Effects of Electromagnets on Bovine Corneal Endothelial Cells Treated with Dendrimer Functionalized Magnetic Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Synthesis of SPIONs
2.1.2. D-SPIONs
2.2. Characterization Techniques
2.2.1. TEM, FTIR, XPS, Dynamic Light Scattering (DLS), and Zeta Potential
2.2.2. Bovine Corneal Endothelial Cell Preparation
2.2.3. MTT Cell Viability Assay
2.2.4. MRI of Fourth-Generation D-SPIONs
2.2.5. Electromagnet Setup
2.2.6. BCEC Migration Assay
2.2.7. Simulation Study
2.2.8. Real-Time PCR Assay
2.2.9. Statistical Analysis
3. Results and Discussion
3.1. Shape, Size, Surface Charge, and Structural Bonding of D-SPIONs
3.1.1. TEM
3.1.2. FTIR
3.1.3. XPS
3.1.4. DLS and Zeta Potential
3.2. MTT Cytotoxicity Assay
3.3. MRI of D-SPIONs
3.4. Cell Migration Assay under Magnetic Fields
3.5. COMSOL Multiphysics Simulation Study
3.6. Real-Time PCR
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hatamie, S.; Parseh, B.; Ahadian, M.M.; Naghdabadi, F.; Saber, R.; Soleimani, M. Heat transfer of PEGylated cobalt ferrite nanofluids for magnetic fluid hyperthermia therapy: In vitro cellular study. J. Magn. Magn. Mater. 2018, 462, 185–194. [Google Scholar] [CrossRef]
- Hatamie, S.; Shih, P.J.; Soufi Zomorod, M.; Heravi, P.; Ahadian, M.M.; Hatami, N. Hyperthermia response of PEGylated magnetic graphene nanocomposites for heating applications and accelerate antibacterial activity using magnetic fluid hyperthermia. Appl. Phys. A Mater. Sci. Process. 2020, 126, 276. [Google Scholar] [CrossRef]
- Fardindoost, S.; Hatamie, S.; Zad, A.I.; Astaraei, F.R. Hydrogen sensing properties of nanocomposite graphene oxide/Co-based metal organic frameworks (Co-MOFs@GO). Nanotechnology 2018, 29, 015501. [Google Scholar] [CrossRef]
- Farzaneh, S.; Hosseinzadeh, S.; Samanipour, R.; Hatamie, S.; Ranjbari, J.; Khojasteh, A. Fabrication and characterization of cobalt ferrite magnetic hydrogel combined with static magnetic field as a potential bio-composite for bone tissue engineering. J. Drug Deliv. Sci. Technol. 2021, 64, 102525. [Google Scholar] [CrossRef]
- Chen, B.-W.; Hatamie, S.; Garu, P.; Heravi, P.; Chen, J.-Y.; Liu, B.-T.; Wei, Z.-H.; Yao, D.-J. Synthesis of iron-oxide magnetic nanoparticles coated with dextran of varied molecular mass using a facile ball-milling method. Micro Nano Lett. 2020, 15, 645–650. [Google Scholar] [CrossRef]
- Bani, M.S.; Hatamie, S.; Haghpanahi, M.; Bahreinizad, H.; Alavijeh, M.H.S.; Eivazzadeh-Keihan, R.; Wei, Z.H. Casein-Coated Iron Oxide Nanoparticles for in vitro Hyperthermia for Cancer Therapy. SPIN 2019, 9, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Bani, M.S.; Hatamie, S.; Haghpanahi, M. Biocompatibility and hyperthermia cancer therapy of casein-coated iron oxide nanoparticles in mice. Polym. Adv. Technol. 2020, 31, 1544–1552. [Google Scholar] [CrossRef]
- Talebi, M.; Balasi, Z.M.; Ahadian, M.M.; Hatamie, S.; Alavijeh, M.H.S.; Ghafuri, H. Biocompatibility and Hyperthermia Efficiency of Sonochemically Synthesized Magnetic Nanoparticles. Spin 2019, 9, 1940006. [Google Scholar] [CrossRef] [Green Version]
