Preparation and Characterization of Antibacterial Films with Eggshell-Membrane Biopolymers Incorporated with Chitosan and Plant Extracts
Abstract
:1. Introduction
2. Materials and Methods
2.1. ESM Powder and Materials
2.2. SEP Dissolution
2.3. Film Generation
2.4. Thickness and Uniformity
2.5. Simulated Wound Fluid Absorption
2.6. Microenvironment pH
2.7. Fourier-Transform Infrared Spectroscopy (FT-IR)
2.8. Degradation
2.9. Antibacterial Assessment
2.9.1. Plate Cultures
2.9.2. Liquid Cultures
3. Results
3.1. Film Preparation and Structural Integrity
3.2. Absorption
3.3. FT-IR Analysis
3.4. Microenvironmental pH
3.5. Degradation
3.6. Antibacterial Testing
3.6.1. Plate Cultures
3.6.2. Liquid Cultures
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sen, C.K.; Gordillo, G.M.; Roy, S.; Kirsner, R.; Lambert, L.; Hunt, T.K.; Gottrup, F.; Gurtner, G.C.; Longaker, M.T. Human Skin Wounds: A Major and Snowballing Threat to Public Health and the Economy. Wound Repair Regen. 2009, 17, 763–771. [Google Scholar] [CrossRef] [Green Version]
- Ghomi, E.R.; Khalili, S.; Khorasani, S.N.; Neisiany, R.E.; Ramakrishna, S. Wound Dressings: Current Advances and Future Directions. J. Appl. Polym. Sci. 2019, 136, 47738. [Google Scholar] [CrossRef] [Green Version]
- Kamkar, A.; Molaee-aghaee, E.; Khanjari, A.; Akhondzadeh-basti, A.; Noudoost, B.; Shariatifar, N.; Alizadeh Sani, M.; Soleimani, M. Nanocomposite Active Packaging Based on Chitosan Biopolymer Loaded with Nano-Liposomal Essential Oil: Its Characterizations and Effects on Microbial, and Chemical Properties of Refrigerated Chicken Breast Fillet. Int. J. Food Microbiol. 2021, 342, 109071. [Google Scholar] [CrossRef]
- Wang, C.; Chang, T.; Dong, S.; Zhang, D.; Ma, C.; Chen, S.; Li, H. Biopolymer Films Based on Chitosan/Potato Protein/Linseed Oil/ZnO NPs to Maintain the Storage Quality of Raw Meat. Food Chem. 2020, 332, 127375. [Google Scholar] [CrossRef] [PubMed]
- Souza, V.G.L.; Pires, J.R.A.; Rodrigues, C.; Coelhoso, I.M.; Fernando, A.L. Chitosan Composites in Packaging Industry-Current Trends and Future Challenges. Polymers 2020, 12, 417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, M.N.V.R. A Review of Chitin and Chitosan Applications. React. Funct. Polym. 2000, 46, 1–27. [Google Scholar] [CrossRef]
- Ma, Y.; Xin, L.; Tan, H.; Fan, M.; Li, J.; Jia, Y.; Ling, Z.; Chen, Y.; Hu, X. Chitosan Membrane Dressings Toughened by Glycerol to Load Antibacterial Drugs for Wound Healing. Mater. Sci. Eng. C 2017, 81, 522–531. [Google Scholar] [CrossRef] [PubMed]
- Sah, M.K.; Rath, S.N. Soluble Eggshell Membrane: A Natural Protein to Improve the Properties of Biomaterials Used for Tissue Engineering Applications. Mater. Sci. Eng. C 2016, 67, 807–821. [Google Scholar] [CrossRef]
- Tsai, W.T.; Yang, J.M.; Lai, C.W.; Cheng, Y.H.; Lin, C.C.; Yeh, C.W. Characterization and Adsorption Properties of Eggshells and Eggshell Membrane. Bioresour. Technol. 2006, 97, 488–493. [Google Scholar] [CrossRef] [PubMed]
- Nakano, T.; Ikawa, N.I.; Ozimek, L. Chemical Composition of Chicken Eggshell and Shell Membranes. Poult. Sci. 2003, 82, 510–514. [Google Scholar] [CrossRef]
- Ahmed, T.A.E.; Suso, H.; Maqbool, A.; Hincke, M.T. Processed Eggshell Membrane Powder: Bioinspiration for an Innovative Wound Healing Product. Mater. Sci. Eng. C 2019, 95, 192–203. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Ma, M.; Uk, D.; Huang, X. Preparation and Characterization of Novel Eggshell Membrane-Chitosan Blend Films for Potential Wound-Care Dressing: From Waste to Medicinal Products. Int. J. Biol. Macromol. 2019, 123, 477–484. [Google Scholar] [CrossRef]
