Impact of Current and Temperature on Extremely Low Loading Epoxy-CNT Conductive Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization and Measurement Tools
2.3. Epoxy-CNT Composite Fabrication Process
2.4. DC Electrical Resistivity Measurements
2.5. AC Electrical Resistivity Measurements
3. Results and Discussion
3.1. Impact of Current on Composites Resistivity
3.1.1. DC Measurements
3.1.2. AC Measurements
3.2. Impact of Temperature on Composites Resistivity
3.2.1. Temperature Increase Driven by DC Current
3.2.2. Imposed Temperature Alteration Using a Hot Plate
3.3. Impact of Cycle Life/Aging on Composite Resistivity
3.4. Conditions that Promote Surface Changes or Evidence of Incipient Failure
3.5. Mechanisms Responsible for the Electrical Properties Trends Observed
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- De Volder MF, L.; Tawfick, S.H.; Baughman, R.H.; Hart, A.J. Carbon Nanotubes: Present and Future Commercial Applications. Science 2013, 339, 535–539. [Google Scholar] [CrossRef] [Green Version]
- Harris, P.J.F. Carbon Nanotube Composites. Int. Mater. Rev. 2004, 49, 31–43. [Google Scholar] [CrossRef]
- Spitalsky, Z.; Tasis, D.; Papagelis, K.; Galiotis, C. Carbon Nanotube–Polymer Composites: Chemistry, Processing, Mechanical and Electrical Properties. Prog. Polym. Sci. 2010, 35, 357–401. [Google Scholar] [CrossRef]
- Bellucci, S.; Balasubramanian, C.; Micciulla, F.; Rinaldi, G. CNT Composites for Aerospace Applications. J. Exp. Nanosci. 2007, 2, 193–206. [Google Scholar] [CrossRef]
- Du, J.; Bai, J.; Cheng, H. The Present Status and Key Problems of Carbon Nanotube Based Polymer Composites. Express Polym. Lett. 2007, 1, 253–273. [Google Scholar] [CrossRef]
- Kumar, P.; Maiti, U.N.; Sikdar, A.; Das, T.K.; Kumar, A.; Sudarsan, V. Recent Advances in Polymer and Polymer Composites for Electromagnetic Interference Shielding: Review and Future Prospects. Polym. Rev. 2019, 59, 687–738. [Google Scholar] [CrossRef]
- Park, S.-H.; Ha, J.-H. Improved Electromagnetic Interference Shielding Properties Through the Use of Segregate Carbon Nanotube Networks. Materials 2019, 12, 1395. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Gupta, M.C.; Dudley, K.L. Studies on Electromagnetic Interference Shielding Characteristics of Metal Nanoparticle- and Carbon Nanostructure-Filled Polymer Composites in the Ku-Band Frequency. Micro Nano Lett. 2007, 2, 85–89. [Google Scholar] [CrossRef]
- Kausar, A.; Rafique, I.; Muhammad, B. Review of Applications of Polymer/Carbon Nanotube and Epoxy/CNT Composites. Polym. Plast. Technol. Eng. 2016, 55, 1167–1191. [Google Scholar] [CrossRef]
- Khan, W.; Sharma, R.; Saini, P. Carbon Nanotube-Based Polymer Composites: Synthesis, Properties, and Applications. In Carbon Nanotubes—Current Progress of Their Polymer Composites; Berber, M., Hafez, I., Eds.; InTech Open: London, UK, 2016; pp. 1–45. [Google Scholar]
- Yu, Y.-H.; Ma, C.-C.M.; Teng, C.-C.; Huang, Y.-L.; Lee, S.-H.; Wang, I.; Wei, M.-H. Electrical, Morphological, and Electromagnetic Interference Shielding Properties of Silver Nanowires and Nanoparticles Conductive Composites. Mater. Chem. Phys. 2012, 136, 334–340. [Google Scholar] [CrossRef]
- Wenderoth, K.; Petermann, J.; Kruse, K.-D.; Haseborg, J.-L.; Krieger, W. Synergism on Electromagnetic Inductance (EMI)-Shielding in Metal- and Ferroelectric-Particle Filled Polymers. Polym. Compos. 1989, 10, 52–56. [Google Scholar] [CrossRef]
- Ravindren, R.; Mondal, S.; Nath, K.; Das, N.C. Investigation of Electrical Conductivity and Electromagnetic Interference Shielding Effectiveness of Preferentially Distributed Conductive Filler in Highly Flexible Polymer Blends Nanocomposites. Compos. Part A Appl. Sci. Manuf. 2019, 118, 75–89. [Google Scholar] [CrossRef]
- Pang, H.; Xu, L.; Yan, D.-X.; Li, Z.-M. Conductive Polymer Composites with Segregated Structures. Prog. Polym. Sci. 2014, 39, 1908–1933. [Google Scholar] [CrossRef]