- Alavijeh, M.S.; Bani, M.S.; Rad, I.; Hatamie, S.; Zomorod, M.S.; Haghpanahi, M. Antibacterial properties of ferrimagnetic and superparamagnetic nanoparticles: A comparative study. J. Mech. Sci. Technol. 2021, 35, 815–821. [Google Scholar] [CrossRef]
- Taheri-Kafrani, A.; Shirzadfar, H.; Tavassoli-Kafrani, E. Dendrimers and Dendrimers-Grafted Superparamagnetic Iron Oxide Nanoparticles: Synthesis, Characterization, Functionalization, and Biological Applications in Drug Delivery Systems; Elsevier: Amsterdam, The Netherlands, 2017; ISBN 9780323527279. [Google Scholar]
- Lancina, M.G.; Singh, S.; Kompella, U.B.; Husain, S.; Yang, H. Fast Dissolving Dendrimer Nanofiber Mats as Alternative to Eye Drops for More Efficient Antiglaucoma Drug Delivery. ACS Biomater. Sci. Eng. 2017, 3, 1861–1868. [Google Scholar] [CrossRef]
- Jeong‡, Y.; Kim‡, S.T.; Jiang, Y.; Duncan, B.; Kim, C.S.; Saha, K.; Yeh, Y.-C.; Yan, B.; Tang, R.; Hou, S.; et al. Nanoparticle–dendrimer hybrid nanocapsules for therapeutic delivery. Nanomedicine 2016, 11, 1571–1578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, L.; Lyu, Z.; Dhumal, D.; Kao, C.L.; Bernard, M.; Peng, L. Dendrimer-based magnetic resonance imaging agents for brain cancer. Sci. China Mater. 2018, 61, 1420–1443. [Google Scholar] [CrossRef] [Green Version]
- Soleymani, M.; Velashjerdi, M.; Shaterabadi, Z.; Barati, A. One-pot preparation of hyaluronic acid-coated iron oxide nanoparticles for magnetic hyperthermia therapy and targeting CD44-overexpressing cancer cells. Carbohydr. Polym. 2020, 237, 116130. [Google Scholar] [CrossRef]
- Wang, K.; An, L.; Tian, Q.; Lin, J.; Yang, S. Gadolinium-labelled iron/iron oxide core/shell nanoparticles as T1–T2 contrast agent for magnetic resonance imaging. RSC Adv. 2018, 8, 26764–26770. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.J.; Wang, I.J.; Hu, F.R.; Young, T.H. Applications of biomaterials in corneal endothelial tissue engineering. Cornea 2016, 35, S25–S30. [Google Scholar] [CrossRef]
- Cornell, L.E.; Wehmeyer, J.L.; Johnson, A.J.; Desilva, M.N.; Zamora, D.O. Magnetic Nanoparticles as a Potential Vehicle for Corneal Endothelium Repair. Mil. Med. 2016, 181, 232–239. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Q.; Zhu, Y.; Tighe, S.; Liu, Y.; Hu, M. Engineering of human corneal endothelial cells in vitro. Int. J. Med. Sci. 2019, 16, 507–512. [Google Scholar] [CrossRef] [Green Version]
- Moysidis, S.N.; Alvarez-Delfin, K.; Peschansky, V.J.; Salero, E.; Weisman, A.D.; Bartakova, A.; Raffa, G.A.; Merkhofer, R.; Kador, K.E.; Kunzevitzky, N.J.; et al. Magnetic field-guided cell delivery with nanoparticle-loaded human corneal endothelial cells. Nanomed. Nanotechnol. Biol. Med. 2015, 11, 499–509. [Google Scholar] [CrossRef] [Green Version]
- Alavijeh, M.S.; Maghsoudpour, A.; Khayat, M. Cobalt ferrite decoration of molybdenum disulfide nanosheets; development of a nanocomposite-mediated hyperthermia method. J. Mech. Sci. Technol. 2021, 35, 1319–1325. [Google Scholar] [CrossRef]
