A Review on Impedimetric and Voltammetric Analysis Based on Polypyrrole Conducting Polymers for Electrochemical Sensing Applications
Abstract
:1. Introduction
1.1. Synthesis and Preparation of Polypyrrole
1.2. Electrochemical Sensors
2. Impedimetric Sensing Mode
2.1. Nyquist Plot
2.2. Bode Plot
2.3. Dielectric Constant (εr)
2.4. Dielectric Loss (tan δ)
2.5. Impedimetric PPy Based Electrochemical Sensors and Biosensors
3. Voltametric Sensing Mode
3.1. Cyclic Voltammetry (CV)
3.2. Limit of Detection (LOD)
3.3. Differential Pulse Voltammogram (DPV)
3.4. Square Wave Voltammogram (SWV)
3.5. PPy Based Voltammetric Sensor
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Tsakova, V.; Seeber, R. Conducting polymers in electrochemical sensing: Factors influencing the electroanalytical signal. Anal. Bioanal. Chem. 2016, 408, 7231–7241. [Google Scholar] [CrossRef]
- Wegner, G. Polymers with Metal-Like Conductivity—A Review of their Synthesis, Structure and Properties. Angew. Chem. Int. Ed. Engl. 1981, 20, 361–381. [Google Scholar] [CrossRef]
- Bashir, S.; Ramesh, S.; Ramesh, K.; Numan, A.; Iqbalc, J. Conducting Polymer Composites in Electrochemical Sensors; Central West Publishing: Orange, Australia, 2018. [Google Scholar]
- Wang, X.; Gu, X.; Yuan, C.; Chen, S.; Zhang, P.; Zhang, T.; Yao, J.; Chen, F.; Chen, G. Evaluation of biocompatibility of polypyrrole in vitro and in vivo. J. Biomed. Mater. Res. 2004, 68, 411–422. [Google Scholar] [CrossRef]
- Ansari, R. Polypyrrole conducting electroactive polymers: Synthesis and stability studies. J. Chem. 2006, 3, 186–201. [Google Scholar] [CrossRef] [Green Version]
- Gupta, V.K.; Yola, M.L.; Özaltın, N.; Atar, N.; Üstündağ, Z.; Uzun, L. Molecular imprinted polypyrrole modified glassy carbon electrode for the determination of tobramycin. Electrochim. Acta 2013, 112, 37–43. [Google Scholar] [CrossRef]
- Zaabal, M.; Doulache, M.; Bakirhan, N.K.; Kaddour, S.; Saidat, B.; Ozkan, S.A. A facile strategy for construction of sensor for detection of ondansetron and investigation of its redox behavior and thermodynamic parameters. Electroanalysis 2019, 31, 1279–1290. [Google Scholar] [CrossRef]
- Apetrei, C. Novel method based on polypyrrole-modified sensors and emulsions for the evaluation of bitterness in extra virgin olive oils. Food Res. Int. 2012, 48, 673–680. [Google Scholar] [CrossRef]
- Ramanaviciene, A.; Ramanavicius, A. Pulsed amperometric detection of DNA with an ssDNA/polypyrrole-modified electrode. Anal. Bioanal. Chem. 2004, 379, 287–293. [Google Scholar] [CrossRef]
- Viau, L.; Hihn, J.; Lakard, S.; Moutarlier, V.; Flaud, V.; Lakard, B. Full characterization of polypyrrole thin films electrosynthesized in room temperature ionic liquids, water or acetonitrile. Electrochim. Acta 2014, 137, 298–310. [Google Scholar] [CrossRef]
- Li, M.; Zhu, H.; Mao, X.; Xiao, W.; Wang, D. Electropolymerization of polypyrrole at the three-phase interline: Influence of polymerization conditions. Electrochim. Acta 2013, 92, 108–116. [Google Scholar] [CrossRef]
