Zn-Cr Layered Double Hydroxides for Photocatalytic Transformation of CO2 under Visible Light Irradiation: The Effect of the Metal Ratio and Interlayer Anion
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Reagents and Materials
3.2. Synthesis of LDHs
3.3. Characterization
3.4. Photocatalytic Tests
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Megías-Sayago, C.; Bingre, R.; Huang, L.; Lutzweiler, G.; Wang, Q.; Louis, B. CO2 Adsorption Capacities in Zeolites and Layered Double Hydroxide Materials. Front. Chem. 2019, 7, 551. [Google Scholar] [CrossRef]
- Xu, J.; Liu, X.; Zhou, Z.; Deng, L.; Liu, L.; Xu, M. Surface Defects Introduced by Metal Doping into Layered Double Hydroxide for CO2 Photoreduction: The Effect of Metal Species in Light Absorption, Charge Transfer and CO2 Reduction. Chem. Eng. J. 2022, 442, 136148. [Google Scholar] [CrossRef]
- Fang, X.; Chen, C.; Jia, H.; Li, Y.; Liu, J.; Wang, Y.; Song, Y.; Du, T.; Liu, L. Progress in Adsorption-Enhanced Hydrogenation of CO2 on Layered Double Hydroxide (LDH) Derived Catalysts. J. Ind. Eng. Chem. 2021, 95, 16–27. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, T.; Louis, B.; Yu, F.; Dan, J.; Wang, Q. Environmental Benign Synthesis of Lithium Silicates and Mg-Al Layered Double Hydroxide from Vermiculite Mineral for CO2 Capture. Catalysts 2017, 7, 105. [Google Scholar] [CrossRef]
- Qin, Q.; Wang, J.; Zhou, T.; Zheng, Q.; Huang, L.; Zhang, Y.; Lu, P.; Umar, A.; Louis, B.; Wang, Q. Impact of Organic Interlayer Anions on the CO2 Adsorption Performance of Mg-Al Layered Double Hydroxides Derived Mixed Oxides. J. Energy Chem. 2017, 26, 346–353. [Google Scholar] [CrossRef]
- Jerome, M.P.; Alahmad, F.A.; Salem, M.T.; Tahir, M. Layered Double Hydroxide (LDH) Nanomaterials with Engineering Aspects for Photocatalytic CO2 Conversion to Energy Efficient Fuels: Fundamentals, Recent Advances, and Challenges. J. Environ. Chem. Eng. 2022, 10, 108151. [Google Scholar] [CrossRef]
- Chung, Y.-C.; Xie, P.-J.; Lai, Y.-W.; Lo, A.-Y. Hollow TiO2 Microsphere/Graphene Composite Photocatalyst for CO2 Photoreduction. Catalysts 2021, 11, 1532. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Y.; Cui, G.; Liu, H.; Abanades, S.; Lu, H. Improvement of CO2 Photoreduction Efficiency by Process Intensification. Catalysts 2021, 11, 912. [Google Scholar] [CrossRef]
- Dewangan, N.; Hui, W.M.; Jayaprakash, S.; Bawah, A.R.; Poerjoto, A.J.; Jie, T.; Jangam, A.; Hidajat, K.; Kawi, S. Recent Progress on Layered Double Hydroxide (LDH) Derived Metal-Based Catalysts for CO2 Conversion to Valuable Chemicals. Catal. Today 2020, 356, 490–513. [Google Scholar] [CrossRef]
- Iguchi, S.; Teramura, K.; Hosokawa, S.; Tanaka, T. Effect of the Chloride Ion as a Hole Scavenger on the Photocatalytic Conversion of CO2 in an Aqueous Solution over Ni-Al Layered Double Hydroxides. Phys. Chem. Chem. Phys. 2015, 17, 17995–18003. [Google Scholar] [CrossRef]
- Berardi, S.; Drouet, S.; Francàs, L.; Gimbert-Suriñach, C.; Guttentag, M.; Richmond, C.; Stoll, T.; Llobet, A. Molecular Artificial Photosynthesis. Chem. Soc. Rev. 2014, 43, 7501–7519. [Google Scholar] [CrossRef]
- Handoko, A.D.; Li, K.; Tang, J. Recent Progress in Artificial Photosynthesis: CO2 Photoreduction to Valuable Chemicals in a Heterogeneous System. Curr. Opin. Chem. Eng. 2013, 2, 200–206. [Google Scholar] [CrossRef]
