Mesoscale Modeling of Polymer Concrete Dynamic Properties
Abstract
:1. Introduction
2. Finite Element Modeling
2.1. General Framework
2.2. Finite Element Modeling
2.3. Model-Updating Algorithm
3. Case Study
3.1. Research Object
3.2. Static Tests
3.3. Dynamic Tests
3.4. Finite Element Model
3.5. Finite Element Model Validation
4. Discussion
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahn, S.; Kwon, S.; Hwang, Y.-T.; Koh, H.-I.; Kim, H.-S.; Park, J. Complex structured polymer concrete sleeper for rolling noise reduction of high-speed train system. Compos. Struct. 2019, 223, 110944. [Google Scholar] [CrossRef]
- Bulut, H.A.; Şahin, R. A study on mechanical properties of polymer concrete containing electronic plastic waste. Compos. Struct. 2017, 178, 50–62. [Google Scholar] [CrossRef]
- Tang, H.; Yang, Y.; Li, H.; Xiao, L.; Ge, Y. Effects of chloride salt erosion and freeze–thaw cycle on interface shear behavior between ordinary concrete and self-compacting concrete. Structures 2023, 56, 104990. [Google Scholar] [CrossRef]
- Huang, H.; Guo, M.; Zhang, W.; Huang, M. Seismic Behavior of Strengthened RC Columns under Combined Loadings. J. Bridge Eng. 2022, 27, 05022005. [Google Scholar] [CrossRef]
- Ferdous, W.; Manalo, A.; Wong, H.S.; Abousnina, R.; Alajarmeh, O.S.; Zhuge, Y.; Schubel, P. Optimal design for epoxy polymer concrete based on mechanical properties and durability aspects. Constr. Build. Mater. 2020, 232, 117229. [Google Scholar] [CrossRef]
- Zhou, F.; Jiang, H.; Huang, L.; Hu, Y.; Xie, Z.; Zeng, Z.; Liu, M.; Wang, B.; Zhou, X. Early Shrinkage Modeling of Complex Internally Confined Concrete Based on Capillary Tension Theory. Buildings 2023, 13, 2201. [Google Scholar] [CrossRef]
- Zhou, F.; Li, W.; Hu, Y.; Huang, L.; Xie, Z.; Yang, J.; Wu, D.; Chen, Z. Moisture Diffusion Coefficient of Concrete under Different Conditions. Buildings 2023, 13, 2421. [Google Scholar] [CrossRef]
- Cao, J.; He, H.; Zhang, Y.; Zhao, W.; Yan, Z.; Zhu, H. Crack detection in ultrahigh-performance concrete using robust principal component analysis and characteristic evaluation in the frequency domain. Struct. Health Monit. 2023, 14759217231178457. [Google Scholar] [CrossRef]
- Unger, J.F.; Eckardt, S. Multiscale modeling of concrete. Arch. Comput. Methods Eng. 2011, 18, 341. [Google Scholar] [CrossRef]
- Gu, Q.; Wang, L.; Li, Y.; Deng, X.; Lin, C. Multi-scale response sensitivity analysis based on direct differentiation method for concrete structures. Compos. Part B Eng. 2019, 157, 295–304. [Google Scholar] [CrossRef]
- Ma, D.; Liang, Z.; Liu, Y.; Jiang, Z.; Liu, Z.; Zhou, L.; Tang, L. Mesoscale modeling of epoxy polymer concrete under tension or bending. Compos. Struct. 2020, 256, 113079. [Google Scholar] [CrossRef]
- Song, L.; Ma, H.; Yu, B. A topological generation method for the mesoscopic model of composite material with star solid reinforced particles and its ITZ control. Compos. Struct. 2019, 225, 111116. [Google Scholar] [CrossRef]
