Thermoresponsive Polymer Gating System on Mesoporous Shells of Silica Particles Serving as Smart Nanocontainers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.3. Procedures
2.3.1. Synthesis of Solid Cores and Mesoporous Shells (SCMS) and Solid Core (SC) Nanoparticles
2.3.2. Synthesis of SCMS-PNIPAM and SC-PNIPAM Nanoparticles
2.3.3. Adsorption Studies of Rhodamine 6G
2.3.4. Releasing of Rhodamine 6G from Nanoparticles
2.3.5. Determination of the Lower Critical Solution Temperature (LCST) Value Using Dynamic Light Scattering (DLS)
3. Results
3.1. Characterization of SC-PNIPAM and SCMS-PNIPAM
3.1.1. FTIR Spectra
3.1.2. Thermogravimetric Analysis
3.1.3. Elemental Analysis
3.1.4. Cryo-TEM Imaging
3.2. Adsorption of Rh6G within SCMS-PNIPAM and SC-PNIPAM Particles
3.2.1. Adsorption of the Rh6G Dye
3.2.2. Release of Cargo Molecules to Water/Methanol Mixture
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Beck, J.S.; Vartuli, J.C.; Roth, W.J.; Leonowicz, M.E.; Kresge, C.T.; Schmitt, K.D.; Chu, C.T.W.; Olson, D.H.; Sheppard, E.W.; McCullen, S.B.; et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 1992, 114, 10834–10843. [Google Scholar] [CrossRef]
- Kresge, C.T.; Leonowicz, M.E.; Roth, W.J.; Vartuli, J.C.; Beck, J.S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 1992, 359, 710–712. [Google Scholar] [CrossRef]
- Lakhi, K.S.; Singh, G.; Kim, S.; Baskar, A.V.; Joseph, S.; Yang, J.H.; Ilbeygi, H.; Ruban, S.J.M.; Vu, V.T.H.; Vinu, A. Mesoporous Cu-SBA-15 with highly ordered porous structure and its excellent CO2 adsorption capacity. Microporous Mesoporous Mater. 2018, 267, 134–141. [Google Scholar] [CrossRef]
- Chen, A.; Mu, H.; Zuo, C.; Chen, Y. Fabrication, characterization, and CMP performance of dendritic mesoporous-silica composite particles with tunable pore sizes. J. Alloy. Compd. 2019, 770, 335–344. [Google Scholar] [CrossRef]
- Kruk, M.; Jaroniec, M.; Sayari, A. A unified interpretation of high-temperature pore size expansion processes in MCM-41 mesoporous silicas. J. Phys. Chem. B 1999, 103, 4590–4598. [Google Scholar] [CrossRef]
- Berggren, A.; Palmqvist, A.E.C.; Holmberg, K. Surfactant-templated mesostructured materials from inorganic silica. Soft Matter 2005, 1, 219–226. [Google Scholar] [CrossRef]
- Trofimova, E.Y.; Kurdyukov, D.A.; Yakovlev, S.A.; Kirilenko, D.A.; Yu, A.K.; Nashchekin, A.V.; Sitnikova, A.A.; Yagovkina, M.A.; Golubev, V.G. Monodisperse spherical mesoporous silica particles: Fast synthesis procedure and fabrication of photonic-crystal films. Nanotechnology 2013, 24, 155601–155612. [Google Scholar] [CrossRef]
- Baliś, A.; Zapotoczny, S. Tailored synthesis of core-shell mesoporous silica particles—Optimization of dye sorption properties. Nanomaterials 2018, 8. [Google Scholar] [CrossRef] [Green Version]
- Shi, X.; Kong, Y.; Qin, H.; Han, B.; Chen, Y.; Wang, J.; Li, Z.; Lu, Y. The complete control for the nanosize of spherical MCM-41. J. Nanosci. Nanotechnol. 2012, 12, 7239–7249. [Google Scholar] [CrossRef]
- Qiao, Z.A.; Zhang, L.; Guo, M.; Liu, Y.; Huo, Q. Synthesis of mesoporous silica nanoparticles via controlled hydrolysis and condensation of silicon alkoxide. Chem. Mater. 2009, 21, 3823–3829. [Google Scholar] [CrossRef]