- Nautiyal, A.; Qiao, M.; Cook, J.E.; Zhang, X.; Huang, T.-S. High performance polypyrrole coating for corrosion protection and biocidal applications. Appl. Surf. Sci. 2018, 427, 922–930. [Google Scholar] [CrossRef]
- Wang, J.; Chen, J.; Wang, C.; Zhou, D.; Too, C.O.; Wallace, G.G. Electrochemical synthesis of polypyrrole films using stainless steel mesh as substrate for battery application. Synth. Met. 2005, 153, 117–120. [Google Scholar] [CrossRef]
- Dubal, D.; Patil, S.; Jagadale, A.; Lokhande, C. Two step novel chemical synthesis of polypyrrole nanoplates for supercapacitor application. J. Alloy. Compd. 2011, 509, 8183–8188. [Google Scholar] [CrossRef]
- Yusoff, N. Graphene–Polymer Modified Electrochemical Sensors. In Graphene-Based Electrochemical Sensors for Biomolecules; Elsevier B.V.: Amsterdam, The Netherlands, 2019; pp. 155–186. [Google Scholar]
- Hosseini, S.H.; Entezami, A.A. Conducting polymer blends of polypyrrole with polyvinyl acetate, polystyrene, and polyvinyl chloride based toxic gas sensors. J. Appl. Polym. Sci. 2003, 90, 49–62. [Google Scholar] [CrossRef]
- Song, Y.; Bian, C.; Hu, J.; Li, Y.; Tong, J.; Sun, J.; Gao, G.; Xia, S. Porous polypyrrole/graphene oxide functionalized with carboxyl composite for electrochemical sensor of trace cadmium (II). J. Electrochem. Soc. 2019, 166, B95. [Google Scholar] [CrossRef]
- Hassanein, A.; Salahuddin, N.; Matsuda, A.; Kawamura, G.; Elfiky, M. Fabrication of biosensor based on Chitosan-ZnO/Polypyrrole nanocomposite modified carbon paste electrode for electroanalytical application. Mater. Sci. Eng. C 2017, 80, 494–501. [Google Scholar] [CrossRef]
- Tlili, C.; Korri-Youssoufi, H.; Ponsonnet, L.; Martelet, C.; Jaffrezic-Renault, N.J. Electrochemical impedance probing of DNA hybridisation on oligonucleotide-functionalised polypyrrole. Talanta 2005, 68, 131–137. [Google Scholar] [CrossRef]
- Hsu, L.; Selvaganapathy, P.R.; Brash, J.; Fang, Q.; Xu, C.-Q.; Deen, M.J.; Chen, H. Development of a low-cost hemin-based dissolved oxygen sensor with anti-biofouling coating for water monitoring. IEEE Sens. J. 2014, 14, 3400–3407. [Google Scholar] [CrossRef]
- Turner, A.; Karube, I.; Wilson, G.S. Biosensors: Fundamentals and Applications; Oxford University Press: New York, NY, USA, 1987. [Google Scholar]
- Muguruma, H. Biosensors: Enzyme immobilization chemistry. In Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry; Elsevier: Amsterdam, The Netherlands, 2018; pp. 64–71. [Google Scholar]
- Antuña-Jiménez, D.; Díaz-Díaz, G.; Blanco-López, M.C.; Lobo-Castañón, M.J.; Miranda-Ordieres, A.J.; Tuñón-Blanco, P. Chapter 1—Molecularly Imprinted Electrochemical Sensors: Past, Present, and Future. In Molecularly Imprinted Sensors; Li, S., Ge, Y., Piletsky, S.A., Lunec, J., Eds.; Elsevier: Amsterdam, The Netherland, 2012; pp. 1–34. [Google Scholar]
- Yang, L.; Guiseppi-Elie, A. Impedimetric Biosensors for Nano- and Microfluidics. In Encyclopedia of Microfluidics and Nanofluidics; Li, D., Ed.; Springer US: Boston, MA, USA, 2008; pp. 811–823. [Google Scholar]
