidylcholine to phosphatidylglycerol by cabbage phospholipase D in micelle and emulsion systems. Enzym. Microb. Technol. 1987, 9, 350–354. [Google Scholar] [CrossRef]
- Piazza, G.J.; Marmer, W.N. Conversion of Phosphatidylcholine to Phosphatidylglycerol with Phospholipase D and Glycerol. J. Am. Oil Chem. Soc. 2007, 84, 645–651. [Google Scholar] [CrossRef]
- D’Arrigo, P.; de Ferra, L.; Pedrocchi-Fantoni, G.; Scarcelli, D.; Servi, S.; Strini, A. Enzyme-mediated synthesis of two diastereoisomeric forms of phosphatidylglycerol and of diphosphatidylglycerol (cardiolipin). J. Chem. Soc. Perkin Trans. 1 1996, 2657–2660. [Google Scholar] [CrossRef]
- Schlame, M.; Rua, D.; Greenberg, M.L. The biosynthesis and functional role of cardiolipin. Prog. Lipid Res. 2000, 39, 257–288. [Google Scholar] [CrossRef]
- Claypool, S.M.; Koehler, C.M. The complexity of cardiolipin in health and disease. Trends Biochem. Sci. 2012, 37, 32–41. [Google Scholar] [CrossRef] [Green Version]
- Calzada, E.; Onguka, O.; Claypool, S.M. Chapter Two—Phosphatidylethanolamine Metabolism in Health and Disease. In International Review of Cell and Molecular Biology; Jeon, K.W., Ed.; Academic Press: Cambridge, MA, USA, 2016; Volume 321, pp. 29–88. [Google Scholar]
- Patel, D.; Witt, S.N. Ethanolamine and Phosphatidylethanolamine: Partners in Health and Disease. Oxidative Med. Cell. Longev. 2017, 2017, 4829180. [Google Scholar] [CrossRef] [Green Version]
- Sun, N.; Chen, J.; Bao, Z.; Wang, D.; An, B.; Lin, S. Egg Yolk Phosphatidylethanolamine: Extraction Optimization, Antioxidative Activity, and Molecular Structure Profiling. J. Food Sci. 2019, 84, 1002–1011. [Google Scholar] [CrossRef]
- Juneja, L.R.; Toru, K.; Tsuneo, Y.; Shoichi, S. Kinetic evaluation of conversion of phosphatidylcholine to phosphatidylethanolamine by phospholipase D from different sources. Biochim. Biophys. Acta Lipids Lipid Metab. 1988, 960, 334–341. [Google Scholar] [CrossRef]
- Dippe, M.; Mrestani-Klaus, C.; Schierhorn, A.; Ulbrich-Hofmann, R. Phospholipase D-catalyzed synthesis of new phospholipids with polar head groups. Chem. Phys. Lipids 2008, 152, 71–77. [Google Scholar] [CrossRef]
- Nagao, A.; Ishida, N.; Terao, J. Synthesis of 6-phosphatidyl-L-ascorbic acid by phospholipase D. Lipids 1991, 26, 390–394. [Google Scholar] [CrossRef]
- Koga, T.; Nagao, A.; Terao, J.; Sawada, K.; Mukai, K. Synthesis of a phosphatidyl derivative of vitamin E and its antioxidant activity in phospholipid bilayers. Lipids 1994, 29, 83. [Google Scholar] [CrossRef]
- Takami, M.; Hidaka, N.; Miki, S.; Suzuki, Y. Enzymatic Synthesis of Novel Phosphatidylkojic Acid and Phosphatidylarbutin, and Their Inhibitory Effects on Tyrosinase Activity. Biosci. Biotechnol. Biochem. 1994, 58, 1716–1717. [Google Scholar] [CrossRef]
- Takami, M.; Suzuki, Y. Enzymatic Synthesis of Novel Phosphatidylgenipin, and Its Enhanced Cytotoxity. Biosci. Biotechnol. Biochem. 1994, 58, 1897–1898. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, Y.; Hosokawa, M.; Kurihara, H.; Miyashita, K. Preparation of Phosphatidylated Terpenes via Phospholipase D-Mediated Transphosphatidylation. J. Am. Oil Chem. Soc. 2008, 85, 313. [Google Scholar] [CrossRef]
- Casado, V.; Reglero, G.; Torres, C.F. Production and Scale-up of phosphatidyl-tyrosol catalyzed by a food grade phospholipase D. Food Bioprod. Process. 2013, 91, 599–608. [Google Scholar] [CrossRef]
- Di Benedetto, R.; Varì, R.; Scazzocchio, B.; Filesi, C.; Santangelo, C.; Giovannini, C.; Matarrese, P.; D’Archivio, M.; Masella, R. Tyrosol, the major extra virgin olive oil compound, restored intracellular antioxidant defences in spite of its weak antioxidative effectiveness. Nutr. Metab. Cardiovasc. Dis. 2007, 17, 535–545. [Google Scholar] [CrossRef]