- Singh, L.P.; Bhattacharyya, S.K.; Mishra, G.; Ahalawat, S. Functional role of cationic surfactant to control the nano size of silica powder. Appl. Nanosci. 2011, 1, 117–122. [Google Scholar] [CrossRef] [Green Version]
- Chiu, H.Y.; Gößl, D.; Haddick, L.; Engelke, H.; Bein, T. Clickable multifunctional large-pore mesoporous silica nanoparticles as nanocarriers. Chem. Mater. 2018, 30, 644–654. [Google Scholar] [CrossRef]
- Chen, L.; Li, L.; Zhang, L.; Xing, S.; Wang, T.; Wang, Y.A.; Wang, C.; Su, Z. Designed fabrication of unique eccentric mesoporous silica nanocluster-based core-shell nanostructures for pH-responsive drug delivery. ACS Appl. Mater. Interfaces 2013, 5, 7282–7290. [Google Scholar] [CrossRef] [PubMed]
- Vallet-Regí, M.; Balas, F.; Arcos, D. Mesoporous materials for drug delivery. Angew. Chem. Int. Ed. 2007, 46, 7548–7558. [Google Scholar] [CrossRef]
- Jinisha, R.; Gandhimathi, R.; Ramesh, S.T.; Nidheesh, P.V.; Velmathi, S. Removal of rhodamine B dye from aqueous solution by electro-Fenton process using iron-doped mesoporous silica as a heterogeneous catalyst. Chemosphere 2018, 200, 446–454. [Google Scholar] [CrossRef]
- de Freitas, F.A.; Keils, D.; Lachter, E.R.; Maia, C.E.B.; Pais da Silva, M.I.; Veiga Nascimento, R.S. Synthesis and evaluation of the potential of nonionic surfactants/mesoporous silica systems as nanocarriers for surfactant controlled release in enhanced oil recovery. Fuel 2019, 241, 1184–1194. [Google Scholar] [CrossRef]
- Tanev, P.T.; Malama, C.; Pinnavaia, T.J. Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds. Nature 1994, 368, 321–323. [Google Scholar] [CrossRef]
- Kowalczyk, A.; Święs, A.; Gil, B.; Rutkowska, M.; Piwowarska, Z.; Borcuch, A.; Michalik, M.; Chmielarz, L. Effective catalysts for the low-temperature NH3-SCR process based on MCM-41 modified with copper by template ion-exchange (TIE) method. Appl. Catal. B Environ. 2018, 237, 927–937. [Google Scholar] [CrossRef]
- Yu, Z.; Zhou, P.; Pan, W.; Li, N.; Tang, B. A biomimetic nanoreactor for synergistic chemiexcited photodynamic therapy and starvation therapy against tumor metastasis. Nat. Commun. 2018, 9, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Rohani, S.; Mohammadi Ziarani, G.; Badiei, A.; Ziarati, A.; Jafari, M.; Shayesteh, A. Palladium-anchored multidentate SBA-15/di-urea nanoreactor: A highly active catalyst for Suzuki coupling reaction. Appl. Organomet. Chem. 2018, 32, e4397. [Google Scholar] [CrossRef]
- Qian, B.; Michailidis, M.; Bilton, M.; Hobson, T.; Zheng, Z.; Shchukin, D. Tannic complexes coated nanocontainers for controlled release of corrosion inhibitors in self-healing coatings. Electrochim. Acta 2019, 297, 1035–1041. [Google Scholar] [CrossRef]
- Xu, J.B.; Cao, Y.Q.; Fang, L.; Hu, J.M. A one-step preparation of inhibitor-loaded silica nanocontainers for self-healing coatings. Corros. Sci. 2018, 140, 349–362. [Google Scholar] [CrossRef]