- Earp, B.; Simpson, J.; Phillips, J.; Grbovic, D.; Vidmar, S.; McCarthy, J.; Luhrs, C.C. Electrically Conductive CNT Composites at Loadings below Theoretical Percolation Values. Nanomaterials 2019, 9, 491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bauhofer, W.; Kovacs, J.Z. A Review and Analysis of Electrical Percolation in Carbon Nanotube Polymer Composites. Compos. Sci. Technol. 2009, 69, 1486–1498. [Google Scholar] [CrossRef]
- Li, J.; Ma, P.C.; Chow, W.S.; To, C.K.; Tang, B.Z.; Kim, J.-K. Correlations between Percolation Threshold, Dispersion State, and Aspect Ratio of Carbon Nanotubes. Adv. Funct. Mater. 2007, 17, 3207–3215. [Google Scholar] [CrossRef]
- Davis, C.; Orloff, N.; Woodcock, J.; Long, C.; Twedt, K.; Natarajan, B.; Seppala, J.; Mcclelland, J.; Liddle, J.; Gilman, J. Cure Temperature Influences Composite Electrical Properties by Carbon Nanotube-Rich Domain Formation. Compos. Sci. Technol. 2016, 133, 23–32. [Google Scholar] [CrossRef] [Green Version]
- Martin, C.A.; Sandler JK, W.; Shaffer MS, P.; Schwarz, M.K.; Bauhofer, W.; Schulte, K.; Windle, A.H. Formation of Percolating Networks in Multi-Wall Carbon-Nanotube-Epoxy Composites. Compos. Sci. Technol. 2004, 64, 2309–2316. [Google Scholar] [CrossRef]
- Sandler, J.; Shaffer MS, P.; Prasse, T.; Bauhofer, W.; Schulte, K.; Windle, A.H. Development of a Dispersion Process for Carbon Nanotubes in an Epoxy Matrix and the Resulting Electrical Properties. Polymer 1999, 40, 5967–5971. [Google Scholar] [CrossRef]
- Sandler, J.; Kirk, J.E.; Kinloch, I.; Shaffer MS, P.; Windle, A. Ultra-Low Electrical Percolation Threshold in Carbon–Nanotube–Epoxy Composites. Polymer 2003, 44, 5893–5899. [Google Scholar] [CrossRef]
- Nanocomp Technologies Products | Dispersed Products. Available online: https://www.miralon.com/dispersed-products (accessed on 21 January 2020).
- LOCTITE EA 9396 AERO Epoxy Paste Adhesive. Technical Process Bulletin 2013. Available online: http://www.aero-consultants.ch/view/data/3285/Produkte/Henkel%20Adhesive/LOCTITE%20EA%209396%20AERO.pdf (accessed on 21 January 2020).
- Mixing Containers | FlackTek Inc. Available online: https://speedmixer.com/products/mixing-containers/ (accessed on 21 January 2020).
- SpeedMixer Technology | FlackTek Inc. Available online: https://speedmixer.com/speedmixer-technology/ (accessed on 21 January 2020).
- Resistivity—Engineering LibreTexts 2016. Available online: https://eng.libretexts.org/Bookshelves/Materials_Science/Supplemental_Modules(Materials_Science)/Electronic_Properties/Resistivity (accessed on 28 January 2020).
- Properties of Semiconductors: Hitachi High-Technologies GLOBAL. Available online: https://www.hitachi-hightech.com/global/products/device/semiconductor/properties.html (accessed on 28 January 2020).
- Backes, E.H.; Sene, T.S.; Passador, F.R.; Pessan, L.A.; Pessan, L.A. Electrical, Thermal and Mechanical Properties of Epoxy/CNT/Calcium Carbonate Nanocomposites. Mater. Res. 2018, 21. [Google Scholar] [CrossRef] [Green Version]
- Solymar, L.; Walsh, D.; Syms RR, A. Semiconductors. In Electrical Properties of Materials, 10th ed.; Oxford University Press: Oxford, UK, 2018. [Google Scholar]
- Shen, J.T.; Buschhorn, S.T.; De Hosson JTh, M.; Schulte, K.; Fiedler, B. Pressure and Temperature Induced Electrical Resistance Change in Nano-Carbon/Epoxy Composites. Compos. Sci. Technol. 2015, 115, 1–8. [Google Scholar] [CrossRef]
- Sanli, A. Investigation of Temperature Effect on the Electrical Properties of MWCNTs/Epoxy Nanocomposites by Electrochemical Impedance Spectroscopy. Adv. Compos. Mater. 2019, 29, 31–41. [Google Scholar] [CrossRef]
- Simsek, Y.; Ozyuzer, L.; Seyhan, A.; Tanoglu, M.; Karl, S. Temperature Dependence of Electrical Conductivity in Double-Wall and Multi-Wall Carbon Nanotube/Polyester Nanocomposites. J. Mater. Sci. 2007, 42, 9689–9695. [Google Scholar] [CrossRef] [Green Version]
- Mohiuddin, M.; Van Hoa, S. Electrical Resistance of CNT-PEEK Composites under Compression at Different Temperatures. Nanoscale Res. Lett. 2011, 6, 419. [Google Scholar] [CrossRef] [Green Version]