- Mu, W.-H.; Chasse, G.A.; Fang, D.-C. High Level Ab Initio Exploration on the Conversion of Carbon Dioxide into Oxazolidinones: The Mechanism and Regioselectivity. J. Phys. Chem. A 2008, 112, 6708–6714. [Google Scholar] [CrossRef] [PubMed]
- Woolcock, P.J.; Brown, R.C. A Review of Cleaning Technologies for Biomass-Derived Syngas. Biomass Bioenergy 2013, 52, 54–84. [Google Scholar] [CrossRef]
- Venvik, H.J.; Yang, J. Catalysis in Microstructured Reactors: Short Review on Small-Scale Syngas Production and Further Conversion into Methanol, DME and Fischer-Tropsch Products. Catal. Today 2017, 285, 135–146. [Google Scholar] [CrossRef]
- Rommens, K.T.; Saeys, M. Molecular Views on Fischer–Tropsch Synthesis. Chem. Rev. 2023, 123, 5798–5858. [Google Scholar] [CrossRef]
- Ali, K.A.; Abdullah, A.Z.; Mohamed, A.R. Recent Development in Catalytic Technologies for Methanol Synthesis from Renewable Sources: A Critical Review. Renew. Sustain. Energy Rev. 2015, 44, 508–518. [Google Scholar] [CrossRef]
- Baraj, E.; Ciahotný, K.; Hlinčík, T. The Water Gas Shift Reaction: Catalysts and Reaction Mechanism. Fuel 2021, 288, 119817. [Google Scholar] [CrossRef]
- Ng, S.; Lau, M.Y.L.; Ong, W. Engineering Layered Double Hydroxide–Based Photocatalysts Toward Artificial Photosynthesis: State-of-the-Art Progress and Prospects. Sol. RRL 2021, 5, 2000535. [Google Scholar] [CrossRef]
- Forano, C.; Costantino, U.; Pre, V. Layered Double Hydroxides. In Developments in Clay Science; Elsevier: Amsterdam, The Netherlands, 2013; Volume 5, pp. 745–782. ISBN 9780080982588. [Google Scholar]
- Ahmed, N.; Shibata, Y.; Taniguchi, T.; Izumi, Y. Photocatalytic Conversion of Carbon Dioxide into Methanol Using Zinc–Copper–M(III) (M = aluminum, Gallium) Layered Double Hydroxides. J. Catal. 2011, 279, 123–135. [Google Scholar] [CrossRef]
- Prevot, V.; Tokudome, Y. 3D Hierarchical and Porous Layered Double Hydroxide Structures: An Overview of Synthesis Methods and Applications. J. Mater. Sci. 2017, 52, 11229–11250. [Google Scholar] [CrossRef]
- Aramendía, M.A.; Avilés, Y.; Borau, V.; Luque, J.M.; Marinas, J.M.; Ruiz, J.R.; Urbano, F.J. Thermal Decomposition of Mg/Al and Mg/Ga Layered-Double Hydroxides: A Spectroscopic Study. J. Mater. Chem. 1999, 9, 1603–1607. [Google Scholar] [CrossRef]
- Kumar, S.; Durndell, L.J.; Manayil, J.C.; Isaacs, M.A.; Parlett, C.M.A.; Karthikeyan, S.; Douthwaite, R.E.; Coulson, B.; Wilson, K.; Lee, A.F. Delaminated CoAl-Layered Double Hydroxide@TiO2 Heterojunction Nanocomposites for Photocatalytic Reduction of CO2. Part. Part. Syst. Charact. 2018, 35, 1700317. [Google Scholar] [CrossRef]
- Tarhini, A.; Aguirre-Araque, J.; Guyot, M.; Costentin, C.; Rogez, G.; Chardon-Noblat, S.; Prevot, V.; Mousty, C. Behavior of Iron Tetraphenylsulfonato Porphyrin Intercalated into LDH and LSH as Materials for Electrocatalytic Applications. Electrocatalysis 2023, 14, 111–120. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y.; Si, J.; Zhang, W.; Liang, Q.; Li, W.; Jin, B.; Miao, S. Structural Engineering of NiFe-Layered Double Hydroxides and Halloysite Composites for Efficient CO2 Capture. Chem. Eng. J. 2023, 463, 142502. [Google Scholar] [CrossRef]