- Xu, X.; Liu, Y.; Fu, W.; Yao, M.; Ding, Z.; Xuan, J.; Li, D.; Wang, S.; Xia, Y.; Cao, M. Poly(N-isopropylacrylamide)-Based Thermoresponsive Composite Hydrogels for Biomedical Applications. Polymers 2020, 12, 580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dworak, A.; Lipowska, D.; Szweda, D.; Suwinski, J.; Trzebicka, B.; Szweda, R. Degradable polymeric nanoparticles by aggregation of thermoresponsive polymers and “click” chemistry. Nanoscale 2015, 7, 16823–16833. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Zeng, M.; Yu, Y.H.; Wang, H.; Mannan, M.S.; Cheng, Z. Thermosensitive ZrP-PNIPAM Pickering Emulsifier and the Controlled-Release Behavior. ACS Appl. Mater. Interfaces 2017, 9, 7852–7858. [Google Scholar] [CrossRef]
- Lipowska-Kur, D.; Szweda, R.; Trzebicka, B.; Dworak, A. Preparation and characterization of doxorubicin nanocarriers based on thermoresponsive oligo(ethylene glycol) methyl ether methacrylate polymer-drug conjugates. Eur. Polym. J. 2018, 109, 391–401. [Google Scholar] [CrossRef]
- Wu, L.; Zong, L.; Ni, H.; Liu, X.; Wen, W.; Feng, L.; Cao, J.; Qi, X.; Ge, Y.; Shen, S. Magnetic thermosensitive micelles with upper critical solution temperature for NIR triggered drug release. Biomater. Sci. 2019, 7, 2134–2143. [Google Scholar] [CrossRef]
- Ambrogio, M.W.; Thomas, C.R.; Zhao, Y.L.; Zink, J.I.; Stoddart, J.F. Mechanized silica nanoparticles: A new frontier in theranostic nanomedicine. Acc. Chem. Res. 2011, 44, 903–913. [Google Scholar] [CrossRef] [Green Version]
- Trewyn, B.G.; Slowing, I.I.; Giri, S.; Chen, H.-T.; Lin, V.S. Synthesis and functionalization of a mesoporous silica nanoparticle based on the sol-gel process and applications in controlled release. Acc. Chem. Res. 2007, 40, 846–853. [Google Scholar] [CrossRef] [Green Version]
- Tanjim, M.; Rahman, M.A.; Rahman, M.M.; Minami, H.; Hoque, S.M.; Sharafat, M.K.; Gafur, M.A.; Ahmad, H. Mesoporous magnetic silica particles modified with stimuli-responsive P(NIPAM-DMA) valve for controlled loading and release of biologically active molecules. Soft Matter 2018, 14, 5469–5479. [Google Scholar] [CrossRef]
- Aznar, E.; Oroval, M.; Pascual, L.; Murguía, J.R.; Martínez-Mánez, R.; Sancenón, F. Gated materials for on-command release of guest molecules. Chem. Rev. 2016, 116, 561–718. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Cui, Z.; Cao, C.; He, W.; Lei, J.; Wei-Guo, S. Temperature-responsive smart nanoreactors: Poly(N-isopropylacrylamide)-coated Au@Mesoporous-SiO2 hollow nanospheres. Langmuir 2012, 13452–13458. [Google Scholar] [CrossRef] [PubMed]
- Pomorska, A.; Wolski, K.; Puciul-Malinowska, A.; Zapotoczny, S. Tailored conditions for controlled and fast growth of surface-grafted PNIPAM brushes. Polymer 2016, 97, 380–386. [Google Scholar] [CrossRef]
- Schulz, A.S.; Gojzewski, H.; Huskens, J.; Vos, W.L.; Julius Vancso, G. Controlled sub-10-nanometer poly(N-isopropyl-acrylamide) layers grafted from silicon by atom transfer radical polymerization. Polym. Adv. Technol. 2018, 29, 806–813. [Google Scholar] [CrossRef] [Green Version]
- Benetti, B.E.M.; Zapotoczny, S.; Vancso, G.J. Tunable thermoresponsive polymeric platforms on gold by “photoiniferter”—Based surface grafting**. Adv. Mater. 2007, 19, 268–271. [Google Scholar] [CrossRef]
