Design and Development of a Catalytic Fixed-Bed Reactor for Gasification of Banana Biomass in Hydrogen Production
Abstract
:1. Introduction
2. Results and Discussion
2.1. Design of the Gasification Reactor
2.2. Results of the Biomass Gasification Reaction
2.3. Analysis of the Calorific Value of Syngas
2.4. Temperature Distribution Simulation
3. Materials and Methods
3.1. Sample Preparation
3.2. Reactor Design
Description | Formula | Equation |
---|---|---|
Biomass amount | (2) | |
Catalyst amount | (3) | |
Minimum fluidization speed | (4) | |
Working speed ratio | (5) | |
Fluidized-bed porosity | (6) | |
Fluidized-bed height | (7) | |
Total height of the gasification reactor | (8) | |
(kg) (m) | Fluidized-bed porosity |
3.3. Catalyst Preparation
3.4. Gasification Reaction
3.5. Synthesis Gas Analysis Method
3.6. Temperature Distribution Simulation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Shayan, E.; Zare, V.; Mirzaee, I. Hydrogen production from biomass gasification; a theoretical comparison of using different gasification agents. Energy Convers. Manag. 2018, 159, 30–41. [Google Scholar] [CrossRef]
- Bhavanam, A.; Sastry, R.C. Biomass Gasification Processes in Downd raft Fixed Bed Reactors: A Review. Int. J. Chem. Eng. Appl. 2011, 2, 425–433. [Google Scholar] [CrossRef] [Green Version]
- Yakaboylu, O.; Harinck, J.; Smit, K.G.; De Jong, W. Supercritical Water Gasification of Biomass: A Literature and Technology Overview. Energies 2015, 8, 859–894. [Google Scholar] [CrossRef]
- International Energy Agency. Global Hydrogen Review 2021; OECD Publishing París: Paris, France, 2021. [Google Scholar] [CrossRef]
- Rahmouni, S.; Negrou, B.; Settou, N.; Dominguez, J.; Gouareh, A. Prospects of hydrogen production potential from renewable resources in Algeria. Int. J. Hydrogen Energy 2017, 42, 1383–1395. [Google Scholar] [CrossRef]
- Ishaq, H.; Dincer, I. Comparative assessment of renewable energy-based hydrogen production methods. Renew. Sustain. Energy Rev. 2021, 135, 110192. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, L.; Xu, P.; Liu, B.; Shuai, Y.; Li, B. Hydrogen production through biomass gasification in supercritical water: A review from exergy aspect. Int. J. Hydrogen Energy 2019, 44, 15727–15736. [Google Scholar] [CrossRef]
- Noussan, M.; Raimondi, P.P.; Scita, R.; Hafner, M. The Role of Green and Blue Hydrogen in the Energy Transition—A Technological and Geopolitical Perspective. Sustainability 2020, 13, 298. [Google Scholar] [CrossRef]
- Atilhan, S.; Park, S.; El-Halwagi, M.M.; Atilhan, M.; Moore, M.; Nielsen, R.B. Green hydrogen as an alternative fuel for the shipping industry. Curr. Opin. Chem. Eng. 2021, 31, 100668. [Google Scholar] [CrossRef]
- Howarth, R.W.; Jacobson, M.Z. How green is blue hydrogen? Energy Sci. Eng. 2021, 9, 1676–1687. [Google Scholar] [CrossRef]
- Kim, S.-H.; Kumar, G.; Chen, W.-H.; Khanal, S.K. Renewable hydrogen production from biomass and wastes (ReBioH2-2020). Bioresour. Technol. 2021, 331, 125024. [Google Scholar] [CrossRef]
- Anniwaer, A.; Chaihad, N.; Zhang, M.; Wang, C.; Yu, T.; Kasai, Y.; Abudula, A.; Guan, G. Hydrogen-rich gas production from steam co-gasification of banana peel with agricultural residues and woody biomass. Waste Manag. 2021, 125, 204–214. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.; Das, D. Potential of Hydrogen Production from Biomass. In Science and Engineering of Hydrogen-Based Energy Technologies; Elsevier: West Bengal, India, 2019; pp. 123–164. [Google Scholar] [CrossRef]