- Wang, B.; Wang, L.; Li, X.; Liu, Y.; Zhang, Z.; Hedrick, E.; Safe, S.; Qiu, J.; Lu, G.; Wang, S. Template-free fabrication of vertically-aligned polymer nanowire array on the flat-end tip for quantifying the single living cancer cells and nanosurface interaction. Manuf. Lett. 2018, 16, 27–31. [Google Scholar] [CrossRef]
- Wang, J.; Musameh, M.; Lin, Y. Solubilization of carbon nanotubes by Nafion toward the preparation of amperometric biosensors. J. Am. Chem. Soc. 2003, 125, 2408–2409. [Google Scholar] [CrossRef]
- Zia, A.I.; Syaifudin, A.M.; Mukhopadhyay, S.; Yu, P.; Al-Bahadly, I.H.; Gooneratne, C.P.; Kosel, J.; Liao, T.-S. Electrochemical Impedance Spectroscopy Based MEMS Sensors for Phthalates Detection in Water and Juices. J. Phys. Conf. Ser. IOP Publ. 2013, 439, 012026. [Google Scholar] [CrossRef]
- Instruments, B.S. EC-Lab Software V.10.40; Bio-Logic-Science Instruments: Seyssinet-Pariset, France, 2007. [Google Scholar]
- Ramanavicius, A.; Finkelsteinas, A.; Cesiulis, H.; Ramanaviciene, A. Electrochemical impedance spectroscopy of polypyrrole based electrochemical immunosensor. Bioelectrochemistry 2010, 79, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Devi, R.; Thakur, M.; Pundir, C. Construction and application of an amperometric xanthine biosensor based on zinc oxide nanoparticles–polypyrrole composite film. Biosens. Bioelectron. 2011, 26, 3420–3426. [Google Scholar] [CrossRef]
- Chen, J.; Gao, P.; Wang, H.; Han, L.; Zhang, Y.; Wang, P.; Jia, N. A PPy/Cu2O molecularly imprinted composite film-based visible light-responsive photoelectrochemical sensor for microcystin-LR. J. Mater. Chem. C 2018, 6, 3937–3944. [Google Scholar] [CrossRef]
- Bao, J.; Hou, C.; Zhao, Y.; Geng, X.; Samalo, M.; Yang, H.; Bian, M.; Huo, D. An enzyme-free sensitive electrochemical microRNA-16 biosensor by applying a multiple signal amplification strategy based on Au/PPy–rGO nanocomposite as a substrate. Talanta 2019, 196, 329–336. [Google Scholar] [CrossRef]
- Akshaya, K.; Anitha, V.; Nidhin, M.; Sudhakar, Y.; Louis, G. Electrochemical sensing of vitamin B12 deficiency marker methylmalonic acid using PdAu-PPy tailored carbon fiber paper electrode. Talanta 2020, 217, 121028. [Google Scholar] [CrossRef]
- Silverman, D.C. Tutorial on Cyclic Potentiodynamic Polarization Technique; United States: Washington, DC, USA, 1998. [Google Scholar]
- Poursaee, A. Corrosion measurement and evaluation techniques of steel in concrete structures. In Corrosion of Steel in Concrete Structures; Woodhead Publishing: Southston, UK, 2016; pp. 169–191. [Google Scholar]
- Lee, P.K.; Woi, P.M. Direct self-assembly of CuHCF-PPy nanocomposites on rGO for amperometric nicotine sensing at high concentration range. J. Electroanal. Chem. 2019, 837, 67–75. [Google Scholar] [CrossRef]
- Ratautaite, V.; Janssens, S.D.; Haenen, K.; Nesládek, M.; Ramanaviciene, A.; Baleviciute, I.; Ramanavicius, A. Molecularly imprinted polypyrrole based impedimentric sensor for theophylline determination. Electrochim. Acta 2014, 130, 361–367. [Google Scholar] [CrossRef]