- Gil-Gavilán, D.G.; Cosano, D.; Castillo-Rodríguez, M.; de Miguel, G.; Esquivel, D.; Jiménez-Sanchidrián, C.; Ruiz, J.R.; Romero-Salguero, F.J. Composites of Co-Al Hydrotalcites and Carbon Nanomaterials for Photocatalytic H2 Production. Appl. Clay Sci. 2023, 238, 106924. [Google Scholar] [CrossRef]
- Prevot, V.; Touati, S.; Mousty, C. Confined Growth of NiAl-Layered Double Hydroxide Nanoparticles within Alginate Gel: Influence on Electrochemical Properties. Front. Chem. 2020, 8, 1158. [Google Scholar] [CrossRef]
- Liu, Q.; Han, X.; Park, H.; Kim, J.; Xiong, P.; Yuan, H.; Yeon, J.S.; Kang, Y.; Park, J.M.; Dou, Q.; et al. Layered Double Hydroxide Quantum Dots for Use in a Bifunctional Separator of Lithium–Sulfur Batteries. ACS Appl. Mater. Interfaces 2021, 13, 17978–17987. [Google Scholar] [CrossRef]
- Chaillot, D.; Bennici, S.; Brendlé, J. Layered Double Hydroxides and LDH-Derived Materials in Chosen Environmental Applications: A Review. Environ. Sci. Pollut. Res. 2021, 28, 24375–24405. [Google Scholar] [CrossRef]
- Wang, C.; Xu, J.; Zhou, Z. A Mini-Review on CO2 Photoreduction by MgAl-LDH Based Materials. Energies 2022, 15, 8117. [Google Scholar] [CrossRef]
- Kumaresan, A.; Yang, S.; Zhao, K.; Ahmad, N.; Zhou, J.; Zheng, Z.; Zhang, Y.; Gao, Y.; Zhou, H.; Tang, Z. Facile Development of CoAl-LDHs/RGO Nanocomposites as Photocatalysts for Efficient Hydrogen Generation from Water Splitting under Visible-Light Irradiation. Inorg. Chem. Front. 2019, 6, 1753–1760. [Google Scholar] [CrossRef]
- Bai, S.; Wang, Z.; Tan, L.; Waterhouse, G.I.N.; Zhao, Y.; Song, Y.-F. 600 Nm Irradiation-Induced Efficient Photocatalytic CO2 Reduction by Ultrathin Layered Double Hydroxide Nanosheets. Ind. Eng. Chem. Res. 2020, 59, 5848–5857. [Google Scholar] [CrossRef]
- Ning, C.; Wang, Z.; Bai, S.; Tan, L.; Dong, H.; Xu, Y.; Hao, X.; Shen, T.; Zhao, J.; Zhao, P.; et al. 650 Nm-Driven Syngas Evolution from Photocatalytic CO2 Reduction over Co-Containing Ternary Layered Double Hydroxide Nanosheets. Chem. Eng. J. 2021, 412, 128362. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, S.-M.; Tan, L.; Liu, G.; Shen, T.; Yu, C.; Wang, H.; Tao, Y.; Cao, X.; Zhao, Y.; et al. 600 Nm-Driven Photoreduction of CO2 through the Topological Transformation of Layered Double Hydroxides Nanosheets. Appl. Catal. B Environ. 2020, 270, 118884. [Google Scholar] [CrossRef]
- Rojas-Luna, R.; Amaro-Gahete, J.; Gil-Gavilán, D.G.; Castillo-Rodríguez, M.; Jiménez-Sanchidrián, C.; Ruiz, J.R.; Esquivel, D.; Romero-Salguero, F.J. Visible-Light-Harvesting Basolite-A520 Metal Organic Framework for Photocatalytic Hydrogen Evolution. Microporous Mesoporous Mater. 2023, 355, 112565. [Google Scholar] [CrossRef]
- Wang, K.; Wang, T.; Islam, Q.A.; Wu, Y. Layered Double Hydroxide Photocatalysts for Solar Fuel Production. Chin. J. Catal. 2021, 42, 1944–1975. [Google Scholar] [CrossRef]
- Iguchi, S.; Hasegawa, Y.; Teramura, K.; Hosokawa, S.; Tanaka, T. Preparation of Transition Metal-Containing Layered Double Hydroxides and Application to the Photocatalytic Conversion of CO2 in Water. J. CO2 Util. 2016, 15, 6–14. [Google Scholar] [CrossRef]