- Baharuddin, N.A.; Yusoff, W.N.A.W.; Aziz, A.J.A.; Tahir, N.N.M. Hydrogen fuel cells for sustainable energy: Development and progress in selected developed countries. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1078, 012011. [Google Scholar] [CrossRef]
- Nuttall, W.J.; Bakenne, A.T. The Future of Energy and Mobility. In Fossil Fuel Hydrogen; Springer International Publishing: Cham, Switzerland, 2020; pp. 15–31. [Google Scholar] [CrossRef]
- Wu, C.; Dong, L.; Onwudili, J.; Williams, P.T.; Huang, J. Effect of Ni Particle Location within the Mesoporous MCM-41 Support for Hydrogen Production from the Catalytic Gasification of Biomass. ACS Sustain. Chem. Eng. 2013, 1, 1083–1091. [Google Scholar] [CrossRef]
- Pang, Y.; Yu, D.; Chen, Y.; Jin, G.; Shen, S. Hydrogen production from steam gasification of corn straw catalyzed by blast furnace gas ash. Int. J. Hydrogen Energy 2020, 45, 17191–17199. [Google Scholar] [CrossRef]
- Yao, D.; Hu, Q.; Wang, D.; Yang, H.; Wu, C.; Wang, X.; Chen, H. Hydrogen production from biomass gasification using biochar as a catalyst/support. Bioresour. Technol. 2016, 216, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Gao, N.; Li, A.; Quan, C.; Gao, F. Hydrogen-rich gas production from biomass steam gasification in an updraft fixed-bed gasifier combined with a porous ceramic reformer. Int. J. Hydrogen Energy 2008, 33, 5430–5438. [Google Scholar] [CrossRef]
- Li, J.; Yin, Y.; Zhang, X.; Liu, J.; Yan, R. Hydrogen-rich gas production by steam gasification of palm oil wastes over supported tri-metallic catalyst. Int. J. Hydrogen Energy 2009, 34, 9108–9115. [Google Scholar] [CrossRef]
- Cerone, N.; Zimbardi, F.; Contuzzi, L.; Baleta, J.; Cerinski, D.; Skvorčinskienė, R. Experimental investigation of syngas composition variation along updraft fixed bed gasifier. Energy Convers. Manag. 2020, 221, 113116. [Google Scholar] [CrossRef]
- Jin, K.; Ji, D.; Xie, Q.; Nie, Y.; Yu, F.; Ji, J. Hydrogen production from steam gasification of tableted biomass in molten eutectic carbonates. Int. J. Hydrogen Energy 2019, 44, 22919–22925. [Google Scholar] [CrossRef]
- Tomczak, W.; Ferrasse, J.-H.; Giudici-Orticoni, M.-T.; Soric, A. Effect of hydraulic retention time on a continuous biohydrogen production in a packed bed biofilm reactor with recirculation flow of the liquid phase. Int. J. Hydrogen Energy 2018, 43, 18883–18895. [Google Scholar] [CrossRef] [Green Version]
- Arena, U. Process and technological aspects of municipal solid waste gasification. A review. Waste Manag. 2012, 32, 625–639. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, J.; Juárez, M.; Morales, M.; Muñoz, P.; Mendívil, M. Biomass gasification for electricity generation: Review of current technology barriers. Renew. Sustain. Energy Rev. 2013, 18, 174–183. [Google Scholar] [CrossRef]
- Puig-Arnavat, M.; Bruno, J.C.; Coronas, A. Review and analysis of biomass gasification models. Renew. Sustain. Energy Rev. 2010, 14, 2841–2851. [Google Scholar] [CrossRef]
- Basu, P. Biomass Gasification and Pyrolysis: Practical Design and Theory; Academic Press: Burlington, MA, USA, 2010. [Google Scholar]
- Zhang, L.; Xu, C.C.; Champagne, P. Overview of recent advances in thermo-chemical conversion of biomass. Energy Convers. Manag. 2010, 51, 969–982. [Google Scholar] [CrossRef]