- Al-Mokaram, A.; Amir, M.A.; Yahya, R.; Abdi, M.M.; Mahmud, H.N.M.E. The development of non-enzymatic glucose biosensors based on electrochemically prepared polypyrrole–chitosan–titanium dioxide nanocomposite films. Nanomaterials 2017, 7, 129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, T.; Morgan, H. Impedance Measurements of Cells. In Encyclopedia of Microfluidics and Nanofluidics; Li, D., Ed.; Springer US: Boston, MA, USA, 2013; pp. 1–4. [Google Scholar]
- Ramesan, M.; Santhi, V. Synthesis, characterization, conductivity and sensor application study of polypyrrole/silver doped nickel oxide nanocomposites. Compos. Interfaces 2018, 25, 725–741. [Google Scholar] [CrossRef]
- Anilkumar, T.; Ramesan, M. Synthesis and Electrical Conductivity Studies of Metal Chloro and Nitroxide Group Containing Styrene Butadiene Rubber. AIP Conf. Proc. Am. Inst. Phys. 2014, 1620, 28–34. [Google Scholar]
- Ramesan, M.T.; George, A.; Jayakrishnan, P.; Kalaprasad, G. Role of pumice particles in the thermal, electrical and mechanical properties of poly (vinyl alcohol)/poly (vinyl pyrrolidone) composites. J. Therm. Anal. Calorim. 2016, 126, 511–519. [Google Scholar] [CrossRef]
- Ramesan, M.; Nidhisha, V.; Jayakrishnan, P. Synthesis, characterization and conducting properties of novel poly (vinyl cinnamate)/zinc oxide nanocomposites via in situ polymerization. Mater. Sci. Semicond. Process. 2017, 63, 253–260. [Google Scholar] [CrossRef]
- Arabali, V.; Malekmohammadi, S.; Karimi, F. Surface amplification of pencil graphite electrode using CuO nanoparticle/polypyrrole nanocomposite; A powerful electrochemical strategy for determination of tramadol. Microchem. J. 2020, 158, 105179. [Google Scholar] [CrossRef]
- Su, P.-G.; Lu, P.-H. Electrical and Humidity-Sensing Properties of Impedance-Type Humidity Sensors that Were Made of Ag Microwires/PPy/SnO2 Ternary Composites. Chemosensors 2020, 8, 92. [Google Scholar] [CrossRef]
- Jlassi, K.; Mallick, S.; Mutahir, H.; Ahmad, Z.; Touati, F. Synthesis of In Situ Photoinduced Halloysite-Polypyrrole@ Silver Nanocomposite for the Potential Application in Humidity Sensors. Nanomaterials 2020, 10, 1426. [Google Scholar] [CrossRef] [PubMed]
- Kissinger, P.; Heineman, W.R. Laboratory Techniques in Electroanalytical Chemistry, Revised and Expanded; CRC Press: New York, NY, USA, 2018. [Google Scholar]
- Lakard, B. Electrochemical Biosensors Based on Conducting Polymers: A Review. Appl. Sci. 2020, 10, 6614. [Google Scholar] [CrossRef]
- Elgrishi, N.; Rountree, K.J.; McCarthy, B.D.; Rountree, E.S.; Eisenhart, T.T.; Dempsey, J.L. A practical beginner’s guide to cyclic voltammetry. J. Chem. Educ. 2018, 95, 197–206. [Google Scholar] [CrossRef]
- Compton, R.G.; Banks, C.E. Understanding Voltammetry; World Scientific: Hackensack, NJ, USA; London, UK, 2018. [Google Scholar]
- Kwak, B.; Bae, J. Integrated Design and Fabrication of a Conductive PDMS Sensor and Polypyrrole Actuator Composite. IEEE Robot. Autom. Lett. 2020, 5, 3753–3760. [Google Scholar] [CrossRef]
- Espinoza, E.M.; Clark, J.A.; Soliman, J.; Derr, J.B.; Morales, M.; Vullev, V.I. Practical aspects of cyclic voltammetry: How to estimate reduction potentials when irreversibility prevails. J. Electrochem. Soc. 2019, 166, H3175. [Google Scholar] [CrossRef]