- Sahoo, P.; Ishihara, S.; Yamada, K.; Deguchi, K.; Ohki, S.; Tansho, M.; Shimizu, T.; Eisaku, N.; Sasai, R.; Labuta, J.; et al. Rapid Exchange between Atmospheric CO2 and Carbonate Anion Intercalated within Magnesium Rich Layered Double Hydroxide. ACS Appl. Mater. Interfaces 2014, 6, 18352–18359. [Google Scholar] [CrossRef]
- Huang, L.; Wang, J.; Gao, Y.; Qiao, Y.; Zheng, Q.; Guo, Z.; Zhao, Y.; O’Hare, D.; Wang, Q. Synthesis of LiAl2 -Layered Double Hydroxides for CO2 Capture over a Wide Temperature Range. J. Mater. Chem. A 2014, 2, 18454–18462. [Google Scholar] [CrossRef]
- Yang, Z.; Wei, J.; Zeng, G.; Zhang, H.; Tan, X.; Ma, C.; Li, X.; Li, Z.; Zhang, C. A Review on Strategies to LDH-Based Materials to Improve Adsorption Capacity and Photoreduction Efficiency for CO2. Coord. Chem. Rev. 2019, 386, 154–182. [Google Scholar] [CrossRef]
- Baliarsingh, N.; Mohapatra, L.; Parida, K. Design and Development of a Visible Light Harvesting Ni–Zn/Cr–CO32− LDH System for Hydrogen Evolution. J. Mater. Chem. A 2013, 1, 4236. [Google Scholar] [CrossRef]
- Parida, K.; Mohapatra, L. Recent Progress in the Development of Carbonate-Intercalated Zn/Cr LDH as a Novel Photocatalyst for Hydrogen Evolution Aimed at the Utilization of Solar Light. Dalton Trans. 2012, 41, 1173–1178. [Google Scholar] [CrossRef]
- Flores-Flores, M.; Luévano-Hipólito, E.; Martínez, L.M.T.; Morales-Mendoza, G.; Gómez, R. Photocatalytic CO2 Conversion by MgAl Layered Double Hydroxides: Effect of Mg2+ Precursor and Microwave Irradiation Time. J. Photochem. Photobiol. A Chem. 2018, 363, 68–73. [Google Scholar] [CrossRef]
- Jo, W.-K.; Kumar, S.; Tonda, S. N-Doped C Dot/CoAl-Layered Double Hydroxide/g-C3N4 Hybrid Composites for Efficient and Selective Solar-Driven Conversion of CO2 into CH4. Compos. Part B Eng. 2019, 176, 107212. [Google Scholar] [CrossRef]
- Bian, X.; Zhang, S.; Zhao, Y.; Shi, R.; Zhang, T. Layered Double Hydroxide-Based Photocatalytic Materials toward Renewable Solar Fuels Production. InfoMat 2021, 3, 719–738. [Google Scholar] [CrossRef]
- Hong, J.; Zhang, W.; Wang, Y.; Zhou, T.; Xu, R. Photocatalytic Reduction of Carbon Dioxide over Self-Assembled Carbon Nitride and Layered Double Hydroxide: The Role of Carbon Dioxide Enrichment. ChemCatChem 2014, 6, 2315–2321. [Google Scholar] [CrossRef]
- Zhitova, E.S.; Krivovichev, S.V.; Pekov, I.V.; Yakovenchuk, V.N.; Pakhomovsky, Y.A. Correlation between the D-Value and the M2+:M3+ Cation Ratio in Mg–Al–CO3 Layered Double Hydroxides. Appl. Clay Sci. 2016, 130, 2–11. [Google Scholar] [CrossRef]
- Sakr, A.A.-E.; Zaki, T.; Elgabry, O.; Ebiad, M.A.; El-Sabagh, S.M.; Emara, M.M. Mg-Zn-Al LDH: Influence of Intercalated Anions on CO2 Removal from Natural Gas. Appl. Clay Sci. 2018, 160, 263–269. [Google Scholar] [CrossRef]
- Tan, L.; Xu, S.; Wang, Z.; Xu, Y.; Wang, X.; Hao, X.; Bai, S.; Ning, C.; Wang, Y.; Zhang, W.; et al. Highly Selective Photoreduction of CO2 with Suppressing H2 Evolution over Monolayer Layered Double Hydroxide under Irradiation above 600 nm. Angew. Chem. 2019, 131, 11986–11993. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Z.; Bai, Y.; Tan, L.; Xu, Y.; Hao, X.; Wang, J.; Mahadi, A.H.; Zhao, Y.; Zheng, L.; et al. Tuning the Selectivity of Photoreduction of CO2 to Syngas over Pd/Layered Double Hydroxide Nanosheets under Visible Light up to 600 nm. J. Energy Chem. 2020, 46, 1–7. [Google Scholar] [CrossRef]
