Study of Polyvinyl Alcohol-SiO2 Nanoparticles Polymeric Membrane in Wastewater Treatment Containing Zinc Ions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Synthesis of Polyvinyl Alcohol-SiO2 Nanoparticles Polymeric Membrane
2.3. Laboratory Electrodialysis System
2.4. Characterization of Prepared Polymeric Membranes
2.4.1. Fourier Transforms Infrared Spectroscopy-Attenuated Total Reflection (FTIR-ATR)
2.4.2. Scanning Electron Microscopy (SEM)
2.4.3. Electrochemical Impedance Spectroscopy (EIS)
3. Results and Discussion
3.1. Laboratory Electrodialysis System Efficiency
3.2. FTIR-ATR Spectroscopy
3.3. SEM Analysis
3.4. EIS Measurements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Parmar, M.; Thakur, L.S. Heavy metal Cu, Ni and Zn: Toxicity, health hazards and their removal techniques by low cost adsorbents: A short overview. Int. J. Plant Anim. Environ. Sci. 2013, 3, 143–157. [Google Scholar]
- Lu, S.; Gibb, S.W.; Cochrane, E. Effective removal of zinc ions from aqueous solutions using crab carapace biosorbent. J. Hazard. Mater. 2007, 149, 208–217. [Google Scholar] [CrossRef]
- Ge, F.; Li, M.-M.; Ye, H.; Zhao, B.-X. Effective removal of heavy metal ions Cd2+, Zn2+, Pb2+, Cu2+ from aqueous solution by polymer-modified magnetic nanoparticles. J. Hazard. Mater. 2012, 211–212, 366–372. [Google Scholar] [CrossRef]
- Raut, N.; Charif, G.; Amal, A.-S.; Shinoona, A.-A.; Abrar, A.-A. A Critical Review of Removal of Zinc from Wastewater. In Proceedings of the World Congress on Engineering, London, UK, 4–6 June 2012. [Google Scholar]
- Mishra, V. Biosorption of zinc ion: A deep comprehension. Appl. Water Sci. 2014, 4, 311–332. [Google Scholar] [CrossRef] [Green Version]
- Mishra, V.; Balomajumder, C.; Agarwal, V.K. Zinc (II) ion biosorption on to surface of eucalyptus leaf biomass: Isotherm, kinetic and mechanistic modeling. Clean Soil Air Water 2010, 38, 1062–1073. [Google Scholar] [CrossRef]
- WHO; FAO; IAEA. Trace Elements in Human Health and Nutrition; WHO: Geneva, Switzerland, 2002; pp. 230–245. [Google Scholar]
- Institute of Medicine. Dietary Reference Intakes (DRIs): Tolerable Upper Intake Levels (UL), Elements. Available online: http://www.iom.edu/Object.File/Master/21/372/DRI%20Tables%20after%20electrolytes%20plus%20micro-macroEAR2.pdf (accessed on 20 March 2021).
- UNICEF; WHO; World Bank. Levels and Trends in Child Malnutrition. Joint Child Malnutrition Estimates; United Nations International Children’s Fund: New York, NY, USA; World Health Organization: Geneva, Switzerland; World Bank: Washington, DC, USA, 2012. [Google Scholar]
- Luna, A.S.; Costa, A.L.H.; da Costa, A.C.A.; Henriques, C.A. Competitive biosorption of cadmium(II) and zinc(II) ions from binary systems by Sargassum filipendula. Bioresour. Technol. 2010, 101, 5104–5111. [Google Scholar] [CrossRef]
- Chito, D.; Weng, L.; Galceran, J.; Companys, E.; Puy, J.; van Riemsdijk, W.H.; van Leeuwen, H.P. Determination of free Zn2+ concentration in synthetic and natural samples with AGNES (Absence of Gradients and Nernstian Equilibrium Stripping) and DMT (Donnan Membrane Technique). Sci. Total Environ. 2012, 421–422, 238–244. [Google Scholar] [CrossRef] [Green Version]
- Barakat, M.A. New trends in removing heavy metals from industrial wastewater. Arab. J. Chem. 2011, 4, 361–377. [Google Scholar] [CrossRef] [Green Version]
- Yadla, S.V.; Sridevi, V.; Lakshmi, M.V.V.C. A Review on Adsorption of Heavy Metals from Aqueous Solution. J. Chem. Biol. Physic. Sci. 2012, 2, 1585–1593. [Google Scholar]