- Zhou, R.; Song, Z.; Lu, Y. 3D mesoscale finite element modelling of concrete. Comput. Struct. 2017, 192, 96–113. [Google Scholar] [CrossRef]
- Jin, L.; Xia, H.; Jiang, X.; Du, X. Size effect on shear failure of CFRP-strengthened concrete beams without web reinforcement: Meso-scale simulation and formulation. Compos. Struct. 2020, 236, 111895. [Google Scholar] [CrossRef]
- Zhang, R.; Jin, L.; Du, X. Three-dimensional meso-scale modelling of failure of steel fiber reinforced concrete at room and elevated temperatures. Constr. Build. Mater. 2021, 278, 122368. [Google Scholar] [CrossRef]
- Ouyang, H.; Chen, X. 3D meso-scale modeling of concrete with a local background grid method. Constr. Build. Mater. 2020, 257, 119382. [Google Scholar] [CrossRef]
- Maleki, M.; Rasoolan, I.; Khajehdezfuly, A.; Jivkov, A.P. On the effect of ITZ thickness in meso-scale models of concrete. Constr. Build. Mater. 2020, 258, 119639. [Google Scholar] [CrossRef]
- Naderi, S.; Zhang, M. Meso-scale modelling of static and dynamic tensile fracture of concrete accounting for real-shape aggregates. Cem. Concr. Compos. 2021, 116, 103889. [Google Scholar] [CrossRef]
- Naderi, S.; Zhang, M. An integrated framework for modelling virtual 3D irregulate particulate mesostructure. Powder Technol. 2019, 355, 808–819. [Google Scholar] [CrossRef]
- Naderi, S.; Tu, W.; Zhang, M. Meso-scale modelling of compressive fracture in concrete with irregularly shaped aggregates. Cem. Concr. Res. 2021, 140, 106317. [Google Scholar] [CrossRef]
- Niknezhad, D.; Raghavan, B.; Bernard, F.; Kamali-Bernard, S. Towards a realistic morphological model for the meso-scale mechanical and transport behavior of cementitious composites. Compos. Part B Eng. 2015, 81, 72–83. [Google Scholar] [CrossRef]
- Jankowiak, T.; Lodygowski, T. Identification of parameters of concrete damage plasticity constitutive model. Found. Civ. Environ. Eng. 2005, 6, 53–69. [Google Scholar]
- Mazzucco, G.; Xotta, G.; Pomaro, B.; Salomoni, V.A.; Faleschini, F. Elastoplastic-damaged meso-scale modelling of concrete with recycled aggregates. Compos. Part B Eng. 2018, 140, 145–156. [Google Scholar] [CrossRef]
- Wu, Z.; She, W.; Zhang, J.; Tang, J.; Cao, Y.; Da, B. 3D mesoscale modelling of steel fiber-reinforced aggregate concrete. Int. J. Mech. Sci. 2023, 257, 108550. [Google Scholar] [CrossRef]
- Yu, J.-C.; Wang, J.-T.; Pan, J.-W.; Guo, N.; Zhang, C.-H. A dynamic FEM-DEM multiscale modeling approach for concrete structures. Eng. Fract. Mech. 2023, 278, 109031. [Google Scholar] [CrossRef]
- Zhou, X.; Xie, Y.; Long, G.; Zeng, X.; Li, J.; Li, N.; Wang, F.; Umar, H.A. Influence of end friction confinement on dynamic mechanical properties and damage evolution of concrete by coupled DEM-FDM method. Eng. Fract. Mech. 2023, 281, 109150. [Google Scholar] [CrossRef]
- Peng, Q.; Wu, H.; Jia, P.C.; Ma, L.L. Dynamic behavior of UHPC member under lateral low-velocity impact: Mesoscale analysis. Int. J. Impact Eng. 2023, 172, 104418. [Google Scholar] [CrossRef]