- Brownson, D.A.; Banks, C.E. The Handbook of Graphene Electrochemistry; Springer: London, UK, 2014. [Google Scholar]
- Zaabal, M.; Bakirhan, N.K.; Doulache, M.; Kaddour, S.; Saidat, B.; Ozkan, S.A. A New Approach on Sensitive Assay of Adefovir in Pharmaceutical and Biological Fluid Samples Using Polypyrrole Modified Glassy Carbon Electrode. Sens. Actuators B Chem. 2020, 323, 128657. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, W.; Chen, K.; Zhang, T.; Wang, Y.; Wang, J. Facile fabrication of electrochemical sensor based on novel core-shell PPy@ ZIF-8 structures: Enhanced charge collection for quercetin in human plasma samples. Sens. Actuators B Chem. 2019, 290, 434–442. [Google Scholar] [CrossRef]
- Hu, S.; Gao, G.; Liu, Y.; Hu, J.; Song, Y.; Zou, X. An Electrochemical Sensor Based on ion Imprinted PPy/rGO Composite for Cd (II) Determination in Water. Int. J. Electrochem. Sci. 2019, 14, 11714–11730. [Google Scholar] [CrossRef]
- Yu, M.; Wu, L.; Miao, J.; Wei, W.; Liu, A.; Liu, S. Titanium dioxide and polypyrrole molecularly imprinted polymer nanocomposites based electrochemical sensor for highly selective detection of p-nonylphenol. Anal. Chim. Acta 2019, 1080, 84–94. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Qian, K.; Ejeromedoghene, O.; Kandawa-Schulz, M.; Wang, Y. Electrochemical detection of microRNA based on SA-PPy/AuNPs nanocomposite with the signal amplification through catalytic hairpin assembly reaction and the spontaneous catalytic reaction of Fe3+/Cu2+. Electrochim. Acta 2020, 362, 137168. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, J.; Peng, X.; Cui, Q.; He, D.; Zhao, C.; Suo, H. Fabrication of a Ni foam-supported platinum nanoparticles-silver/polypyrrole electrode for aqueous ammonia sensing. Synth. Met. 2020, 259, 116257. [Google Scholar] [CrossRef]
- Alagappan, M.; Immanuel, S.; Sivasubramanian, R.; Kandaswamy, A. Development of cholesterol biosensor using Au nanoparticles decorated f-MWCNT covered with polypyrrole network. Arab. J. Chem. 2020, 13, 2001–2010. [Google Scholar] [CrossRef]
- Suvina, V.; Krishna, S.M.; Nagaraju, D.; Melo, J.; Balakrishna, R.G. Polypyrrole-reduced graphene oxide nanocomposite hydrogels: A promising electrode material for the simultaneous detection of multiple heavy metal ions. Mater. Lett. 2018, 232, 209–212. [Google Scholar] [CrossRef]
- Lo, M.; Seydou, M.; Bensghaïer, A.; Pires, R.; Gningue-Sall, D.; Aaron, J.-J.; Mekhalif, Z.; Delhalle, J.; Chehimi, M.M. Polypyrrole-wrapped carbon nanotube composite films coated on diazonium-modified flexible ITO sheets for the electroanalysis of heavy metal ions. Sensors 2020, 20, 580. [Google Scholar] [CrossRef] [Green Version]
- Lo, M.; Diaw, A.K.; Gningue-Sall, D.; Aaron, J.-J.; Oturan, M.A.; Chehimi, M.M. The role of diazonium interface chemistry in the design of high performance polypyrrole-coated flexible ITO sensing electrodes. Electrochem. Commun. 2017, 77, 14–18. [Google Scholar] [CrossRef]
- Pineda, E.G.; Presa, M.R.; Gervasi, C.; Bolzán, A. Tubular-structured polypyrrole electrodes decorated with gold nanoparticles for electrochemical sensing. J. Electroanal. Chem. 2018, 812, 28–36. [Google Scholar] [CrossRef]