- Caprarescu, S.; Zgârian, R.G.; Tihan, G.T.; Purcar, V.; Totu, E.E.; Modrogan, C.; Chiriac, A.-L.; Nicolae, C.A. Biopolymeric Membrane Enriched with Chitosan and Silver for Metallic Ions Removal. Polymers 2020, 12, 1792. [Google Scholar] [CrossRef]
- Gurreri, L.; Tamburini, A.; Cipollina, A.; Micale, G. Electrodialysis Applications in Wastewater Treatment for Environmental Protection and Resources Recovery: A Systematic Review on Progress and Perspectives. Membranes 2020, 10, 146. [Google Scholar] [CrossRef] [PubMed]
- Ezugbe, E.O.; Rathilal, S. Membrane Technologies in Wastewater Treatment: A Review. Membranes 2020, 10, 89. [Google Scholar] [CrossRef] [PubMed]
- Gally, C.R.; Benvenuti, T.; da Trindade, C.D.; Rodrigues, M.A.; Zoppas-Ferreira, J.; Pérez-Herranz, V.; Bernardes, A.M. Electrodialysis for the tertiary treatment of municipal wastewater: Efficiency of ion removal and ageing of ion exchange membranes. J. Environ. Chem. Eng. 2018, 6, 5855–5869. [Google Scholar] [CrossRef]
- Sajjad, A.-A.; Yunus, M.Y.B.M.; Azoddein, A.A.M.; Hassell, D.G.; Dakhil, I.H.; Hasan, H.A. Electrodialysis Desalination for Water and Wastewater: A Review. Chem. Eng. J. 2020, 380, 122231. [Google Scholar]
- Huang, C.; Xu, T.; Zhang, Y.; Xue, Y.; Chen, G. Application of electrodialysis to the production of organic acids: State-of-the-art and recent developments. J. Membr. Sci. 2007, 288, 1–12. [Google Scholar] [CrossRef]
- Caprarescu, S.; Miron, A.R.; Purcar, V.; Radu, A.-L.; Sarbu, A.; Nicolae, C.A.; Pascu, M.; Ion-Ebrasu, D.; Raditoiu, V. Treatment of Crystal violet from synthetic solution using membranes doped with natural fruit extract. CLEAN Soil Air Water 2018, 46, 1700413. [Google Scholar] [CrossRef]
- Gurreri, L.; Cipollina, A.; Tamburini, A.; Micale, G. Electrodialysis for wastewater treatment—Part I: Fundamentals and municipal effluents. In Current Trends and Future Developments on (Bio-) Membranes-Membrane Technology for Water and Wastewater Treatment-Advances and Emerging Processes; Basile, A., Comite, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 141–192. [Google Scholar]
- Fidaleo, M.; Moresi, M. Electrodialysis Applications in The Food Industry. Adv. Food Nutr. Res. 2006, 51, 265–360. [Google Scholar]
- Ghaee, A.; Shariaty-Niassar, M.; Barzin, J.; Matsuura, T.; Ismail, A.F. Preparation of chitosan/cellulose acetate composite nanofiltration membrane for wastewater treatment. Desalin. Water Treat. 2016, 57, 14453–14460. [Google Scholar] [CrossRef]
- Sahebjamee, N.; Soltanieh, M.; Mousavi, S.M.; Nasab, A.H. Removal of Cu2+, Cd2+ and Ni2+ ions from aqueous solution using a novel chitosan/polyvinyl alcohol adsorptive membrane. Carbohydr. Polym. 2019, 210, 264–273. [Google Scholar] [CrossRef]
- Nasir, A.; Masood, F.; Yasin, T.; Hameed, A. Progress in polymeric nanocomposite membranes for wastewater treatment: Preparation, properties and applications. J. Ind. Eng. Chem. 2019, 79, 29–40. [Google Scholar] [CrossRef]
- Lalia, B.S.; Kochkodan, V.; Hashaikeh, R.; Hilal, N. A review on membrane fabrication: Structure, properties and performance relationship. Desalination 2013, 326, 77–95. [Google Scholar] [CrossRef]
- Ursino, C.; Castro-Muñoz, R.; Drioli, E.; Gzara, L.; Albeirutty, M.; Figoli, A. Progress of Nanocomposite Membranes for Water Treatment. Membranes 2018, 8, 18. [Google Scholar] [CrossRef] [Green Version]