- Hincke, M.T.; Gautron, J.; Panheleux, M.; Garcia-Ruiz, J.; McKee, M.D.; Nys, Y. Identification and Localization of Lysozyme as a Component of Eggshell Membranes and Eggshell Matrix. Matrix Biol. 2000, 19, 443–453. [Google Scholar] [CrossRef]
- MacNeil, H.J. Method and Apparatus for Separating a Protein Membrane and Shell Material in Waste Egg Shells. Patent No. US 7,007,806 B2, 7 March 2006. [Google Scholar]
- Ohto-fujita, E.; Konno, T.; Shimizu, M.; Ishihara, K.; Sugitate, T.; Niyake, J.; Yoshimura, K.; Taniwaki, K.; Sakurai, T.; Hasebe, Y. Hydrolyzed Eggshell Membrane Immobilized on Phosphorylcholine Polymer Supplies Extracellular Matrix Environment for Human Dermal Fibroblasts. Cell Tissue Res. 2011, 345, 177–190. [Google Scholar] [CrossRef] [Green Version]
- Jia, J.; Liu, G.; Guo, Z.; Yu, J.; Duan, Y. Preparation and Characterization of Soluble Eggshell Membrane Protein/PLGA Electrospun Nanofibers for Guided Tissue Regeneration Membrane. J. Nanomater. 2012, 2012, 282736. [Google Scholar] [CrossRef] [Green Version]
- Jia, J.; Duan, Y.; Yu, J.; Lu, J. Preparation and Immobilization of Soluble Eggshell Membrane Protein on the Electrospun Nanofibers to Enhance Cell Adhesion and Growth. J. Biomed. Mater. Res. Part A 2007, 86, 364–373. [Google Scholar] [CrossRef]
- Yi, F.; Guo, Z.; Hu, P.; Fang, Z.; Yu, J.; Li, Q. Mimetics of Eggshell Membrane Protein Fibers by Electrospinning. Macromol. Rapid Commun. 2004, 25, 1038–1043. [Google Scholar] [CrossRef]
- Yi, F.; Guo, Z.; Zhang, L.; Yu, J.; Li, Q. Soluble Eggshell Membrane Protein: Preparation, Characterization and Biocompatibility. Biomaterials 2004, 25, 4591–4599. [Google Scholar] [CrossRef] [PubMed]
- Qi, Q.; Lu, J.; Guo, Z.; Yu, J. Preparation and Characterization of Soluble Eggshell Membrane Protein/Chitosan Blend Films. Chin. J. Polym. Sci. 2009, 27, 387–392. [Google Scholar] [CrossRef]
- Serra, R.; Grande, R.; Amato, B.; Butrico, L.; Rossi, A.; Settimio Francesco, U.; Caroleo, B.; Gallelli, L.; de Franciscis, S. Chronic Wound Infections: The Role of Pseudomonas Aeruginosa and Staphylococcus Aureus. Expert Rev. Anti. Infect. Ther. 2015, 13, 605–613. [Google Scholar] [CrossRef]
- Zoghi, N.; Fouani, M.H.; Bagheri, H.; Nikkhah, M.; Asadi, N. Characterization of Minocycline Loaded Chitosan/Polyethylene Glycol/Glycerol Blend Films as Antibacterial Wound Dressings. J. Appl. Polym. Sci. 2021, 138, 1–13. [Google Scholar] [CrossRef]
- Xiao, X.; Tong, Z.; Liao, J.; Wang, T. High-Efficient and Synergetic Antibacterial Nanocomposite Hydrogel with Quaternized Chitosan/Ag Nanoparticles Prepared by One-Pot UV Photochemical Synthesis. Biopolymers 2020, 111, e23354. [Google Scholar] [CrossRef]
- Thomas, V.; Yallapu, M.M.; Sreedhar, B.; Bajpai, S.K. Fabrication, Characterization of Chitosan/Nanosilver Film and Its Potential Antibacterial Application. J. Biomater. Polym. Ed. 2009, 20, 2129–2144. [Google Scholar] [CrossRef] [PubMed]
- Kadam, D.; Momin, B.; Palamthodi, S.; Lele, S.S. Physicochemical and Functional Properties of Chitosan-Based Nano- Composite Films Incorporated with Biogenic Silver Nanoparticles. Carbohydr. Polym. 2019, 211, 124–132. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Liu, F.; Jiang, Y.; Chai, Z.; Li, P.; Cheng, Y.; Jing, H.; Leng, X. Synergistic Antimicrobial Activities of Natural Essential Oils with Chitosan Films. J. Agric. Food Chem. 2011, 59, 12411–12419. [Google Scholar] [CrossRef]
