The Development of Polylactic Acid/Multi-Wall Carbon Nanotubes/Polyethylene Glycol Scaffolds for Bone Tissue Regeneration Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Polymer Solution Preparation and Electrospinning Process
2.3. Electrospinning Process
2.4. Scanning Electron Microscopy (SEM)
2.5. Tensile Test
2.6. Water Contact Angle Analysis
2.7. Chemical Characteristics of Nanofibers
2.8. Differential Scanning Calorimetry (DSC)
2.9. The Release of DEX from Nanofibers
2.10. In Vitro Cell Culture of rBMSCs
2.11. The Evaluation Cell Adhesion and Proliferation of Nanofibers
2.12. Quantification of Calcium Deposition in Extracellular Matrix (ECM)
2.13. Statistical Analysis
3. Results and Discussion
3.1. The Preparation of MWCNT-Containing PLA Nanofibers
3.2. Blending PEG to MWCNT-Containing PLA Fibers
3.3. Cell Adhesion and Proliferation on Nanofibers
3.4. Drug-Loaded Electrospun Nanofibers
3.5. Delivery of DEX from Nanofibers and Its Effects on Osteogenic Differentiation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Polo-Corrales, L.; Latorre-Esteves, M.; Ramirez-Vick, J.E. Scaffold Design for Bone Regeneration. J. Nanosci. Nanotechnol. 2014, 14, 15–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barnes, C.P.; Sell, S.A.; Boland, E.D.; Simpson, D.G.; Bowlin, G.L. Nanofiber technology: Designing the next generation of tissue engineering scaffolds. Adv. Drug Deliv. Rev. 2007, 59, 1413–1433. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.W.; Kotaki, M.; Inai, R.; Ramakrishna, S. Potential of nanofiber matrix as tissue-engineering scaffolds. Tissue Eng. 2005, 11, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Grafahrend, D.; Calvet, J.L.; Klinkhammer, K.; Salber, J.; Dalton, P.D.; Moller, M.; Klee, D. Control of protein adsorption on functionalized electrospun fibers. Biotechnol. Bioeng. 2008, 101, 609–621. [Google Scholar] [CrossRef] [PubMed]
- Kumbar, S.G.; James, R.; Nukavarapu, S.P.; Laurencin, C.T. Electrospun nanofiber scaffolds: Engineering soft tissues. Biomed. Mater. 2008, 3, 034002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tyler, B.; Gullotti, D.; Mangraviti, A.; Utsuki, T.; Brem, H. Polylactic acid (PLA) controlled delivery carriers for biomedical applications. Adv. Drug Deliv. Rev. 2016, 107, 163–175. [Google Scholar] [CrossRef]
- Papageorgiou, D.G.; Li, Z.L.; Liu, M.F.; Kinloch, I.A.; Young, R.J. Mechanisms of mechanical reinforcement by graphene and carbon nanotubes in polymer nanocomposites. Nanoscale 2020, 12, 2228–2267. [Google Scholar] [CrossRef] [Green Version]
- Jahanmard, F.; Eslaminejad, M.B.; Amani-Tehran, M.; Zarei, F.; Rezaei, N.; Croes, M.; Yavari, S.A. Incorporation of F-MWCNTs into electrospun nanofibers regulates osteogenesis through stiffness and nanotopography. Mat. Sci. Eng. C Mater. 2020, 106, 110163. [Google Scholar] [CrossRef]
- Chakraborty, R.; Seesala, V.S.; Sen, M.; Sengupta, S.; Dhara, S.; Saha, P.; Das, K.; Das, S. MWCNT reinforced bone like calcium phosphate-Hydroxyapatite composite coating developed through pulsed electrodeposition with varying amount of apatite phase and crystallinity to promote superior osteoconduction, cytocompatibility and corrosion protection performance compared to bare metallic implant surface. Surf. Coat. Tech. 2017, 325, 496–514. [Google Scholar]