- Jiang, H.; Katsumata, K.-I.; Hong, J.; Yamaguchi, A.; Nakata, K.; Terashima, C.; Matsushita, N.; Miyauchi, M.; Fujishima, A. Photocatalytic Reduction of CO2 on Cu2O-Loaded Zn-Cr Layered Double Hydroxides. Appl. Catal. B Environ. 2018, 224, 783–790. [Google Scholar] [CrossRef]
- Amaro-Gahete, J.; Kaczmarek, A.M.; Esquivel, D.; Jiménez-Sanchidrián, C.; Van Der Voort, P.; Romero-Salguero, F.J. Luminescent Graphene-Based Materials via Europium Complexation on Dipyridylpyridazine-Functionalized Graphene Sheets. Chem. Eur. J. 2019, 25, 6823–6830. [Google Scholar] [CrossRef] [PubMed]
- Amaro-Gahete, J.; Benítez, A.; Otero, R.; Esquivel, D.; Jiménez-Sanchidrián, C.; Morales, J.; Caballero, Á.; Romero-Salguero, F.J. A Comparative Study of Particle Size Distribution of Graphene Nanosheets Synthesized by an Ultrasound-Assisted Method. Nanomaterials 2019, 9, 152. [Google Scholar] [CrossRef]
- Algarra, M.; Moreno, V.; Lázaro-Martínez, J.M.; Rodríguez-Castellón, E.; Soto, J.; Morales, J.; Benítez, A. Insights into the Formation of N Doped 3D-Graphene Quantum Dots. Spectroscopic and Computational Approach. J. Colloid Interface Sci. 2020, 561, 678–686. [Google Scholar] [CrossRef] [PubMed]
- Daud, M.; Kamal, M.S.; Shehzad, F.; Al-Harthi, M.A. Graphene/Layered Double Hydroxides Nanocomposites: A Review of Recent Progress in Synthesis and Applications. Carbon 2016, 104, 241–252. [Google Scholar] [CrossRef]
- Hiragond, C.; Ali, S.; Sorcar, S.; In, S.I. Hierarchical Nanostructured Photocatalysts for CO2 Photoreduction. Catalysts 2019, 9, 370. [Google Scholar] [CrossRef]
- Varadwaj, G.B.B.; Nyamori, V.O. Layered Double Hydroxide-and Graphene-Based Hierarchical Nanocomposites: Synthetic Strategies and Promising Applications in Energy Conversion and Conservation. Nano Res. 2016, 9, 3598–3621. [Google Scholar] [CrossRef]
- Cosano, D.; Esquivel, D.; Romero-Salguero, F.J.; Jiménez-Sanchidrián, C.; Ruiz, J.R. Microwave-Assisted Synthesis of Hybrid Organo-Layered Double Hydroxides Containing Cholate and Deoxycholate. Mater. Chem. Phys. 2019, 225, 28–33. [Google Scholar] [CrossRef]
- Paušová, Š.; Krýsa, J.; Jirkovský, J.; Forano, C.; Mailhot, G.; Prevot, V. Insight into the Photocatalytic Activity of ZnCr–CO3 LDH and Derived Mixed Oxides. Appl. Catal. B Environ. 2015, 170–171, 25–33. [Google Scholar] [CrossRef]
- Hirata, N.; Tadanaga, K.; Tatsumisago, M. Photocatalytic O2 Evolution from Water over Zn–Cr Layered Double Hydroxides Intercalated with Inorganic Anions. Mater. Res. Bull. 2015, 62, 1–4. [Google Scholar] [CrossRef]
- Koilraj, P.; Takemoto, M.; Tokudome, Y.; Bousquet, A.; Prevot, V.; Mousty, C. Electrochromic Thin Films Based on NiAl Layered Double Hydroxide Nanoclusters for Smart Windows and Low-Power Displays. ACS Appl. Nano Mater. 2020, 3, 6552–6562. [Google Scholar] [CrossRef]
- Bai, L.; Xue, N.; Zhao, Y.; Wang, X.; Lu, C.; Shi, W. Dual-Mode Emission of Single-Layered Graphene Quantum Dots in Confined Nanospace: Anti-Counterfeiting. Nano Res. 2018, 11, 2034–2045. [Google Scholar] [CrossRef]
- Ahmed, A.A.A.; Talib, Z.A.; Hussein, M.Z. Influence of Sodium Dodecyl Sulfate Concentration on the Photocatalytic Activity and Dielectric Properties of Intercalated Sodium Dodecyl Sulfate into Zn–Cd–Al Layered Double Hydroxide. Mater. Res. Bull. 2015, 62, 122–131. [Google Scholar] [CrossRef]