- Morgese, G.; Verbraeken, B.; Ramakrishna, S.N.; Gombert, Y.; Cavalli, E.; Rosenboom, J.G.; Zenobi-Wong, M.; Spencer, N.D.; Hoogenboom, R.; Benetti, E.M. Chemical Design of Non-Ionic Polymer Brushes as Biointerfaces: Poly(2-oxazine)s Outperform Both Poly(2-oxazoline)s and PEG. Angew. Chem. Int. Ed. 2018, 57, 11667–11672. [Google Scholar] [CrossRef] [Green Version]
- Gieseler, D.; Jordan, R. Poly(2-oxazoline) molecular brushes by grafting through of poly(2-oxazoline)methacrylates with aqueous ATRP. Polym. Chem. 2015, 6, 4678–4689. [Google Scholar] [CrossRef] [Green Version]
- Heskins, M.; Guillet, J.E. Solution Properties of Poly(N-isopropylacrylamide). J. Macromol. Sci. Part A-Chem. 1968, 2, 1441–1455. [Google Scholar] [CrossRef]
- Stuart, M.A.C.; Huck, W.T.S.; Genzer, J.; Müller, M.; Ober, C.; Stamm, M.; Sukhorukov, G.B.; Szleifer, I.; Tsukruk, V.V.; Urban, M.; et al. Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 2010, 9, 101–113. [Google Scholar] [CrossRef]
- Zhang, A.; Jung, K.; Li, A.; Liu, J.; Boyer, C. Recent advances in stimuli-responsive polymer systems for remotely controlled drug release. Prog. Polym. Sci. 2019, 99, 101164. [Google Scholar] [CrossRef]
- Brunella, V.; Jadhav, S.A.; Miletto, I.; Berlier, G.; Ugazio, E.; Sapino, S.; Scalarone, D. Hybrid drug carriers with temperature-controlled on-off release: A simple and reliable synthesis of PNIPAM-functionalized mesoporous silica nanoparticles. React. Funct. Polym. 2016, 98, 31–37. [Google Scholar] [CrossRef]
- Humphreys, B.A.; Prescott, S.W.; Murdoch, T.J.; Nelson, A.; Gilbert, E.P.; Webber, G.B.; Wanless, E.J. Influence of molecular weight on PNIPAM brush modified colloidal silica particles. Soft Matter 2019, 15, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Szuwarzyński, M.; Zaraska, L.; Sulka, G.D.; Zapotoczny, S. Pulsatile releasing platform of nanocontainers equipped with thermally responsive polymeric nanovalves. Chem. Mater. 2013, 25, 514–520. [Google Scholar] [CrossRef]
- Pomorska, A.; Wolski, K.; Wytrwal-Sarna, M.; Bernasik, A.; Zapotoczny, S. Polymer brushes grafted from nanostructured zinc oxide layers—Spatially controlled decoration of nanorods. Eur. Polym. J. 2019, 112, 186–194. [Google Scholar] [CrossRef]
- Wang, J.S.; Matyjaszewski, K. Controlled/“Living” Radical Polymerization. Atom Transfer Radical Polymerization in the Presence of Transition-Metal Complexes. J. Am. Chem. Soc. 1995, 117, 5614–5615. [Google Scholar] [CrossRef]
- Chmielarz, P. Synthesis of inositol-based star polymers through low ppm ATRP methods. Polym. Adv. Technol. 2017, 28, 1804–1812. [Google Scholar] [CrossRef]
- Wolski, K.; Gruszkiewicz, A.; Wytrwal-Sarna, M.; Bernasik, A.; Zapotoczny, S. The grafting density and thickness of polythiophene-based brushes determine the orientation, conjugation length and stability of the grafted chains. Polym. Chem. 2017, 8, 6250–6262. [Google Scholar] [CrossRef]
- Yang, Y.; Yan, X.; Cui, Y.; He, Q.; Li, D.; Wang, A.; Fei, J.; Li, J. Preparation of polymer-coated mesoporous silica nanoparticles used for cellular imaging by a “graft-from” method. J. Mater. Chem. 2008, 18, 5731–5737. [Google Scholar] [CrossRef]