- Hashim, N.A.; Liu, Y.T.; Li, K. Preparation of PVDF hollow fiber membranes using SiO2 particles: The effect of acid and alkali treatment on the membrane performances. Ind. Eng. Chem. Res. 2011, 50, 3035–3040. [Google Scholar] [CrossRef]
- Ng, L.Y.; Mohammad, A.W.; Leo, C.P.; Hilal, N. Polymeric membranes incorporated with metal/metal oxide nanoparticles: A comprehensive review. Desalination 2013, 308, 15–33. [Google Scholar] [CrossRef]
- Pereira, P.P.; Fernandez, M.; Cimadoro, J.; González, P.S.; Morales, G.M.; Goyanes, S.; Agostini, E. Biohybrid membranes for effective bacterial vehiculation and simultaneous removal of hexavalent chromium (CrVI) and phenol. Appl. Microbiol. Biotechnol. 2021, 105, 827–838. [Google Scholar] [CrossRef]
- Torasso, N.; Vergara-Rubio, A.; Rivas-Rojas, P.; Huck-Iriart, C.; Larrañaga, A.; Fernández-Cirelli, A.; Cerveny, S.; Goyanes, S. Enhancing arsenic adsorption via excellent dispersion of iron oxide nanoparticles inside poly(vinyl alcohol) nanofibers. J. Environ. Chem. Eng. 2021, 9, 104664. [Google Scholar] [CrossRef]
- Yin, J.; Kim, E.S.; Yang, J.; Deng, B. Fabrication of a novel thin-film nanocomposite (TFN) membrane containing MCM-41 silica nanoparticles (NPs) for water purification. J. Membr. Sci. 2012, 423–424, 238–246. [Google Scholar] [CrossRef]
- Rosdi, N.; Sokri, M.N.M.; Rashid, N.M.; Che Chik, M.S.; Musa, M.S. Chitosan/Silica Composite Membrane: Adsorption of Lead(II) Ion from Aqueous Solution. J. Appl. Membr. Sci. Technol. 2019, 23, 63–72. [Google Scholar] [CrossRef]
- Caprarescu, S.; Radu, A.-L.; Purcar, V.; Ianchis, R.; Sarbu, A.; Ghiurea, M.; Nicolae, C.; Modrogan, C.; Vaireanu, D.-I.; Périchaud, A.; et al. Adsorbents/ion exchangers-PVA blend membranes: Preparation, characterization and performance for the removal of Zn2+ by electrodialysis. Appl. Surf. Sci. 2015, 329, 65–75. [Google Scholar] [CrossRef]
- Dalla Costa, R.F.; Klein, W.C.; Bernardes, A.M.; Ferreira, J.Z. Evaluation of the electrodialysis process for the treatment of metal finishing wastewater. J. Braz. Chem. Soc. 2002, 13, 540–547. [Google Scholar] [CrossRef] [Green Version]
- Babilas, D.; Dydo, P. Selective zinc recovery from electroplating wastewaters by electrodialysis enhanced with complex formation. Sep. Purif. Technol. 2019, 192, 419–428. [Google Scholar] [CrossRef]
- Petcu, C.; Purcar, V.; Radu, A.-L.; Ianchis, R.; Elvira, A.; Sarbu, A.; Ion-Ebrasu, D.; Miron, A.R.; Modrogan, C.; Ciobotaru, A.I. Removal of zinc ions from model wastewater system using bicopolymer membranes with fumed silica. J. Water Process Eng. 2015, 8, 1–10. [Google Scholar]
- Kamjornsupamitr, T.; Sangthumchai, T.; Youngme, S.; Martwiset, S. Proton conducting composite membranes from crosslinked poly(vinyl alcohol) and poly (styrene sulfonic acid)-functionalized silica nanoparticles. Int. J. Hydrog. Energy 2018, 43, 11190–11201. [Google Scholar] [CrossRef]
- Dhapte, V.; Kadam, S.; Pokharkar, V.; Khanna, P.K.; Dhapte, V. Versatile SiO2 Nanoparticles@Polymer Composites with Pragmatic Properties. Int. Sch. Res. Not. 2014, 2014, 170919. [Google Scholar] [CrossRef] [Green Version]
- Sabir, A.; Islam, A.; Shafiq, M.; Shafeeq, A.; Butt, M.T.Z.; Ahmad, N.M.; Sanaullah, K.; Jamil, T. Novel polymer matrix composite membrane doped with fumed silica particles for reverse osmosis desalination. Desalination 2015, 368, 159–170. [Google Scholar] [CrossRef]