- Martinelli, N.M.; Ribeiro, M.J.G.; Ricci, R.; Marques, M.A.; Lobo, A.O.; Marciano, F.R. In Vitro Osteogenesis Stimulation via Nano-Hydroxyapatite/Carbon Nanotube Thin Films on Biomedical Stainless Steel. Materials 2018, 11, 1555. [Google Scholar]
- Li, X.M.; Liu, H.F.; Niu, X.F.; Yu, B.; Fan, Y.B.; Feng, Q.L.; Cui, F.Z.; Watari, F. The use of carbon nanotubes to induce osteogenic differentiation of human adipose-derived MSCs in vitro and ectopic bone formation in vivo. Biomaterials 2012, 33, 4818–4827. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, B.K.; Shrestha, S.; Tiwari, A.P.; Kim, J.-I.; Ko, S.W.; Kim, H.-J.; Park, C.H.; Kim, C.S. Bio-inspired hybrid scaffold of zinc oxide-functionalized multi-wall carbon nanotubes reinforced polyurethane nanofibers for bone tissue engineering. Mater. Des. 2017, 133, 69–81. [Google Scholar] [CrossRef]
- Hudecki, A.; Łyko-Morawska, D.; Likus, W.; Skonieczna, M.; Markowski, J.; Wilk, R.; Kolano-Burian, A.; Maziarz, W.; Adamska, J.; Łos, M.J. Composite Nanofibers Containing Multiwall Carbon Nanotubes as Biodegradable Membranes in Reconstructive Medicine. Nanomaterials 2019, 9, 63. [Google Scholar] [CrossRef] [Green Version]
- Huang, B.; Vyas, C.; Roberts, I.; Poutrel, Q.-A.; Chiang, W.-H.; Blaker, J.J.; Huang, Z.; Bártolo, P. Fabrication and characterisation of 3D printed MWCNT composite porous scaffolds for bone regeneration. Mater. Sci. Eng. C Mater. 2019, 98, 266–278. [Google Scholar] [CrossRef] [PubMed]
- Langenbach, F.; Handschel, J. Effects of dexamethasone, ascorbic acid and beta-glycerophosphate on the osteogenic differentiation of stem cells in vitro. Stem Cell Res. Ther. 2013, 4, 117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, D.; Chen, H.X.; Xue, Y.; Li, D.M.; Wan, X.C.; Ge, R.S.; Li, J.C. Osteoblastogenic effects of dexamethasone through upregulation of TAZ expression in rat mesenchymal stem cells. J. Steroid Biochem. 2009, 116, 86–92. [Google Scholar] [CrossRef]
- Weinstein, R.S. Glucocorticoid-Induced Osteoporosis and Osteonecrosis. Endocrin. Metab. Clin. 2012, 41, 595–611. [Google Scholar] [CrossRef] [Green Version]
- Li, X.Y.; Wang, Y.; Wang, Z.G.; Qi, Y.X.; Li, L.L.; Zhang, P.B.; Chen, X.S.; Huang, Y.B. Composite PLA/PEG/nHA/Dexamethasone Scaffold Prepared by 3D Printing for Bone Regeneration. Macromol. Biosci 2018, 18, e1800068. [Google Scholar] [CrossRef] [PubMed]
- Sirc, J.; Hampejsova, Z.; Trnovska, J.; Kozlik, P.; Hrib, J.; Hobzova, R.; Zajicova, A.; Holan, V.; Bosakova, Z. Cyclosporine A Loaded Electrospun Poly(D,L-Lactic Acid)/Poly(Ethylene Glycol) Nanofibers: Drug Carriers Utilizable in Local Immunosuppression. Pharm. Res. Dordr. 2017, 34, 1391–1401. [Google Scholar] [CrossRef]
- Spasova, M.; Stoilova, O.; Manolova, N.; Rashkov, I.; Altankov, G. Preparation of PLIA/PEG nanofibers by electrospinning and potential applications. J. Bioact. Compat. Polym. 2007, 22, 62–76. [Google Scholar] [CrossRef]
- Moradkhannejhad, L.; Abdouss, M.; Nikfarjam, N.; Shahriari, M.H.; Heidary, V. The effect of molecular weight and content of PEG on in vitro drug release of electrospun curcumin loaded PLA/PEG nanofibers. J. Drug Deliv. Sci. Technol. 2020, 56, 101554. [Google Scholar] [CrossRef]