- Wu, T.; Zou, G.; Hu, J.; Liu, S. Fabrication of photoswitchable and thermotunable multicolor fluorescent hybrid silica nanoparticles coated with dye-labeled poly(N-isopropylacrylamide) brushes. Chem. Mater. 2009, 21, 3788–3798. [Google Scholar] [CrossRef]
- Chen, M.; Qin, L.; Liu, Y.; Zhang, F. Controllable preparation of polymer brushes from mesoporous silica SBA-15 via surface-initiated ARGET ATRP. Microporous Mesoporous Mater. 2018, 263, 158–164. [Google Scholar] [CrossRef]
- Chevigny, C.; Gigmes, D.; Bertin, D.; Schweins, R.; Jestin, J.; Boué, F. Controlled grafting of polystyrene on silica nanoparticles using NMP: A new route without free initiator to tune the grafted chain length. Polym. Chem. 2011, 2, 567–571. [Google Scholar] [CrossRef]
- Pribyl, J.; Benicewicz, B.; Bell, M.; Wagener, K.; Ning, X.; Schadler, L.; Jimenez, A.; Kumar, S. Polyethylene Grafted Silica Nanoparticles Prepared via Surface-Initiated ROMP. ACS Macro Lett. 2019, 8, 228–232. [Google Scholar] [CrossRef]
- Alosmanov, R.; Wolski, K.; Zapotoczny, S. Grafting of thermosensitive poly(N-isopropylacrylamide) from wet bacterial cellulose sheets to improve its swelling-drying ability. Cellulose 2017, 24, 285–293. [Google Scholar] [CrossRef] [Green Version]
- Goworek, J.; Kierys, A.; Gac, W.; Borówka, A.; Kusak, R. Thermal degradation of CTAB in as-synthesized MCM-41. J. Therm. Anal. Calorim. 2009, 96, 375–382. [Google Scholar] [CrossRef]
- Cychosz, K.A.; Guillet-Nicolas, R.; García-Martínez, J.; Thommes, M. Recent advances in the textural characterization of hierarchically structured nanoporous materials. Chem. Soc. Rev. 2017, 46, 389–414. [Google Scholar] [CrossRef]
- Bischofberger, I.; Calzolari, D.C.E.; Trappe, V. Co-nonsolvency of PNiPAM at the transition between solvation mechanisms. Soft Matter 2014, 10, 8288–8295. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Kooij, E.S.; Sui, X.; Padberg, C.J.; Hempenius, M.A.; Schön, P.M.; Vancso, G.J. Collapse from the top: Brushes of poly(N-isopropylacrylamide) in co-nonsolvent mixtures. Soft Matter 2014, 10, 3134–3142. [Google Scholar] [CrossRef]
- Mukherji, D.; Marques, C.M.; Kremer, K. Smart responsive polymers: Fundamentals and design principles. Annu. Rev. Condens. Matter Phys. 2019, 271–299. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baliś, A.; Wolski, K.; Zapotoczny, S. Thermoresponsive Polymer Gating System on Mesoporous Shells of Silica Particles Serving as Smart Nanocontainers. Polymers 2020, 12, 888. https://doi.org/10.3390/polym12040888
Baliś A, Wolski K, Zapotoczny S. Thermoresponsive Polymer Gating System on Mesoporous Shells of Silica Particles Serving as Smart Nanocontainers. Polymers. 2020; 12(4):888. https://doi.org/10.3390/polym12040888
Chicago/Turabian StyleBaliś, Andrzej, Karol Wolski, and Szczepan Zapotoczny. 2020. "Thermoresponsive Polymer Gating System on Mesoporous Shells of Silica Particles Serving as Smart Nanocontainers" Polymers 12, no. 4: 888. https://doi.org/10.3390/polym12040888
APA StyleBaliś, A., Wolski, K., & Zapotoczny, S. (2020). Thermoresponsive Polymer Gating System on Mesoporous Shells of Silica Particles Serving as Smart Nanocontainers. Polymers, 12(4), 888. https://doi.org/10.3390/polym12040888