- Xing, L.; Rong, Q.; Ma, Z. Non-enzymatic electrochemical sensing of hydrogen peroxide based on polypyrrole/platinum nanocomposites. Sens. Actuators B Chem. 2015, 221, 242–247. [Google Scholar] [CrossRef]
- Gao, Y.-S.; Xu, J.-K.; Lu, L.-M.; Wu, L.-P.; Zhang, K.-X.; Nie, T.; Zhu, X.-F.; Wu, Y. Overoxidized polypyrrole/graphene nanocomposite with good electrochemical performance as novel electrode material for the detection of adenine and guanine. Biosens. Bioelectron. 2014, 62, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Armbruster, D.A.; Pry, T. Limit of blank, limit of detection and limit of quantitation. Clin. Biochem. Rev. 2008, 29, S49. [Google Scholar] [PubMed]
- Guider, R.; Gandolfi, D.; Chalyan, T.; Pasquardini, L.; Samusenko, A.; Pederzolli, C.; Pucker, G.; Pavesi, L. Sensitivity and Limit of Detection of biosensors based on ring resonators. Sens. Bio-Sens. Res. 2015, 6, 99–102. [Google Scholar] [CrossRef] [Green Version]
- Simões, F.R.; Xavier, M.G. Electrochemical Sensors. Nanosci. Appl. 2016, 155–178. [Google Scholar]
- Rashid, J.I.A.; Kannan, V.; Ahmad, M.H.; Mon, A.A.; Taufik, S.; Miskon, A.; Khim, O.K.; Yusof, N.A. An electrochemical sensor based on gold nanoparticles-functionalized reduced Graphene oxide screen printed electrode for the detection of Pyocyanin biomarker in Pseudomonas aeruginosa infection. Mater. Sci. Eng. C 2020, 120, 111625. [Google Scholar] [CrossRef] [PubMed]
- Brett, A.M.O. Electrochemistry for probing DNA damage. In Encyclopeida of Sensors; Grimes, C.A., Dickey, E.C., Pishko, M.V., Eds.; American Scientific Publishers: Stevenson Ranch, CA, USA, 2006; pp. 1–14. [Google Scholar]
- Brett, C.; Oliveira Brett, A.M. Electrochemistry: Principles, Methods, and Applications; Oxford University Press: New York, NY, USA, 1993. [Google Scholar]
- De Souza, D.; Machado, S.; Avaca, L. Square wave voltammetry. Part 1: Theoretical aspects. Quim. Nova 2003, 26, 81–89. [Google Scholar]
- Marie, M.; Mandal, S.; Manasreh, O. An electrochemical glucose sensor based on zinc oxide nanorods. Sensors 2015, 15, 18714–18723. [Google Scholar] [CrossRef]
- Salunke, R.S.; Kasar, C.K.; Bangar, M.A.; Chavan, P.G.; Shirale, D.J. Electrodeposition of gold nanoparticles decorated single polypyrrole nanowire for arsenic detection in potable water: A chemiresistive sensor device. J. Mater. Sci. Mater. Electron. 2017, 28, 14672–14677. [Google Scholar] [CrossRef]
- Hughes, W.T.; Shenep, J.L.; Rodman, J.H.; Fridland, A.; Willoughby, R.; Blanchard, S.; Purdue, L.; Coakley, D.F.; Cundy, K.C.; Culnane, M. Single-dose pharmacokinetics and safety of the oral antiviral compound adefovir dipivoxil in children infected with human immunodeficiency virus type 1. Antimicrob. Agents Chemother. 2000, 44, 1041–1046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jain, R.; Sharma, R. Voltammetric quantification of anti-hepatitis drug Adefovir in biological matrix and pharmaceutical formulation. J. Pharm. Anal. 2012, 2, 98–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Lu, S.; Zhao, J.; Ye, J.; Huang, J.; Yang, X. An electric potential modulated cascade of catalyzed hairpin assembly and rolling chain amplification for microRNA detection. Biosens. Bioelectron. 2019, 126, 565–571. [Google Scholar] [CrossRef]