- Jia, X.; Li, Y.; Cheng, Q.; Zhang, S.; Zhang, B. Preparation and properties of poly(vinyl alcohol)/silica nanocomposites derived from copolymerization of vinyl silica nanoparticles and vinyl acetate. Eur. Polym. J. 2007, 43, 1123–1131. [Google Scholar] [CrossRef]
- Shirvani, H.; Maghami, S.; Pournaghshband Isfahani, A.; Sadeghi, M. Influence of Blend Composition and Silica Nanoparticles on the Morphology and Gas Separation Performance of PU/PVA Blend Membranes. Membranes 2019, 9, 82. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Liang, Y.; Miao, J.; Wu, B.; Hossain, M.; Cao, M.; Ge, Q.; Su, L.; Zheng, Z.; Yang, B.; et al. Preparation and properties of polyvinyl alcohol (PVA)/mesoporous silica supported phosphotungstic acid (MS-HPW) hybrid membranes for alkali recovery. J. Membr. Sci. 2019, 592, 117388. [Google Scholar] [CrossRef]
- Yu, S.; Zuo, X.; Bao, R.; Xu, X.; Wang, J.; Xu, J. Effect of SiO2 nanoparticle addition on the characteristics of a new organic–inorganic hybrid membrane. Polymer 2009, 50, 553–559. [Google Scholar] [CrossRef]
- Ye, L.; Zhai, L.; Fang, J.; Liu, J.; Li, C.; Guan, R. Synthesis and characterization of novel cross-linked quaternized poly(vinyl alcohol)membranes based on morpholine for anion exchange membranes. Solid State Ion. 2013, 240, 1–9. [Google Scholar] [CrossRef]
- Ahmadian-Alam, L.; Mahdavi, H. A novel polysulfone-based ternary nanocomposite membrane consisting of metal-organic framework and silica nanoparticles: As proton exchange membrane for polymer electrolyte fuel cells. Renew. Energy 2018, 126, 630–639. [Google Scholar] [CrossRef] [Green Version]
- Zuo, X.; Wu, J.; Ma, X.; Deng, X.; Cai, J.; Chen, Q.; Liu, J.; Nan, J. A poly(vinylidene fluoride)/ethyl cellulose and amino-functionalized nano-SiO2 composite coated separator for 5 V high-voltage lithium-ion batteries with enhanced performance. J. Power Sources 2018, 407, 44–52. [Google Scholar] [CrossRef]
Code | Membrane Type | Applied Voltage, V |
---|---|---|
F0 | Polymeric membrane without SiO2 nanoparticles | 0 |
F1 | 5 | |
F2 | 10 | |
F3 | 15 | |
C0 | Polymeric membrane with SiO2 nanoparticles | 0 |
C1 | 5 | |
C2 | 10 | |
C3 | 15 |
Membrane Code | Dr, % | Pr, % | Ie, % | Ec, kWh m−3 |
---|---|---|---|---|
F1 | 27.93 | 23.68 | 23.22 | 5.55 |
F2 | 40.41 | 44.63 | 11.01 | 26.83 |
F3 | 66.28 | 58.63 | 4.73 | 147.33 |
C1 | 36.48 | 39.64 | 10.70 | 4.17 |
C2 | 49.31 | 53.61 | 6.62 | 23.93 |
C3 | 73.93 | 66.58 | 2.65 | 92.67 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Căprărescu, S.; Modrogan, C.; Purcar, V.; Dăncilă, A.M.; Orbuleț, O.D. Study of Polyvinyl Alcohol-SiO2 Nanoparticles Polymeric Membrane in Wastewater Treatment Containing Zinc Ions. Polymers 2021, 13, 1875. https://doi.org/10.3390/polym13111875
Căprărescu S, Modrogan C, Purcar V, Dăncilă AM, Orbuleț OD. Study of Polyvinyl Alcohol-SiO2 Nanoparticles Polymeric Membrane in Wastewater Treatment Containing Zinc Ions. Polymers. 2021; 13(11):1875. https://doi.org/10.3390/polym13111875
Chicago/Turabian StyleCăprărescu, Simona, Cristina Modrogan, Violeta Purcar, Annette Madelene Dăncilă, and Oanamari Daniela Orbuleț. 2021. "Study of Polyvinyl Alcohol-SiO2 Nanoparticles Polymeric Membrane in Wastewater Treatment Containing Zinc Ions" Polymers 13, no. 11: 1875. https://doi.org/10.3390/polym13111875
APA StyleCăprărescu, S., Modrogan, C., Purcar, V., Dăncilă, A. M., & Orbuleț, O. D. (2021). Study of Polyvinyl Alcohol-SiO2 Nanoparticles Polymeric Membrane in Wastewater Treatment Containing Zinc Ions. Polymers, 13(11), 1875. https://doi.org/10.3390/polym13111875