- Anukam, A.; Mamphweli, S.; Reddy, P.; Meyer, E.; Okoh, O. Pre-processing of sugarcane bagasse for gasification in a downdraft biomass gasifier system: A comprehensive review. Renew. Sustain. Energy Rev. 2016, 66, 775–801. [Google Scholar] [CrossRef] [Green Version]
- Dascomb, J.; Krothapalli, A.; Fakhrai, R. Thermal conversion efficiency of producing hydrogen enriched syngas from biomass steam gasification. Int. J. Hydrogen Energy 2013, 38, 11790–11798. [Google Scholar] [CrossRef]
- Salam, M.A.; Ahmed, K.; Akter, N.; Hossain, T.; Abdullah, B. A review of hydrogen production via biomass gasification and its prospect in Bangladesh. Int. J. Hydrogen Energy 2018, 43, 14944–14973. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, H.; Wang, J.; Wu, B. Catalytic gasification characteristics of rice husk with calcined dolomite. Energy 2018, 165, 1173–1177. [Google Scholar] [CrossRef]
- Sun, J.; Xu, L.; Dong, G.-H.; Nanda, S.; Li, H.; Fang, Z.; Kozinski, J.A.; Dalai, A.K. Subcritical water gasification of lignocellulosic wastes for hydrogen production with Co modified Ni/Al2O3 catalysts. J. Supercrit. Fluids 2020, 162, 104863. [Google Scholar] [CrossRef]
- Lu, Y.; Jin, H.; Zhang, R. Evaluation of stability and catalytic activity of Ni catalysts for hydrogen production by biomass gasification in supercritical water. Carbon Resour. Convers. 2019, 2, 95–101. [Google Scholar] [CrossRef]
- Artetxe, M.; Alvarez, J.; Nahil, M.A.; Olazar, M.; Williams, P. Steam reforming of different biomass tar model compounds over Ni/Al2O3 catalysts. Energy Convers. Manag. 2017, 136, 119–126. [Google Scholar] [CrossRef]
- Kurkela, E.; Kurkela, M.; Hiltunen, I. Production of Synthesis Gas from Biomass Residues by Staged Fixed-bed Gasification—Results from Pilot Test Campaigns. Chem. Eng. Trans. 2021, 86, 7–12. [Google Scholar] [CrossRef]
- Narvaez, N.; Freddy, E. Simulacion Numérica de Flujo de Aire y Transferencia de Calor en un Enfriador Vertical con Puerta Panorámica; Publicaciones UPS: Cuenca, Ecuador, 2018. [Google Scholar]
- Di Nardo, A.; Calchetti, G.; Bassano, C.; Deiana, P. CO2 methanation in a shell and tube reactor CFD simulations: High temperatures mitigation analysis. Chem. Eng. Sci. 2021, 246, 116871. [Google Scholar] [CrossRef]
- Hwang, J.G.; Choi, M.K.; Choi, D.H.; Choi, H.S. Quality improvement and tar reduction of syngas produced by bio-oil gasification. Energy 2021, 236, 121473. [Google Scholar] [CrossRef]
- Putra, A.E.E.; Amaliyah, N.; Nomura, S.; Rahim, I. Plasma generation for hydrogen production from banana waste. Biomass-Convers. Biorefinery 2020, 12, 441–446. [Google Scholar] [CrossRef]
- Nathoa, C.; Sirisukpoca, U.; Pisutpaisal, N. Production of Hydrogen and Methane from Banana Peel by Two Phase Anaerobic Fermentation. Energy Procedia 2014, 50, 702–710. [Google Scholar] [CrossRef] [Green Version]
- de Lasa, H.; Salaices, E.; Mazumder, J.; Lucky, R. Catalytic Steam Gasification of Biomass: Catalysts, Thermodynamics and Kinetics. Chem. Rev. 2011, 111, 5404–5433. [Google Scholar] [CrossRef]
- Gupta, E.S.K. Engineering Thermodynamics, 2nd ed.; S. Chand Pulishing: Nueva Delhi, India, 2019. [Google Scholar]
- REPSOL. Ficha de Seguridad GLP; Refinería La Pampilla S.A.A: Callao, Peru, October 2016. [Google Scholar]
- Lojagas. Hoja de seguridad del Gas Licuado de Petroleo. Loja, NÚMERO CAS*: 68476-85-7. Available online: http://lojagas.com/nueva/wp-content/uploads/2017/08/G-99.-HOJA-DE-SEGURIDAD-GAS-LICUADO-DE-PETROLEO.pdf (accessed on 26 February 2022).