- Shao, S.; Zhou, S.; Li, L.; Li, J.; Luo, C.; Wang, J.; Li, X.; Weng, J. Osteoblast function on electrically conductive electrospun PLA/MWCNTs nanofibers. Biomaterials 2011, 32, 2821–2833. [Google Scholar] [CrossRef]
- Molnar, K.; Vas, L.M.; Czigany, T. Determination of tensile strength of electrospun single nanofibers through modeling tensile behavior of the nanofibrous mat. Compos. Part B Eng. 2012, 43, 15–21. [Google Scholar] [CrossRef]
- Lim, H.C.; Nam, O.H.; Kim, M.J.; El-Fiqi, A.; Yun, H.M.; Lee, Y.M.; Jin, G.Z.; Lee, H.H.; Kim, H.W.; Kim, E.C. Delivery of dexamethasone from bioactive nanofiber matrices stimulates odontogenesis of human dental pulp cells through integrin/BMP/mTOR signaling pathways. Int. J. Nanomed. 2016, 11, 2557–2567. [Google Scholar]
- Li, C.; Hsu, Y.T.; Hu, W.W. The Regulation of Osteogenesis Using Electroactive Polypyrrole Films. Polymers 2016, 8, 258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castano, H.; O’Rear, E.A.; McFetridge, P.S.; Sikavitsas, V.I. Polypyrrole thin films formed by admicellar polymerization support the osteogenic differentiation of mesenchymal stem cells. Macromol. Biosci. 2004, 4, 785–794. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.W.; Chen, T.C.; Tsao, C.W.; Cheng, Y.C. The effects of substrate-mediated electrical stimulation on the promotion of osteogenic differentiation and its optimization. J. Biomed. Mater. Res. B 2019, 107, 1607–1619. [Google Scholar] [CrossRef] [PubMed]
- Baldino, L.; Naddeo, F.; Cardea, S.; Naddeo, A.; Reverchon, E. FEM modeling of the reinforcement mechanism of Hydroxyapatite in PLLA scaffolds produced by supercritical drying, for Tissue Engineering applications. J. Mech. Behav. Biomed. Mater. 2015, 51, 225–236. [Google Scholar] [CrossRef]
- You, Y.; Min, B.M.; Lee, S.J.; Lee, T.S.; Park, W.H. In vitro degradation behavior of electrospun polyglycolide, polylactide, and poly (lactide-co-glycolide). J. Appl. Polym. Sci. 2005, 95, 193–200. [Google Scholar] [CrossRef]
- McCullen, S.D.; Stano, K.L.; Stevens, D.R.; Roberts, W.A.; Monteiro-Riviere, N.A.; Clarke, L.I.; Gorga, R.E. Development, optimization, and characterization of electrospun poly (lactic acid) nanofibers containing multi-walled carbon nanotubes. J. Appl. Polym. Sci. 2007, 105, 1668–1678. [Google Scholar] [CrossRef]
- Zong, X.; Kim, K.; Fang, D.; Ran, S.; Hsiao, B.S.; Chu, B. Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer 2002, 43, 4403–4412. [Google Scholar] [CrossRef]
- Yang, F.; Murugan, R.; Wang, S.; Ramakrishna, S. Electrospinning of nano/micro scale poly (L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 2005, 26, 2603–2610. [Google Scholar] [CrossRef]
- Meng, Z.; Zheng, W.; Li, L.; Zheng, Y. Fabrication and characterization of three-dimensional nanofiber membrance of PCL–MWCNTs by electrospinning. Mater. Sci. Eng. C Mater. 2010, 30, 1014–1021. [Google Scholar] [CrossRef]
- Li, H.; Wang, X.; Song, Y.; Liu, Y.; Li, Q.; Jiang, L.; Zhu, D. Super-“Amphiphobic” Aligned Carbon Nanotube Films. Angew. Chem. 2001, 40, 1743–1746. [Google Scholar] [CrossRef]