- Heidari Majd, M.; Asgari, D.; Barar, J.; Valizadeh, H.; Kafil, V.; Abadpour, A.; Moumivand, E.; Mojarrad, J.S.; Rashidi, M.R.; Coukos, G.; et al. Tamoxifen loaded folic acid armed PEGylated magnetic nanoparticles for targeted imaging and therapy of cancer. Colloids Surf. B Biointerfaces 2013, 106, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Khodadust, R.; Unsoy, G.; Yalcin, S.; Gunduz, G.; Gunduz, U. PAMAM dendrimer-coated iron oxide nanoparticles: Synthesis and characterization of different generations. J. Nanoparticle Res. 2013, 15, 1488. [Google Scholar] [CrossRef]
- Ho, W.T.; Chang, J.S.; Chou, S.F.; Hwang, W.L.; Shih, P.J.; Chang, S.W.; Yang, M.H.; Jou, T.S.; Wang, I.J. Targeting non-muscle myosin II promotes corneal endothelial migration through regulating lamellipodial dynamics. J. Mol. Med. 2019, 97, 1345–1357. [Google Scholar] [CrossRef]
- Mahmoudifard, M.; Soudi, S.; Soleimani, M.; Hosseinzadeh, S.; Esmaeili, E.; Vossoughi, M. Efficient protein immobilization on polyethersolfone electrospun nanofibrous membrane via covalent binding for biosensing applications. Mater. Sci. Eng. C 2016, 58, 586–594. [Google Scholar] [CrossRef] [PubMed]
- Hatamie, S.; Ahadian, M.M.; Soufi Zomorod, M.; Torabi, S.; Babaie, A.; Hosseinzadeh, S.; Soleimani, M.; Hatami, N.; Wei, Z.H. Antibacterial properties of nanoporous graphene oxide/cobalt metal organic framework. Mater. Sci. Eng. C 2019, 104, 109862. [Google Scholar] [CrossRef]
- Hatamie, S.; Mohamadyar-Toupkanlou, F.; Mirzaei, S.; Ahadian, M.M.; Hosseinzadeh, S.; Soleimani, M.; Wei, Z.H.; Hsieh, T.-F.; Chang, W.-C.; Wang, C.-L. Cellulose acetate/magnetic graphene nanofiber is enhanced human mesenchymal stem cells osteogenic differentiation under alternative current magnetic field. Spin 2019, 9, 1940011. [Google Scholar] [CrossRef]
- Mahsa, S.; Hatamie, S.; Naderi, A.; Parivar, K. Reduced graphene oxide/nanohydroxy Apatite-Bismuth nanocomposites for osteogenic differentiation of human mesenchymal stem cells. Asian J. Nanosci. Orginal Res. 2020, 3, 330–339. [Google Scholar] [CrossRef]
- Nazari, H.; Heirani-Tabasi, A.; Hajiabbas, M.; Khalili, M.; Shahsavari Alavijeh, M.; Hatamie, S.; Mahdavi Gorabi, A.; Esmaeili, E.; Ahmadi Tafti, S.H. Incorporation of two-dimensional nanomaterials into silk fibroin nanofibers for cardiac tissue engineering. Polym. Adv. Technol. 2020, 31, 248–259. [Google Scholar] [CrossRef]
- Hekmat, A.; Hatamie, S.; Bakhshi, E. Probing the effects of synthesized silver nanowire/reduced graphene oxide composites on the structure and esterase-like activity of human serum albumin and its impacts on human endometrial stem cells: A new platform in nanomedicine. Nanomed. J. 2021, 8, 42–56. [Google Scholar]
- Nigam, S.; Bahadur, D. Dendrimer-conjugated iron oxide nanoparticles as stimuli-responsive drug carriers for thermally-activated chemotherapy of cancer. Colloids Surf. B Biointerfaces 2017, 155, 182–192. [Google Scholar] [CrossRef]
- Jędrzak, A.; Grześkowiak, B.F.; Coy, E.; Wojnarowicz, J.; Szutkowski, K.; Jurga, S.; Jesionowski, T.; Mrówczyński, R. Dendrimer based theranostic nanostructures for combined chemo- and photothermal therapy of liver cancer cells in vitro. Colloids Surf. B Biointerfaces 2019, 173, 698–708. [Google Scholar] [CrossRef]