- Wu, X.; Wang, S.; Du, N.; Zhang, R.; Hou, W. Facile Synthesis of Deoxycholate Intercalated Layered Double Hydroxide Nanohybrids via a Coassembly Process. J. Solid State Chem. 2013, 203, 181–186. [Google Scholar] [CrossRef]
- EL Mersly, L.; El Mouchtari, E.M.; Moujahid, E.M.; Forano, C.; El Haddad, M.; Briche, S.; Alaoui Tahiri, A.; Rafqah, S. ZnCr-LDHs with Dual Adsorption and Photocatalysis Capability for the Removal of Acid Orange 7 Dye in Aqueous Solution. J. Sci. Adv. Mater. Devices 2021, 6, 118–126. [Google Scholar] [CrossRef]
- Pavel, O.D.; Şerban, A.; Zăvoianu, R.; Bacalum, E.; Bîrjega, R. Curcumin Incorporation into Zn3Al Layered Double Hydroxides—Preparation, Characterization and Curcumin Release. Crystals 2020, 10, 244. [Google Scholar] [CrossRef]
- Tichit, D.; Lorret, O.; Coq, B.; Prinetto, F.; Ghiotti, G. Synthesis and Characterization of Zn/Al and Pt/Zn/Al Layered Double Hydroxides Obtained by the Sol–Gel Method. Microporous Mesoporous Mater. 2005, 80, 213–220. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, L.; Hu, L.; Huang, S.; Jin, Z.; Zhang, M.; Huang, X.; Lu, J.; Ruan, S.; Zeng, Y.J. Multifunctional Zn–Al Layered Double Hydroxides for Surface-Enhanced Raman Scattering and Surface-Enhanced Infrared Absorption. Dalton Trans. 2019, 48, 426–434. [Google Scholar] [CrossRef]
- Zhou, B.; Yang, Y.; Liu, Z.; Wu, N.; Yan, Y.; Wenhua, Z.; He, H.; Du, J.; Zhang, Y.; Zhou, Y.; et al. Boosting Photocatalytic CO2 Reduction via Schottky Junction with ZnCr Layered Double Hydroxide Nanoflakes Aggregated on 2D Ti3C2Tx Cocatalyst. Nanoscale 2022, 14, 7538–7546. [Google Scholar] [CrossRef]
- Rinawati, M.; Wang, Y.-X.; Huang, W.-H.; Wu, Y.-T.; Cheng, Y.-S.; Kurniawan, D.; Haw, S.-C.; Chiang, W.-H.; Su, W.-N.; Yeh, M.-H. Unraveling the Efficiency of Heteroatom-Doped Graphene Quantum Dots Incorporated MOF-Derived Bimetallic Layered Double Hydroxide towards Oxygen Evolution Reaction. Carbon 2022, 200, 437–447. [Google Scholar] [CrossRef]
- Islam, M.R.; Guo, Z.; Rutman, D.; Benson, T.J. Immobilization of Triazabicyclodecene in Surfactant Modified Mg/Al Layered Double Hydroxides. RSC Adv. 2013, 3, 24247. [Google Scholar] [CrossRef]
- Mohapatra, L.; Parida, K.M. Zn–Cr Layered Double Hydroxide: Visible Light Responsive Photocatalyst for Photocatalytic Degradation of Organic Pollutants. Sep. Purif. Technol. 2012, 91, 73–80. [Google Scholar] [CrossRef]
- Lan, M.; Fan, G.; Yang, L.; Li, F. Significantly Enhanced Visible-Light-Induced Photocatalytic Performance of Hybrid Zn-Cr Layered Double Hydroxide/Graphene Nanocomposite and the Mechanism Study. Ind. Eng. Chem. Res. 2014, 53, 12943–12952. [Google Scholar] [CrossRef]
- Ţucureanu, V.; Matei, A.; Avram, A.M. FTIR Spectroscopy for Carbon Family Study. Crit. Rev. Anal. Chem. 2016, 46, 502–520. [Google Scholar] [CrossRef] [PubMed]
- Diao, J.; Wang, T.; Li, L. Graphene Quantum Dots as Nanoprobes for Fluorescent Detection of Propofol in Emulsions. R. Soc. Open Sci. 2019, 6, 181753. [Google Scholar] [CrossRef]
- Zhang, J.; Xie, X.; Li, C.; Wang, H.; Wang, L. The Role of Soft Colloidal Templates in the Shape Evolution of Flower-like MgAl-LDH Hierarchical Microstructures. RSC Adv. 2015, 5, 29757–29765. [Google Scholar] [CrossRef]