- Yeddes, W.; Djebali, K.; Aidi Wannes, W.; Horchani-Naifer, K.; Hammami, M.; Younes, I.; Saidani Tounsi, M. Gelatin-Chitosan-Pectin Films Incorporated with Rosemary Essential Oil: Optimized Formulation Using Mixture Design and Response Surface Methodology. Int. J. Biol. Macromol. 2020, 154, 92–103. [Google Scholar] [CrossRef] [PubMed]
- Altiok, D.; Altiok, E.; Tihminlioglu, F. Physical, Antibacterial and Antioxidant Properties of Chitosan Films Incorporated with Thyme Oil for Potential Wound Healing Applications. J Mater. Sci. Mater. Med. 2010, 21, 2227–2236. [Google Scholar] [CrossRef] [Green Version]
- Tepe, B.; Daferera, D.; Sokmen, M.; Polissiou, M.; Sokmen, A. In Vitro Antimicrobial and Antioxidant Activities of the Essential Oils and Various Extracts of Thymus Eigii, M. Zphary et P.H. Davis. J. Agric. Food Chem. 2004, 52, 1132–1137. [Google Scholar] [CrossRef]
- Simon, A.; Traynor, K.; Santos, K.; Blaser, G.; Bode, U.; Molan, P. Medical Honey for Wound Care—Still the ‘Latest Resort’? Ecam 2009, 6, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Boateng, J.S.; Matthews, K.H.; Stevens, H.N.E.; Eccleston, G.M. Wound Healing Dressings and Drug Delivery Systems: A Review. J. Pharm. Sci. 2008, 97, 2892–2923. [Google Scholar] [CrossRef] [PubMed]
- Gethin, G. The Significance of Surface PH in Chronic Wounds. Wounds UK 2007, 3, 52–56. [Google Scholar]
- Toman, M.; Kwinter, S.; Vreugdenhil, A. Seperation of calcium carbonate eggshells from organic membrane. WO Patent 2016/033684 A1, 10 March 2010. [Google Scholar]
- Yi, F.; Yu, J.; Guo, Z.; Zhang, L.; Li, Q. Natural Bioactive Material: A Preparation of Soluble Eggshell Membrane Protein. Macromol. Biosci. 2003, 3, 234–237. [Google Scholar] [CrossRef]
- Tanuma, H.; Saito, T.; Nishikawa, K.; Dong, T.; Yazawa, K.; Inoue, Y. Preparation and Characterization of PEG-Cross-Linked Chitosan Hydrogel Films with Controllable Swelling and Enzymatic Degradation Behavior. Carbohydr. Polym. 2010, 80, 260–265. [Google Scholar] [CrossRef]
- Balau, L.; Lisa, G.; Popa, M.I.; Tura, V.; Melnig, V. Physico—Chemical Properties of Chitosan Films. Cent. Eur. J. Chem. 2004, 2, 638–647. [Google Scholar] [CrossRef]
- Lawrie, G.; Keen, I.; Drew, B.; Chandler-temple, A.; Rintoul, L.; Fredericks, P.; Grøndahl, L. Interactions between Alginate and Chitosan Biopolymers Characterized Using FTIR and XPS. Biomacromolecules 2007, 8, 2533–2541. [Google Scholar] [CrossRef]
- Nunthanid, J.; Puttipipatkhachorn, S.; Yamamoto, K.; Garnet, E.; Nunthanid, J.; Puttipipatkhachorn, S. Physical Properties and Molecular Behavior of Chitosan Films Physical Properties and Molecular Behavior of Chitosan Films. Drug Dev. Ind. Pharm. 2001, 27, 143–157. [Google Scholar] [CrossRef]
- Yi, F.; Lu, J.; Guo, Z.; Yu, J. Mechanical Properties and Biocompatibility of Soluble Eggshell Membrane Protein/Poly (Vinyl Alcohol) Blend Films. J. Biomater. Sci. Polym. Edn. 2006, 17, 1015–1024. [Google Scholar] [CrossRef] [PubMed]
- Harding, K.G.; Morris, H.L.; Patel, G.K. Healing Chronic Wounds. BMJ 2002, 324, 160–163. [Google Scholar] [CrossRef]
- Wang, S.; Jing, Y. Study on the Barrier Properties of Glycerol to Chitosan Coating Layer. Mater. Lett. 2017, 209, 345–348. [Google Scholar] [CrossRef]