- Song, S.; Cheong, L.-Z.; Falkeborg, M.; Liu, L.; Dong, M.; Jensen, H.M.; Bertelsen, K.; Thorsen, M.; Tan, T.; Xu, X.; et al. Facile Synthesis of Phosphatidyl Saccharides for Preparation of Anionic Nanoliposomes with Enhanced Stability. PLoS ONE 2013, 8, e73891. [Google Scholar] [CrossRef] [Green Version]
- Torchilin, V.P. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov. 2005, 4, 145–160. [Google Scholar] [CrossRef]
- Nagatsuka, Y.; Kasama, T.; Ohashi, Y.; Uzawa, J.; Ono, Y.; Shimizu, K.; Hirabayashi, Y. A new phosphoglycerolipid, ‘phosphatidylglucose’, found in human cord red cells by multi-reactive monoclonal anti-i cold agglutinin, mAb GL-1/GL-2. FEBS Lett. 2001, 497, 141–147. [Google Scholar] [CrossRef] [Green Version]
- Inoue, A.; Adachi, M.; Damnjanović, J.; Nakano, H.; Iwasaki, Y. Direct Enzymatic Synthesis of 1-Phosphatidyl-β-D-glucose by Engineered Phospholipase D. ChemistrySelect 2016, 1, 4121–4125. [Google Scholar] [CrossRef]
- Arranz-Martínez, P.; Casado, V.; Reglero, G.; Torres, C.F. Novel glyceryl ethers phospholipids produced by solid to solid transphosphatidylation in the presence of a food grade phospholipase D. Eur. J. Lipid Sci. Technol. 2017, 119, 1600427. [Google Scholar] [CrossRef]
- Li, B.; Wang, J.; Li, H.; Zhang, X.; Duan, D.; Yu, W.; Zhao, B. Efficient and green aqueous−solid system for transphosphatidylation to produce phosphatidylhydroxybutyrate: Potential drugs for central nervous system’s diseases. Biotechnol. Prog. 2019, 35, e2726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Compound | PLD Source | Incubation Time (h) | Yield (%) | Application |
---|---|---|---|---|
PX-5 | Streptomyces lydicus | 24 | 90 | Antioxidant |
PX-6 | Streptomyces lydicus | 2 | 94 | Antioxidant |
PX-7 | Streptomyces sp. | 4 | 18 | Tyrosinase inhibitor |
PX-8 | Streptomyces sp. | 3 | 60 | Tyrosinase inhibitor |
PX-9 | Streptomyces sp. | 3 | 61 | Cytotoxic compound |
PX-10 | Streptomyces sp. | 24 | 90 | Antibacterial |
PX-11 | Streptomyces sp. | 24 | 73 | Antibacterial |
PX-12 | Streptomyces sp. | 24 | 54 | Antibacterial |
PX-13 | Streptomyces sp. | 24 | 17 | Antibacterial |
PX-14 | Actinamadure sp. | 24 | 97 | Intracellular antioxidant |
PX-15 | Streptomyces sp. | 2 | 95 | Preparation of anionic liposomes |
PX-16 | Streptomyces sp. | 2 | 67 | Preparation of anionic liposomes |
PX-17 | Streptomyces sp. | 2 | 23 | Preparation of anionic liposomes |
PX-18 | Streptomyces sp. | 22 | 12.5 | Important compound in different human organs |
PX-20 | Actinamadure sp. | 48 | 87 | Preparation of new liposomes |
PX-21 | Streptomyces sp. | 12 | 94 | Anesthetic and sedative |
PX-22 | Streptomyces sp. | 24 | 96 | Anti-inflammatory |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Allegretti, C.; Denuccio, F.; Rossato, L.; D’Arrigo, P. Polar Head Modified Phospholipids by Phospholipase D-Catalyzed Transformations of Natural Phosphatidylcholine for Targeted Applications: An Overview. Catalysts 2020, 10, 997. https://doi.org/10.3390/catal10090997
Allegretti C, Denuccio F, Rossato L, D’Arrigo P. Polar Head Modified Phospholipids by Phospholipase D-Catalyzed Transformations of Natural Phosphatidylcholine for Targeted Applications: An Overview. Catalysts. 2020; 10(9):997. https://doi.org/10.3390/catal10090997
Chicago/Turabian StyleAllegretti, Chiara, Francesca Denuccio, Letizia Rossato, and Paola D’Arrigo. 2020. "Polar Head Modified Phospholipids by Phospholipase D-Catalyzed Transformations of Natural Phosphatidylcholine for Targeted Applications: An Overview" Catalysts 10, no. 9: 997. https://doi.org/10.3390/catal10090997
APA StyleAllegretti, C., Denuccio, F., Rossato, L., & D’Arrigo, P. (2020). Polar Head Modified Phospholipids by Phospholipase D-Catalyzed Transformations of Natural Phosphatidylcholine for Targeted Applications: An Overview. Catalysts, 10(9), 997. https://doi.org/10.3390/catal10090997