- Daniel, P.; Shylin, S.I.; Lu, H.; Tahir, M.N.; Panthöfer, M.; Weidner, T.; Möller, A.; Ksenofontov, V.; Tremel, W. The surface chemistry of iron oxide nanocrystals: Surface reduction of γ-Fe2O3 to Fe3O4 by redox-active catechol surface ligands. J. Mater. Chem. C 2018, 6, 326–333. [Google Scholar] [CrossRef]
- Esmaeili, E.; Khalili, M.; Sohi, A.N.; Hosseinzadeh, S.; Taheri, B.; Soleimani, M. Dendrimer functionalized magnetic nanoparticles as a promising platform for localized hyperthermia and magnetic resonance imaging diagnosis. J. Cell. Physiol. 2019, 234, 12615–12624. [Google Scholar] [CrossRef]
- Nazari, H.; Azadi, S.; Hatamie, S.; Zomorrod, M.S.; Ashtari, K.; Soleimani, M.; Hosseinzadeh, S. Fabrication of graphene-silver/polyurethane nanofibrous scaffolds for cardiac tissue engineering. Polym. Adv. Technol. 2019, 30, 2086–2099. [Google Scholar] [CrossRef]
- Hatamie, S.; Balasi, Z.M.; Ahadian, M.M.; Mortezazadeh, T.; Shams, F.; Hosseinzadeh, S. Hyperthermia of breast cancer tumor using graphene oxide-cobalt ferrite magnetic nanoparticles in mice. J. Drug Deliv. Sci. Technol. 2021, 65, 102680. [Google Scholar] [CrossRef]
- Hatamie, S.; Ahadian, M.M.; Ghiass, M.A.; Iraji zad, A.; Saber, R.; Parseh, B.; Oghabian, M.A.; Shanehsazzadeh Zadeh, S. Graphene/cobalt nanocarrier for hyperthermia therapy and MRI diagnosis. Colloids Surf. B Biointerfaces 2016, 146, 271–279. [Google Scholar] [CrossRef]
- Hatamie, S.; Shih, P.-J.; Chen, B.-W.; Wang, I.-J.; Young, T.-H.; Yao, D.-J. Synergic Effect of Novel WS2 Carriers Holding Spherical Cobalt Ferrite @cubic Fe3O4 (WS2/s-CoFe2O4@c-Fe3O4) Nanocomposites in Magnetic Resonance Imaging and Photothermal Therapy for Ocular Treatments and Investigation of Corneal Endothelial Cell Migration. Nanomaterials 2020, 10, 2555. [Google Scholar] [CrossRef] [PubMed]
- Stern, M.; Cohen, M.; Danielli, A. Configuration and design of electromagnets for rapid and precise manipulation of magnetic beads in biosensing applications. Micromachines 2019, 10, 784. [Google Scholar] [CrossRef] [Green Version]
- Demirci, H.; Slimani, N.; Pawar, M.; Kumon, R.E.; Vaishnava, P.; Besirli, C.G. Magnetic hyperthermia in Y79 retinoblastoma and ARPE- 19 retinal epithelial cells: Tumor selective apoptotic activity of iron oxide nanoparticle. Transl. Vis. Sci. Technol. 2019, 8, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tabatabaei, S.N.; Derbali, R.M.; Yang, C.; Superstein, R.; Hamel, P.; Chain, J.L.; Hardy, P. Co-delivery of miR-181a and melphalan by lipid nanoparticles for treatment of seeded retinoblastoma. J. Control. Release 2019, 298, 177–185. [Google Scholar] [CrossRef]
- Young, T.H.; Wang, I.J.; Hu, F.R.; Wang, T.J. Fabrication of a bioengineered corneal endothelial cell sheet using chitosan/polycaprolactone blend membranes. Colloids Surf. B Biointerfaces 2014, 116, 403–410. [Google Scholar] [CrossRef]