- Low, S.S.; Pan, Y.; Ji, D.; Li, Y.; Lu, Y.; He, Y.; Chen, Q.; Liu, Q. Smartphone-based portable electrochemical biosensing system for detection of circulating microRNA-21 in saliva as a proof-of-concept. Sens. Actuators B Chem. 2020, 308, 127718. [Google Scholar]
- Chan, H.-N.; Ho, S.-L.; He, D.; Li, H.-W. Direct and sensitive detection of circulating miRNA in human serum by ligase-mediated amplification. Talanta 2020, 206, 120217. [Google Scholar] [CrossRef]
- He, C.; Chen, S.; Zhao, J.; Tian, J.; Zhao, S. Ultrasensitive detection of microRNA-21 based on electrophoresis assisted cascade chemiluminescence signal amplification for the identification of cancer cells. Talanta 2020, 209, 120505. [Google Scholar] [CrossRef]
- Plausinaitis, D.; Sinkevicius, L.; Samukaite-Bubniene, U.; Ratautaite, V.; Ramanavicius, A. Evaluation of electrochemical quartz crystal microbalance based sensor modified by uric acid-imprinted polypyrrole. Talanta 2020, 220, 121414. [Google Scholar] [CrossRef] [PubMed]
- Qi, R.; Lin, X.; Dai, J.; Zhao, H.; Liu, S.; Fei, T.; Zhang, T. Humidity sensors based on MCM-41/polypyrrole hybrid film via in-situ polymerization. Sens. Actuators B Chem. 2018, 277, 584–590. [Google Scholar] [CrossRef]
Detection Method | Signal Amplification Strategy | LOD Value | References |
---|---|---|---|
Fluorescence | Ligase mediated amplification | 314 fM | Chan et al. [80] |
DPV | Fe(CN)63+ | 10 fM | Low et al. [79] |
Chemiluminescence | Cascade enzyme catalytic reaction | 1 fM | He et al. [81] |
DPV | CHA reaction and RCA | 13.5 fM | Wang et al. [78] |
SWV | CHA reaction and Cu2+/Fe3+ catalytic reaction | 0.34 fM | Ma et al. [58] |
Material | Modification/Improvement | Electrochemical Sensing Mode | Application | References |
---|---|---|---|---|
- | SnO2 | Impedimetric | Humidity sensor | Su et al. 2020 [45] |
PPy | Ag-SnO2 | |||
PPy | Ag (0.5 wt.%)-HNT-DMA | Impedimetric | Humidity sensor | Jlassi et al. 2020 [46] |
PPy | ITO | Impedimetric Voltammetric | Lead ion detector | Lo et al. 2020 [62] |
PPy | NH2-ITO | |||
PPy | CNT-NH2-ITO | |||
PPy | MIP(UA) | Impedimetric | Electrochemical quartz crystal microbalance-based sensor | Plausinaitis et al. 2020 [82] |
GCE | Impedimetric Voltammetric | Dectector for miRNA-21 | Ma et al. 2020 [58] | |
PPy | GCE-SA-AuNPs | |||
CFP | Impedimetric Voltammetric | MMA detector | Akshaya et al. 2020 [31] | |
PPy | CFP | |||
PPy | CFP-PdAu | |||
PPy | GCE | Voltammetric | Electrochemical sensing of Adefovir | Zaabal et al. 2020 [54] |
PPy | Pt-Ag-NiF | Voltammetric | Aqueous ammonia sensor | Zhang et al. 2020 [59] |
PPy | Carbon doped polydimethylsiloxane | Impedimetric Voltammetric | Resistive sensor | Kwak et al. 2019 [51] |
GCE | Impedimetric Voltammetric | Food sensor: p-nonylphenol analysis (milk powder) | Yu et al. 2019 [57] | |
PPy | TiO2-MIP-Nafion-GCE | |||