- Shameli, K.; Bin Ahmad, M.; Jazayeri, S.D.; Sedaghat, S.; Shabanzadeh, P.; Jahangirian, H.; Mahdavi, M.; Abdollahi, Y. Synthesis and characterization of polyethylene glycol mediated silver nanoparticles by the green method. Int. J. Mol. Sci. 2012, 13, 6639–6650. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.M.; Xiong, Z.; Li, J.L.; Wu, Z.Y.; Wang, Y.Z.; Liu, F. Surface PEGylation on PLA membranes via micro-swelling and crosslinking for improved biocompatibility/hemocompatibility. RSC Adv. 2015, 5, 107949–107956. [Google Scholar] [CrossRef]
- López, G.P.; Castner, D.G.; Ratner, B.D. XPS O 1s binding energies for polymers containing hydroxyl, ether, ketone and ester groups. Surf. Interface Anal. 1991, 17, 267–272. [Google Scholar] [CrossRef]
- Zhao, L.Z.; Fu, J.C.; Du, Z.; Jia, X.B.; Qu, Y.Y.; Yu, F.; Du, J.; Chen, Y. High-strength and flexible cellulose/PEG based gel polymer electrolyte with high performance for lithium ion batteries. J. Membr. Sci 2020, 593, 117428. [Google Scholar] [CrossRef]
- Wu, D.; Wu, L.; Zhou, W.; Zhang, M.; Yang, T. Crystallization and Biodegradation of Polylactide/Carbon Nanotube Composites. Polym. Eng. Sci. 2010, 50, 1721–1733. [Google Scholar] [CrossRef]
- Nakafuku, C.; Sakoda, M. Melting and crystallization of poly (L-lactic acid) and poly (ethylene oxide) binary mixture. Polym. J. 1993, 25, 909–917. [Google Scholar] [CrossRef] [Green Version]
- Pluta, M. Morphology and properties of polylactide modified by thermal treatment, filling with layered silicates and plasticization. Polymer 2004, 45, 8239–8251. [Google Scholar] [CrossRef]
- Ogata, N.; Jimenez, G.; Kawai, H.; Ogihara, T. Structure and thermal/mechanical properties of poly (l-lactide)-clay blend. J. Polym. Sci. Part B Polym. Phys. 1997, 35, 389–396. [Google Scholar] [CrossRef]
- Zhu, J. Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering. Biomaterials 2010, 31, 4639–4656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, J.M.; Chess, R.B. Effect of pegylation on pharmaceuticals. Nat. Rev. Drug Discov. 2003, 2, 214–221. [Google Scholar] [CrossRef]
- Rodrigues, L.B.; Leite, H.F.; Yoshida, M.I.; Saliba, J.B.; Junior, A.S.C.; Faraco, A.A. In vitro release and characterization of chitosan films as dexamethasone carrier. Int. J. Pharm. 2009, 368, 1–6. [Google Scholar] [CrossRef]
- Wadhwa, R.; Lagenaur, C.F.; Cui, X.T. Electrochemically controlled release of dexamethasone from conducting polymer polypyrrole coated electrode. J. Control. Release 2006, 110, 531–541. [Google Scholar] [CrossRef] [Green Version]
- Ratner, B.D. Characterization of Biomaterial Surfaces. Cardiovasc. Pathol. 1993, 2, S87–S100. [Google Scholar] [CrossRef]
- Liao, G.-Y.; Zhou, X.-P.; Chen, L.; Zeng, X.-Y.; Xie, X.-L.; Mai, Y.-W. Electrospun aligned PLLA/PCL/functionalised multiwalled carbon nanotube composite fibrous membranes and their bio/mechanical properties. Compos. Sci. Technol. 2012, 72, 248–255. [Google Scholar] [CrossRef]
- Weaver, C.L.; LaRosa, J.M.; Luo, X.; Cui, X.T. Electrically controlled drug delivery from graphene oxide nanocomposite films. ACS Nano 2014, 8, 1834–1843. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Archer, L.A. Functionalizing polymer surfaces by field-induced migration of copolymer additives. 1. Role of surface energy gradients. Macromolecules 2001, 34, 4572–4579. [Google Scholar] [CrossRef]