- Teng, W.; Sun, Z.; Xie, J.; Wang, Z.; Zheng, X.; Tang, B. In-Situ Formation of Amorphous Co-Al-P Layer on CoAl Layered Double Hydroxide Nanoarray as Neutral Electrocatalysts for Hydrogen Evolution Reaction. Front. Chem. 2020, 8, 552795. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.; Cao, Y. Cube Cu2O Modified CoAL-LDH p-n Heterojunction for Photocatalytic Hydrogen Evolution. Int. J. Energy Res. 2021, 45, 19014–19027. [Google Scholar] [CrossRef]
- Williams, D.B.; Barry Carter, C. Transmission Electron Microscopy, 2nd ed.; Springer: New York, NY, USA, 2009; ISBN 978-0-387-76501-3. [Google Scholar]
- Patra, P.P.; Chikkaraddy, R.; Tripathi, R.P.N.; Dasgupta, A.; Kumar, G.V.P. Plasmofluidic Single-Molecule Surface-Enhanced Raman Scattering from Dynamic Assembly of Plasmonic Nanoparticles. Nat. Commun. 2014, 5, 4357. [Google Scholar] [CrossRef]
- Jones, A.R. Light Scattering for Particle Characterization. Prog. Energy Combust. Sci. 1999, 25, 1–53. [Google Scholar] [CrossRef]
- Che, M.; Bennett, C.O. The Influence of Particle Size on the Catalytic Properties of Supported Metals. In Advances in Catalysis; Academic Press: Cambridge, MA, USA, 1989; Volume 36, pp. 55–172. [Google Scholar]
- Sing, K.S.W. Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity (Recommendations 1984). Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Bouteraa, S.; Saiah, F.B.D.; Hamouda, S.; Bettahar, N. Zn-M-CO3 Layered Double Hydroxides (M=Fe, Cr, or Al): Synthesis, Characterization, and Removal of Aqueous Indigo Carmine. Bull. Chem. React. Eng. Catal. 2020, 15, 43–54. [Google Scholar] [CrossRef]
- Sahoo, D.P.; Patnaik, S.; Parida, K. An Amine Functionalized ZnCr LDH/MCM-41 Nanocomposite as Efficient Visible Light Induced Photocatalyst for Cr(VI) Reduction. Mater. Today Proc. 2021, 35, 252–257. [Google Scholar] [CrossRef]
- Li, P.; Hu, H.; Luo, G.; Zhu, S.; Guo, L.; Qu, P.; Shen, Q.; He, T. Crystal Facet-Dependent CO2 Photoreduction over Porous ZnO Nanocatalysts. ACS Appl. Mater. Interfaces 2020, 12, 56039–56048. [Google Scholar] [CrossRef]
- Sayed, M.; Xu, F.; Kuang, P.; Low, J.; Wang, S.; Zhang, L.; Yu, J. Sustained CO2-Photoreduction Activity and High Selectivity over Mn, C-Codoped ZnO Core-Triple Shell Hollow Spheres. Nat. Commun. 2021, 12, 4936. [Google Scholar] [CrossRef]
- Wang, Y.; Fan, G.; Wang, S.; Li, Y.; Guo, Y.; Luan, D.; Gu, X.; Lou, X.W. (David) Implanting CoOx Clusters on Ordered Macroporous ZnO Nanoreactors for Efficient CO2 Photoreduction. Adv. Mater. 2022, 34, 2204865. [Google Scholar] [CrossRef]
- Stanley, P.M.; Su, A.Y.; Ramm, V.; Fink, P.; Kimna, C.; Lieleg, O.; Elsner, M.; Lercher, J.A.; Rieger, B.; Warnan, J.; et al. Photocatalytic CO2-to-Syngas Evolution with Molecular Catalyst Metal-Organic Framework Nanozymes. Adv. Mater. 2023, 35, 2207380. [Google Scholar] [CrossRef]
- Wang, S.; Yao, W.; Lin, J.; Ding, Z.; Wang, X. Cobalt Imidazolate Metal-Organic Frameworks Photosplit CO2 under Mild Reaction Conditions. Angew. Chem. Int. Ed. 2014, 53, 1034–1038. [Google Scholar] [CrossRef]
- Rojas-Luna, R.; Castillo-Rodríguez, M.; Ruiz, J.R.; Jiménez-Sanchidrián, C.; Esquivel, D.; Romero-Salguero, F.J. Ru- and Ir-Complex Decorated Periodic Mesoporous Organosilicas as Sensitizers for Artificial Photosynthesis. Dalton Trans. 2022, 51, 18708–18721. [Google Scholar] [CrossRef]