PPy | TiO2-MIP-Nafion-GCE in 0.1mM p-nonylphenol | |||
PPy | NP-TiO2-MIP-Nafion-GCE | |||
PPy | TiO2 NIP/Nafion/GCE | |||
CuHCF | Impedimetric voltammetric | Nicotine detector | Lee et al. 2019 [36] | |
PPy | CuHCF | |||
rGO | ||||
rGO-CuHCF | ||||
PPy | rGO-CuHCF | |||
PPy | SS-Au | Impedimetric voltammetric | Detection of hydroxylamine, nitrite and their mixture | Pineda et al. 2018 [64] |
PPy | GCE | Impedimetric voltammetric | Quercetin detector | Chen et al. 2019 [55] |
ZIF-8 nanoparticle | ||||
PPy | ZIF-8 nanoparticle | |||
PPy | rGO-GCE | Voltammetric | Cadmium detector | Hu et al. 2019 [56] |
GCE | Impedimetric Voltammetric | Biosensor: microRNA detector | Bao et al. 2019 [32] | |
PPy | Au-rGO-GCE | |||
PPy | MCM-41 | Impedimetric | Humidity sensor | Qi et al. 2018 [83] |
GCE | Impedimetric Voltammetric | Biosensor for cholesterol detection | Alagappan et al. 2018 [60] | |
PPy | GCE | |||
PPy | GCE- Au-f-MWCNT | |||
PPy | Au-f-MWCNT-ChOx-GCE | |||
PPy | Cu2O-ITO | Impedimetric | Imprinted PEC sensor | Chen et al. 2018 [31] |
PPy | NIP-Cu2O-ITO | |||
PPy | MIP-Cu2O-ITO | |||
PPy | rGO hydrogel | Voltammetric | Metal ions sensor | Suvina et al. 2018 [61] |
Ppy | Au-NPs-NW | Voltammetric | Arsenic detector | Salunke et al. 2017 [75] |
PPy | Pt nanocomposite | Voltammetric | Non-enzymatic electrochemical sensor | Xing et al. 2015 [65] |
PPy | Pt-GCE | |||
PPyox | Gr nanocomposite-GCE | Voltammetric | DNA & RNA sensor: detection of adenine and guanine | Gao et al. 2014 [66] |
Pt | Impedimetric Voltammetric | Xanthine biosensor | Devi et al. 2011 [30] | |
PPy | Pt | |||
PPy | ZnO-NPs-Pt | |||
PPy | XOD-ZnO-NPs-Pt |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dzulkurnain, N.A.; Mokhtar, M.; Rashid, J.I.A.; Knight, V.F.; Wan Yunus, W.M.Z.; Ong, K.K.; Mohd Kasim, N.A.; Mohd Noor, S.A. A Review on Impedimetric and Voltammetric Analysis Based on Polypyrrole Conducting Polymers for Electrochemical Sensing Applications. Polymers 2021, 13, 2728. https://doi.org/10.3390/polym13162728
Dzulkurnain NA, Mokhtar M, Rashid JIA, Knight VF, Wan Yunus WMZ, Ong KK, Mohd Kasim NA, Mohd Noor SA. A Review on Impedimetric and Voltammetric Analysis Based on Polypyrrole Conducting Polymers for Electrochemical Sensing Applications. Polymers. 2021; 13(16):2728. https://doi.org/10.3390/polym13162728
Chicago/Turabian StyleDzulkurnain, Nurul Akmaliah, Marliyana Mokhtar, Jahwarhar Izuan Abdul Rashid, Victor Feizal Knight, Wan Md Zin Wan Yunus, Keat Khim Ong, Noor Azilah Mohd Kasim, and Siti Aminah Mohd Noor. 2021. "A Review on Impedimetric and Voltammetric Analysis Based on Polypyrrole Conducting Polymers for Electrochemical Sensing Applications" Polymers 13, no. 16: 2728. https://doi.org/10.3390/polym13162728
APA StyleDzulkurnain, N. A., Mokhtar, M., Rashid, J. I. A., Knight, V. F., Wan Yunus, W. M. Z., Ong, K. K., Mohd Kasim, N. A., & Mohd Noor, S. A. (2021). A Review on Impedimetric and Voltammetric Analysis Based on Polypyrrole Conducting Polymers for Electrochemical Sensing Applications. Polymers, 13(16), 2728. https://doi.org/10.3390/polym13162728