- Stein, G.S.; Lian, J.B.; Stein, J.L.; Van Wijnen, A.J.; Montecino, M. Transcriptional control of osteoblast growth and differentiation. Physiol. Rev. 1996, 76, 593–629. [Google Scholar] [CrossRef] [PubMed]
- Schecroun, N.; Delloye, C. Bone-like nodules formed by human bone marrow stromal cells: Comparative study and characterization. Bone 2003, 32, 252–260. [Google Scholar] [CrossRef]
PLA | 0.1 C | 0.5 C | 1.25 C | 3 C | |
---|---|---|---|---|---|
Young’s modulus (MPa) | 5.390 | 7.120 | 24.30 | 5.570 | 4.450 |
Tensile strength (MPa) | 0.936 | 1.587 | 2.657 | 1.249 | 0.984 |
Elongation at break (%) | 56.33 | 56.87 | 32.35 | 66.74 | 67.04 |
Yield stress (MPa) | 0.674 | 1.175 | 2.276 | 0.958 | 0.690 |
–COO of PLA (C1) (289.3 ± 0.1 eV) | –CH– of PLA (C2) (287.3 ± 0.1 eV) | –CH3 of PLA (C3) (285.3 ± 0.1V) | O–C–C of PEG (286.3 ± 0.1 eV) | |
---|---|---|---|---|
PLA | 34.3% | 25.4% | 40.4% | 0% |
0.5 C | 32.1% | 29.8% | 38.1% | 0% |
0.5 C/0.1PEG | 34.4% | 27.9% | 36.8% | 0.9% |
0.5 C/1PEG | 33.1% | 24.5% | 39.0% | 3.5% |
0.5 C/10PEG | 28.9% | 28.8% | 35.8% | 6.5% |
O=C–O–C of PLA (532.2 ± 0.2 eV) | O=C–O–C of PLA (533.7 ± 0.2 eV) | C–O–C or C–O–H of PEG (532.8 ± 0.2 eV) | |
---|---|---|---|
PLA | 34.2% | 65.8% | 0% |
0.5 C | 33.2% | 66.8% | 0% |
0.5 C/0.1PEG | 33.9% | 64.9% | 1.2% |
0.5 C/1PEG | 31.3% | 63.7% | 5.0% |
0.5 C/10PEG | 29.6% | 59.9% | 10.5% |
PLA | 0.5 C | 0.5 C/0.1PEG | 0.5 C/1PEG | 0.5 C/10PEG | |
---|---|---|---|---|---|
Young’s modulus (MPa) | 5.390 | 24.30 | 26.10 | 19.30 | 18.70 |
Tensile strength (MPa) | 0.936 | 2.657 | 2.391 | 2.367 | 1.937 |
Elongation at break (%) | 56.33 | 32.35 | 31.60 | 47.79 | 73.71 |
Yield stress (MPa) | 0.674 | 2.276 | 1.610 | 1.750 | 0.976 |
(°C) | PLA | 0.5 C | 0.5 C/0.1PEG | 0.5 C/1PEG | 0.5 C/10PEG |
---|---|---|---|---|---|
Tg | 62.5 | 63.0 | 61.5 | 60.0 | 50.5 |
Tc | 90.5 | 88.8 | 86.5 | 83.2 | 77.3 |
Tm | 151.3 | 153.0 | 153.3 | 153.3 | 153.2 |
Area Ratio of F 1s/C 1s | DL-PLA | DL-0.5 C | DL-0.5 C/0.1PEG | DL-0.5 C/1PEG | DL-0.5 C/10PEG |
---|---|---|---|---|---|
Theoretical ratios | 0.18% | 0.17% | 0.17% | 0.17% | 0.16% |
Experimental ratios | 0.23% | 0.12% | 011% | 0.10% | 0.10% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.-F.; Wu, Y.-C.; Cheng, Y.-C.; Hu, W.-W. The Development of Polylactic Acid/Multi-Wall Carbon Nanotubes/Polyethylene Glycol Scaffolds for Bone Tissue Regeneration Application. Polymers 2021, 13, 1740. https://doi.org/10.3390/polym13111740
Wang S-F, Wu Y-C, Cheng Y-C, Hu W-W. The Development of Polylactic Acid/Multi-Wall Carbon Nanotubes/Polyethylene Glycol Scaffolds for Bone Tissue Regeneration Application. Polymers. 2021; 13(11):1740. https://doi.org/10.3390/polym13111740
Chicago/Turabian StyleWang, Shih-Feng, Yun-Chung Wu, Yu-Che Cheng, and Wei-Wen Hu. 2021. "The Development of Polylactic Acid/Multi-Wall Carbon Nanotubes/Polyethylene Glycol Scaffolds for Bone Tissue Regeneration Application" Polymers 13, no. 11: 1740. https://doi.org/10.3390/polym13111740
APA StyleWang, S. -F., Wu, Y. -C., Cheng, Y. -C., & Hu, W. -W. (2021). The Development of Polylactic Acid/Multi-Wall Carbon Nanotubes/Polyethylene Glycol Scaffolds for Bone Tissue Regeneration Application. Polymers, 13(11), 1740. https://doi.org/10.3390/polym13111740