- Shankar, S.; Rhim, J.W. Preparation of Sulfur Nanoparticle-Incorporated Antimicrobial Chitosan Films. Food Hydrocoll. 2018, 82, 116–123. [Google Scholar] [CrossRef]
- Auta, M.; Hameed, B.H. Chitosan—Clay Composite as Highly Effective and Low-Cost Adsorbent for Batch and Fixed-Bed Adsorption of Methylene Blue. Chem. Eng. J. 2014, 237, 352–361. [Google Scholar] [CrossRef]
- Riva, R.; Ragelle, H.; Des Rieux, A.; Duhem, N.; Jérôme, C.; Préat, V. Chitosan and Chitosan Derivatives in Drug Delivery and Tissue Engineering. Adv. Polym. Sci. 2011, 244, 19–44. [Google Scholar] [CrossRef]
- Lu, B.; Wang, C.F.; Wu, D.Q.; Li, C.; Zhang, X.Z.; Zhuo, R.X. Chitosan Based Oligoamine Polymers: Synthesis, Characterization, and Gene Delivery. J. Control. Release 2009, 137, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Richard, I.; Thibault, M.; de Crescenzo, G.; Buschmann, M.D.; Lavertu, M. Ionization Behavior of Chitosan and Chitosan−DNA Polyplexes Indicate That Chitosan Has a Similar Capability to Induce a ProtonSponge Effect as PEI. Biomacromolecules 2013, 14, 1732–1740. [Google Scholar] [CrossRef]
- Moreira, C.; Oliveira, H.; Pires, L.R.; Simões, S.; Barbosa, M.A.; Pêgo, A.P. Improving Chitosan-Mediated Gene Transfer by the Introduction of Intracellular Buffering Moieties into the Chitosan Backbone. Acta Biomater. 2009, 5, 2995–3006. [Google Scholar] [CrossRef] [PubMed]
- Loncarevic, A.; Ivankovic, M.; Rogina, A. Lysozyme-Induced Degradation of Chitosan: The Characterisation of Degraded Chitosan Scaffolds. J. Tissue Repair Regen. 2017, 1, 12–22. [Google Scholar] [CrossRef]
- Dorman, H.J.D.; Deans, S.G. Antimicrobial Agents from Plants: Antibacterial Activity of Plant Volatile Oils. J. Appl. Microbiol. 2000, 88, 308–316. [Google Scholar] [CrossRef]
Chitosan Powder (g mL−1) | ESM (g mL−1) | SEP (g mL−1) | Glycerol (v/v) | T. vulgaris Oil (v/v) | O. vulgare Oil (v/v) | |
---|---|---|---|---|---|---|
CS-ESM | 0.01 | 0.01 | - | 2% | - | - |
CS-ESM-SEP | 0.01 | 0.005 | 0.005 | 2% | - | - |
CS-SEP | 0.01 | - | 0.01 | 2% | - | - |
CS-ESM-SEP T. vulgaris | 0.01 | 0.005 | 0.005 | 2% | 1.5% | - |
CS-ESM-SEP O. vulgare | 0.01 | 0.005 | 0.005 | 2% | - | 1.5% |
CS-ESM-SEP T. vulgaris + O. vulgare (1.5%) | 0.01 | 0.005 | 0.005 | 2% | 1.5% | 1.5% |
CS-ESM-SEP T. vulgaris + O. vulgare (5%) | 0.01 | 0.005 | 0.005 | 2% | 5% | 5% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Webb, B.C.W.; Rafferty, S.; Vreugdenhil, A.J. Preparation and Characterization of Antibacterial Films with Eggshell-Membrane Biopolymers Incorporated with Chitosan and Plant Extracts. Polymers 2022, 14, 383. https://doi.org/10.3390/polym14030383
Webb BCW, Rafferty S, Vreugdenhil AJ. Preparation and Characterization of Antibacterial Films with Eggshell-Membrane Biopolymers Incorporated with Chitosan and Plant Extracts. Polymers. 2022; 14(3):383. https://doi.org/10.3390/polym14030383
Chicago/Turabian StyleWebb, Brian Cameron Wooding, Steven Rafferty, and Andrew James Vreugdenhil. 2022. "Preparation and Characterization of Antibacterial Films with Eggshell-Membrane Biopolymers Incorporated with Chitosan and Plant Extracts" Polymers 14, no. 3: 383. https://doi.org/10.3390/polym14030383
APA StyleWebb, B. C. W., Rafferty, S., & Vreugdenhil, A. J. (2022). Preparation and Characterization of Antibacterial Films with Eggshell-Membrane Biopolymers Incorporated with Chitosan and Plant Extracts. Polymers, 14(3), 383. https://doi.org/10.3390/polym14030383