- Gao, C.; Chen, S.; Wang, Y.; Wang, J.; Zheng, X.; Zhu, J.; Song, L.; Zhang, W.; Xiong, Y. Heterogeneous Single-Atom Catalyst for Visible-Light-Driven High-Turnover CO2 Reduction: The Role of Electron Transfer. Adv. Mater. 2018, 30, 1704624. [Google Scholar] [CrossRef]
- Dong, Y.; Shao, J.; Chen, C.; Li, H.; Wang, R.; Chi, Y.; Lin, X.; Chen, G. Blue Luminescent Graphene Quantum Dots and Graphene Oxide Prepared by Tuning the Carbonization Degree of Citric Acid. Carbon 2012, 50, 4738–4743. [Google Scholar] [CrossRef]
- Navarro, M.; Sain, S.; Wünschek, M.; Pichler, C.; Romero-Salguero, F.J.; Esquivel, D.; Roy, S. Solar Driven CO₂ Reduction with a Molecularly Engineered Periodic Mesoporous Organosilica Containing Cobalt Phthalocyanine. Nanoscale 2023, 15, 2114–2121. [Google Scholar] [CrossRef] [PubMed]
Sample | Zn (mmol/g) | Cr (mmol/g) | Zn/Cr Molar Ratio |
---|---|---|---|
LDH2-Cl | 5.11 | 2.42 | 2.1 |
LDH3-Cl | 5.88 | 1.78 | 3.3 |
LDH4-Cl | 6.26 | 1.51 | 4.1 |
LDH3-GQD | 5.64 | 1.68 | 3.3 |
LDH3-SDS | 4.19 | 1.20 | 3.5 |
LDH3-SDC | 2.64 | 0.91 | 3.5 |
Sample | d003 (nm) a | c (nm) a | a (nm) a | D (nm) b |
---|---|---|---|---|
LDH2-Cl | 0.79 | 2.35 | 0.31 | 3.352 |
LDH3-Cl | 0.78 | 2.34 | 0.31 | 4.157 |
LDH4-Cl | 0.78 | 2.33 | 0.31 | 3.960 |
LDH3-GQD | 1.21 | 3.65 | 0.31 | 5.417 |
LDH3-SDS | 2.60 | 7.74 | 0.31 | 20.758 |
LDH3-SDC | 3.27 | 10.00 | 0.31 | 41.497 |
Sample | SBET (m2/g) | Pore Diameter (nm) | Pore Volume (cm3/g) |
---|---|---|---|
LDH2-Cl | 1 | 3.9 | 0.003 |
LDH3-Cl | 5 | 4.0 | 0.005 |
LDH4-Cl | 54 | 4.4 | 0.059 |
LDH3-GQD | 111 | 12.2 | 0.340 |
LDH3-SDS | 4 | 8.9 | 0.008 |
LDH3-SDC | 42 | 11.4 | 0.121 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gil-Gavilán, D.G.; Cosano, D.; Amaro-Gahete, J.; Castillo-Rodríguez, M.; Esquivel, D.; Ruiz, J.R.; Romero-Salguero, F.J. Zn-Cr Layered Double Hydroxides for Photocatalytic Transformation of CO2 under Visible Light Irradiation: The Effect of the Metal Ratio and Interlayer Anion. Catalysts 2023, 13, 1364. https://doi.org/10.3390/catal13101364
Gil-Gavilán DG, Cosano D, Amaro-Gahete J, Castillo-Rodríguez M, Esquivel D, Ruiz JR, Romero-Salguero FJ. Zn-Cr Layered Double Hydroxides for Photocatalytic Transformation of CO2 under Visible Light Irradiation: The Effect of the Metal Ratio and Interlayer Anion. Catalysts. 2023; 13(10):1364. https://doi.org/10.3390/catal13101364
Chicago/Turabian StyleGil-Gavilán, Dolores G., Daniel Cosano, Juan Amaro-Gahete, Miguel Castillo-Rodríguez, Dolores Esquivel, José R. Ruiz, and Francisco J. Romero-Salguero. 2023. "Zn-Cr Layered Double Hydroxides for Photocatalytic Transformation of CO2 under Visible Light Irradiation: The Effect of the Metal Ratio and Interlayer Anion" Catalysts 13, no. 10: 1364. https://doi.org/10.3390/catal13101364
APA StyleGil-Gavilán, D. G., Cosano, D., Amaro-Gahete, J., Castillo-Rodríguez, M., Esquivel, D., Ruiz, J. R., & Romero-Salguero, F. J. (2023). Zn-Cr Layered Double Hydroxides for Photocatalytic Transformation of CO2 under Visible Light Irradiation: The Effect of the Metal Ratio and Interlayer Anion. Catalysts, 13(10), 1364. https://doi.org/10.3390/catal13101364