- Dahlin, A.; Geier, E.; Stocker, S.L.; Cropp, C.D.; Grigorenko, E.; Bloomer, M.; Siegenthaler, J.; Xu, L.; Basile, A.S.; Tang-Liu, D.D.S.; et al. Gene expression profiling of transporters in the solute carrier and ATP-binding cassette superfamilies in human eye substructures. Mol. Pharm. 2013, 10, 650–663. [Google Scholar] [CrossRef] [Green Version]
- Kadam, R.S.; Ramamoorthy, P.; Laflamme, D.J.; McKinsey, T.A.; Kompella, U.B. Hypoxia alters ocular drug transporter expression and activity in rat and calf models: Implications for drug delivery. Mol. Pharm. 2013, 10, 2350–2361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shei, W.; Liu, J.; Htoon, H.M.; Aung, T.; Vithana, E.N. Differential expression of the Slc4 bicarbonate transporter family in murine corneal endothelium and cell culture. Mol. Vis. 2013, 19, 1096–1106. [Google Scholar] [PubMed]
- Foets, B.J.J.; van den Oord, J.J.; Volpes, R.; Missotten, L. In situ immunohistochemical analysis of cell adhesion molecules on human corneal endothelial cells. Br. J. Ophthalmol. 1992, 76, 205–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Items | Electrical Conductivity | Relative Permittivity | Relative Permeability |
---|---|---|---|
Eye ball | 0.05 | 83 | 0.999992 |
Air | 0.01 | 1 | 1.00000037 |
Magnet | 1 | 1 |
Gene | Gene Sequence |
---|---|
ATP1A1 FW | 5′-CAAGCCCTCGTGATTCGAAA-3′ |
ATP1A1 REV | 5′-TCCACCTTGCAGCCATTT-G-3′ |
ENO2 FW | 5′-TGA-CAA-GGC-TGG-CTA-CAC-AGA-3′ |
ENO2 REV | 5′-CAT-ATT-TGC-CAT-CGC-GGT-AA-3′ |
ZO1 FW | 5′-TTC GAT TGG CCA GCCATA TAT-3′ |
ZO1 REV | 5′-TGT TTTCCGTCA CGG TAC CA-3′ |
NCAM1FW | 5′-CGGATCTCGGTGGTATGGAA-3′ |
NCAM1REV | 5′-CCGCAGTGACCACACACTTG-3′ |
SLC4A4FW | 5′-GTGCTTGTTGGCGAGGTAGAC-3′ |
SLC4A4 REV | 5′-GGACTTGGCTTTCCCCTTAGG-3′ |
CDH2 FW | 5′-AGCAGTAAAACTGAGCCTCAAACC-3′ |
CDH2 REV | 5′-TGC CTC TGC AGG TAG CCA TT-3′ |
GAPDH FW | 5′-AGGGTCATCATCTCTGCACCTT-3′ |
GAPDH REV | 5′-TGGTCATAAGTCCCTCCAACGG-3′ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hatamie, S.; Shih, P.-J.; Chen, B.-W.; Shih, H.-J.; Wang, I.-J.; Young, T.-H.; Yao, D.-J. Effects of Electromagnets on Bovine Corneal Endothelial Cells Treated with Dendrimer Functionalized Magnetic Nanoparticles. Polymers 2021, 13, 3306. https://doi.org/10.3390/polym13193306
Hatamie S, Shih P-J, Chen B-W, Shih H-J, Wang I-J, Young T-H, Yao D-J. Effects of Electromagnets on Bovine Corneal Endothelial Cells Treated with Dendrimer Functionalized Magnetic Nanoparticles. Polymers. 2021; 13(19):3306. https://doi.org/10.3390/polym13193306
Chicago/Turabian StyleHatamie, Shadie, Po-Jen Shih, Bo-Wei Chen, Hua-Ju Shih, I-Jong Wang, Tai-Horng Young, and Da-Jeng Yao. 2021. "Effects of Electromagnets on Bovine Corneal Endothelial Cells Treated with Dendrimer Functionalized Magnetic Nanoparticles" Polymers 13, no. 19: 3306. https://doi.org/10.3390/polym13193306
APA StyleHatamie, S., Shih, P. -J., Chen, B. -W., Shih, H. -J., Wang, I. -J., Young, T. -H., & Yao, D. -J. (2021). Effects of Electromagnets on Bovine Corneal Endothelial Cells Treated with Dendrimer Functionalized Magnetic Nanoparticles. Polymers, 13(19), 3306. https://doi.org/10.3390/polym13193306