- Zhou, G.; Xu, Z. 3D mesoscale investigation on the compressive fracture of concrete with different aggregate shapes and interface transition zones. Constr. Build. Mater. 2023, 393, 132111. [Google Scholar] [CrossRef]
- Dunaj, P. Substructural identification of dynamic properties of composite structures. Measurement 2022, 204, 112056. [Google Scholar] [CrossRef]
- Gangnant, A.; Saliba, J.; La Borderie, C.; Morel, S. Modeling of the quasibrittle fracture of concrete at meso-scale: Effect of classes of aggregates on global and local behavior. Cem. Concr. Res. 2016, 89, 35–44. [Google Scholar] [CrossRef]
- Berczyński, S.; Gutowski, P. Identi cation of the Dynamic Models of Machine Tool Supporting Systems. Part I: An Algorithm of the Method. J. Vib. Control 2006, 12, 257–277. [Google Scholar] [CrossRef]
- De Klerk, D.; Rixen, D.J.; Voormeeren, S.N. General Framework for Dynamic Substructuring: History, Review and Classification of Techniques. AIAA J. 2008, 46, 1169–1181. [Google Scholar] [CrossRef]
- Dunaj, P.; Powałka, B.; Berczyński, S.; Chodźko, M.; Okulik, T. Increasing lathe machining stability by using a composite steel–polymer concrete frame. CIRP J. Manuf. Sci. Technol. 2020, 31, 1–13. [Google Scholar] [CrossRef]
- Dunaj, P.; Dolata, M.; Tomaszewski, J.; Majda, P. Static stiffness design of vertical lathe with steel-polymer concrete frame. Int. J. Adv. Manuf. Technol. 2022, 121, 1149–1160. [Google Scholar] [CrossRef]
- Qiu, W.; Ueda, T.; Fu, S.; Han, Y.; Wang, J.; Ye, J. Meso-scale computational modeling of the fracture of concrete with complex shaped aggregates under the self-restraint stress. Compos. Struct. 2023, 303, 116267. [Google Scholar] [CrossRef]
- Li, H.; Li, Y.; Jin, C.; Liu, J.; Liu, Y.; Mu, J. Meso-scale modelling of the effect of coarse aggregate properties on the creep of concrete. J. Build. Eng. 2022, 54, 104660. [Google Scholar] [CrossRef]
- MIDAS IT. User’s Manual of Midas NFX; MIDAS IT: Seongnam, Republic of Korea, 2011. [Google Scholar]
- Waltz, R.A.; Morales, J.L.; Nocedal, J.; Orban, D. An interior algorithm for nonlinear optimization that combines line search and trust region steps. Math. Program. 2006, 107, 391–408. [Google Scholar] [CrossRef]
- Luo, Q.; Wang, W.; Sun, Z.; Wang, B.; Xu, S. Statistical analysis of mesoscopic concrete with random elastic modulus. J. Build. Eng. 2021, 33, 101850. [Google Scholar] [CrossRef]
- Peeters, B.; Van der Auweraer, H.; Guillaume, P.; Leuridan, J. The PolyMAX frequency-domain method: A new standard for modal parameter estimation? Shock Vib. 2004, 11, 395–409. [Google Scholar] [CrossRef]
- Peeters, B.; Van der Auweraer, H. PolyMAX: A revolution in operational modal analysis. In Proceedings of the 1st International Operational Modal Analysis Conference, Copenhagen, Denmark, 25–27 April 2005; pp. 26–27. [Google Scholar]
- Allemang, R.J. The modal assurance criterion–twenty years of use and abuse. Sound Vib. 2003, 37, 14–23. [Google Scholar]