- Sau, K.P.; Chaki, T.K.; Khastgir, D. Conductive Rubber Composites from Different Blends of Ethylene–Propylene–Diene Rubber and Nitrile Rubber. J. Mater. Sci. 1997, 32, 5717–5724. [Google Scholar] [CrossRef]
- Lasater, K.L.; Thostenson, E.T. In Situ Thermoresistive Characterization of Multifunctional Composites of Carbon Nanotubes. Polymer 2012, 53, 5367–5374. [Google Scholar] [CrossRef]
- Bocharov, G.S.; Eletskii, A.V.; Knizhnik, A.A. Nonlinear Resistance of Polymer Composites with Carbon Nanotube Additives in the Percolation State. Tech. Phys. 2016, 61, 1506–1510. [Google Scholar] [CrossRef]
- Chiolerio, A.; Castellino, M.; Jagdale, P.; Giorcelli, M.; Bianco, S.; Tagliaferro, A. Electrical Properties of CNT-Based Polymeric Matrix Nanocomposites. In Carbon Nanotubes—Polymer Nanocomposites; Yellampalli, S., Ed.; Intech Open: London, UK, 2011; pp. 215–230. [Google Scholar]
- Lau, K.T.; Shi, S.Q. Failure Mechanisms of Carbon Nanotube/Epoxy Composites Pretreated in Different Temperature Environments. Carbon 2002, 40, 2965–2968. [Google Scholar] [CrossRef]
- Yang, C.-K.; Lee, Y.-R.; Hsieh, T.-H.; Chen, T.-H.; Cheng, T.-C. Mechanical Property of Multiwall Carbon Nanotube Reinforced Polymer Composites. Polym. Polym. Compos. 2018, 26, 99–104. [Google Scholar] [CrossRef]
- Laurenzi, S.; Botti, S.; Rufoloni, A.; Santonicola, M.G. Fracture Mechanisms in Epoxy Composites Reinforced with Carbon Nanotubes. Procedia Eng. 2014, 88, 157–164. [Google Scholar] [CrossRef] [Green Version]
- Schlagenhauf, L.; Kuo, Y.-Y.; Bahk, Y.K.; Nüesch, F.; Wang, J. Decomposition and Particle Release of a Carbon Nanotube/Epoxy Nanocomposite at Elevated Temperatures. J. Nanopart. Res. 2015, 17, 440. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Xue, Q.Z.; Gao, X.L.; Zheng, Q.B. Temperature Dependence of the Electrical Properties of the Carbon Nanotube/Polymer Composites. Express Polym. Lett. 2009, 3, 769–777. [Google Scholar] [CrossRef]
- Sheng, P. Fluctuation-Induced Tunneling Conduction in Disordered Materials. Phys. Rev. B 1980, 21, 2180–2195. [Google Scholar] [CrossRef] [Green Version]
- Kovacs, J.Z.; Velagala, B.S.; Schulte, K.; Bauhofer, W. Two Percolation Thresholds in Carbon Nanotube Epoxy Composites. Compos. Sci. Technol. 2007, 67, 922–928. [Google Scholar] [CrossRef] [Green Version]
- De Vivo, B.; Lamberti, P.; Tucci, V.; Kuzhir, P.P.; Maksimenko, S.A.; Bellucci, S. Equivalent Electric Circuits for the Simulation of Carbon Nanotube-Epoxy Composites. IEEE Trans. Nanotechnol. 2013, 12, 696–703. [Google Scholar] [CrossRef]
- Cen-Puc, M.; Oliva-Avilés, A.I.; Avilés, F. Thermoresistive Mechanisms of Carbon Nanotube/Polymer Composites. Phys. E Low Dimens. Syst. Nanostruct. 2018, 95, 41–50. [Google Scholar] [CrossRef]
- Li, C.; Thostenson, E.T.; Chou, T.-W. Dominant Role of Tunneling Resistance in the Electrical Conductivity of Carbon Nanotube–Based Composites. Appl. Phys. Lett. 2007, 91, 223114. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Earp, B.; Phillips, J.; Grbovic, D.; Vidmar, S.; Porter, M.; Luhrs, C.C. Impact of Current and Temperature on Extremely Low Loading Epoxy-CNT Conductive Composites. Polymers 2020, 12, 867. https://doi.org/10.3390/polym12040867
Earp B, Phillips J, Grbovic D, Vidmar S, Porter M, Luhrs CC. Impact of Current and Temperature on Extremely Low Loading Epoxy-CNT Conductive Composites. Polymers. 2020; 12(4):867. https://doi.org/10.3390/polym12040867
Chicago/Turabian StyleEarp, Brian, Jonathan Phillips, Dragoslav Grbovic, Stephen Vidmar, Matthew Porter, and Claudia C. Luhrs. 2020. "Impact of Current and Temperature on Extremely Low Loading Epoxy-CNT Conductive Composites" Polymers 12, no. 4: 867. https://doi.org/10.3390/polym12040867
APA StyleEarp, B., Phillips, J., Grbovic, D., Vidmar, S., Porter, M., & Luhrs, C. C. (2020). Impact of Current and Temperature on Extremely Low Loading Epoxy-CNT Conductive Composites. Polymers, 12(4), 867. https://doi.org/10.3390/polym12040867