- Rievaj, V.; Gaňa, J.; Synák, F. Is hydrogen the fuel of the future? Transp. Res. Procedia 2019, 40, 469–474. [Google Scholar] [CrossRef]
- Parthasarathy, P.; Narayanan, K.S. Hydrogen production from steam gasification of biomass: Influence of process parameters on hydrogen yield—A review. Renew. Energy 2014, 66, 570–579. [Google Scholar] [CrossRef]
- International Energy Agency. Net Zero by 2050. A Roadmap for the Global Energy Sector. October 2021. Available online: www.iea.org (accessed on 14 March 2022).
- Ferrerira da Silva, I.; Reis Fontinelle Souto, I.; Collins, S.R.A.; Elliston, A.; de Queriroz, J.H.; Waldron, K.W. Impact of Hot Water and Alkaline Pre-treatments in Cellulosic Ethanol Production from Banana Pseudostem. Bioenerg Res. 2020, 13, 1159–1170. [Google Scholar] [CrossRef]
- Eyvaz, M.; Yüksel, E. (Eds.) Desalination and Water Treatment; InTech: Houston, TX, USA, 2018. [Google Scholar] [CrossRef]
- Onsan, Z.I.; Avci, A.K. Multiphase Catalytic Reactors: Theory, Design, Manufaturing, and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Lima, D.S.; Calgaro, C.O.; Perez-Lopez, O.W. Hydrogen production by glycerol steam reforming over Ni based catlysts prepared by different methods. Biomas Bioenergy 2019, 130, 105358. [Google Scholar] [CrossRef]
- Ghassemi, M.; Kamvar, M.; Steinberger, W.R. Fundamentals of Heat and Fluid Flow in High Temperature Fuel Cells, 1st ed.; Academic Press: Cambridge, MA, USA, 2020. [Google Scholar]
Reaction System | Biomass | Catalyst | Reaction Conditions | Hydrogen Production, mg H2/g Biomass | Ref. |
---|---|---|---|---|---|
Two-stage fixed-bed reaction system for catalytic gasification. (Pyrolysis and gasification) | Wood sawdust | Ni/MCM-41 Catalyst: 0.25 g | Wood sawdust: 0.8 g Pyrolysis: 530 °C T: 800 °C | 42.52 | [16] |
Laboratory-scale gasification equipment: fixed-bed downdraft gasifier system | Corn straw | Blast furnace gas ash (BFGA) | Water vapor flow rate: 0.55 kg/h Gasification T: 950 °C | 92.08 | [17] |
Two-stage fixed-bed reaction system for catalytic gasification. (Pyrolysis and gasification) | Wheat straw | Biochar from cotton stalk (CC). Ni/CC | T: 800 °C S/B 1 = 4 Ni: 15 wt.% | 27.61–42.48 | [18] |
Updraft gasifier with a continuous biomass feeder | Pine sawdust | - | T: 800 to 950 °C. S/B: 2.05 | 45.05–135.40 | [19] |
Combined fixed-bed reactor | Palm oil wastes | Supported nano-NiLaFe/ ɣ-Al2O3 | T: 800 °C, S/B ratio = 1.33 Particle size: 0.15–2 mm gas yield: 1.21–2.11 m3/kg feed rate:0.3 kg/h. | 101.78 39.75 (no catalyst) | [20] |
Updraft gasifier | Lignocellulose | - | T: 900 °C S/B: 0.08–0.16 | 37.5 | [21] |
Gasification reactor | Fir sawdust | Eutectic blend of lithium, sodium, and potassium carbonates | T: 750 °C S/B: 1 | 72.60 | [22] |
Parameter | Biomass Bed | Catalytic Bed |
---|---|---|
Bed height (cm) | 5.6 | 1.011 |
Amount (g) | 11.75 | 3.92 |
Average diameter of particles (mm) | 1.84 | 0.074 |
Porosity | 0.4 | 0.196 |
Component | Ni/Al2O3% | |||
---|---|---|---|---|
% Molar | 0% | 1.5% | 2.5% | 5% |
Hydrogen | 25.79 | 28.23 | 51.78 | 25.50 |
Methene | 2.21 | 1.01 | 0.44 | 2.28 |
Carbon monoxide | 3.87 | 0.00 | 0.00 | 9.34 |
Carbon dioxide | 47.15 | 45.38 | 22.54 | 39.40 |
Ethylene | 20.32 | 24.64 | 25.01 | 22.42 |
Ethane | 0.14 | 0.14 | 0.03 | 0.29 |
Acetylene | 0.39 | 0.36 | 0.06 | 0.63 |
n-propane | 0.14 | 0.15 | 0.06 | 0.15 |
Parameter | Catalyzed Reaction | Uncatalyzed Reaction | LPG | Ref. |
---|---|---|---|---|
PCS (kcal/kg) | 5057.04 | 3342.5 | 11,800 | [44] |
PCI (kcal/kg) | 4604 | 3077.43 | 10,830 | [45] |
Time (min) | Air Temp. Inside the Oven (TA) | Reactor Surface Temp. (TRS) | Tube Surface Temp. (TTS) | Reactor Outlet Temp. (TOUT) |
---|---|---|---|---|
30 | 640 | 621.98 | 659.9 | 368.75 |
60 | 640 | 636.13 | 663.15 | 382.9 |
90 | 640 | 639.41 | 667.62 | 386.2 |
Properties | Reactor (AISI 1020 A Steel) | Furnace Wall (Glass Wool Insulation) |
---|---|---|
Density (kg/m3) | 7870 | 20 |
Thermal conductivity (W/m·K) | 51.9 | 0.03 |
Specific heat capacity (J/g·K) | 0.486 | 840 |
Coefficient of thermal expansion (1E-6/K) | 11.7 | 4.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tacuri, D.; Andrade, C.; Álvarez, P.; Abril-González, M.; Zalamea, S.; Pinos-Vélez, V.; Jara, L.; Montero-Izquierdo, A. Design and Development of a Catalytic Fixed-Bed Reactor for Gasification of Banana Biomass in Hydrogen Production. Catalysts 2022, 12, 395. https://doi.org/10.3390/catal12040395
Tacuri D, Andrade C, Álvarez P, Abril-González M, Zalamea S, Pinos-Vélez V, Jara L, Montero-Izquierdo A. Design and Development of a Catalytic Fixed-Bed Reactor for Gasification of Banana Biomass in Hydrogen Production. Catalysts. 2022; 12(4):395. https://doi.org/10.3390/catal12040395
Chicago/Turabian StyleTacuri, Diego, Christian Andrade, Paúl Álvarez, Mónica Abril-González, Silvana Zalamea, Verónica Pinos-Vélez, Lourdes Jara, and Andres Montero-Izquierdo. 2022. "Design and Development of a Catalytic Fixed-Bed Reactor for Gasification of Banana Biomass in Hydrogen Production" Catalysts 12, no. 4: 395. https://doi.org/10.3390/catal12040395
APA StyleTacuri, D., Andrade, C., Álvarez, P., Abril-González, M., Zalamea, S., Pinos-Vélez, V., Jara, L., & Montero-Izquierdo, A. (2022). Design and Development of a Catalytic Fixed-Bed Reactor for Gasification of Banana Biomass in Hydrogen Production. Catalysts, 12(4), 395. https://doi.org/10.3390/catal12040395