- Dunaj, P.; Marchelek, K.; Berczyński, S.; Mizrak, B. Rigid Finite Element Method in Modeling Composite Steel-Polymer Concrete Machine Tool Frames. Materials 2020, 13, 3151. [Google Scholar] [CrossRef]
- Dunaj, P.; Berczyński, S.; Chodźko, M.; Niesterowicz, B. Finite Element Modeling of the Dynamic Properties of Composite Steel–Polymer Concrete Beams. Materials 2020, 13, 1630. [Google Scholar] [CrossRef] [PubMed]
- Berczyński, S.; Wróblewski, T. Vibration of Steel–Concrete Composite Beams Using the Timoshenko Beam Model. J. Vib. Control 2005, 11, 829–848. [Google Scholar] [CrossRef]
- Huang, Y.; Guo, F.; Zhang, H.; Yang, Z. An efficient computational framework for generating realistic 3D mesoscale concrete models using micro X-ray computed tomography images and dynamic physics engine. Cem. Concr. Compos. 2022, 126, 104347. [Google Scholar] [CrossRef]
Epoxy Resin | Ash | Sand (0.1–2 mm) | Fine Fraction (2–5 mm) | Medium Fraction (5–10 mm) | Coarse Fraction (10–16 mm) | |
---|---|---|---|---|---|---|
Polymer concrete | 15% | 1% | 16% | 15% | 35% | 18% |
Property | Polymer Concrete Matrix |
---|---|
Modulus of elasticity, | 20.0 ± 0.5 GPa |
Poisson’s ratio, | 0.20 ± 0.05 |
Density, | 2050 ± 6 kg/m³ |
Loss factor, | 0.0166 |
Parameter | Value |
---|---|
Bandwidth | 16,384 Hz |
Frequency resolution | 0.5 Hz |
Signal acquisition time | 2 s |
Frequency response function estimator | H1 |
Number of averages | 10 |
Scaling of the frequency response function | global |
Property | Initial Value | Identified Value | Relative Difference |
---|---|---|---|
Polymer matrix | |||
Modulus of elasticity, | 20.0 GPa | 19.2 GPa | 8.6% |
Poisson’s ratio, | 0.20 | 0.15 | 25.0% |
Mass density, | 2050 kg/m³ | 1922 kg/m³ | 6.2% |
Loss factor, | 0.01660 | 0.02200 | 32.5% |
Aggregates | |||
Modulus of elasticity, | 70.0 GPa | 90.0 GPa | 28.6% |
Poisson’s ratio, | 0.20 | 0.15 | 25.0% |
Mass density, | 2500 kg/m³ | 2430 kg/m³ | 2.8% |
Loss factor, | 0.00150 | 0.00156 | 4.0% |
ITZ | |||
Modulus of elasticity, | 70.0 GPa | 60.0 GPa | 14.3% |
Poisson’s ratio, | 0.20 | 0.15 | 25.0% |
Mass density, | 2500 kg/m³ | 2330 kg/m³ | 6.8% |
Loss factor, | 0.00150 | 0.00010 | 93.3% |
Mode Type | Experimental Study | FEM Model (Initial Parameters) | Relative Error δ | FEM Model (Updated Parameters) | Relative Error δ |
---|---|---|---|---|---|
Polymer matrix beam | |||||
1st bending | 2090 Hz | 2120 Hz | 1.4% | 2097 Hz | 0.3% |
1st bending | 2093 Hz | 2120 Hz | 1.3% | 2097 Hz | 0.2% |
1st torsional | 4108 Hz | 4072 Hz | 0.9% | 4110 Hz | 0.1% |
2nd bending | 5162 Hz | 5223 Hz | 1.2% | 5176 Hz | 0.3% |
2nd bending | 5165 Hz | 5223 Hz | 1.1% | 5176 Hz | 0.2% |
On average: | 1.2% | On average: | 0.2% | ||
Polymer concrete beam | |||||
1st bending | 1998 Hz | 1889 Hz | 5.4% | 1994 Hz | 0.2% |
1st bending | 2005 Hz | 1901 Hz | 5.2% | 2001 Hz | 0.2% |
1st torsional | 4016 Hz | 3801 Hz | 5.4% | 3921 Hz | 2.3% |
2nd bending | 4962 Hz | 4607 Hz | 7.1% | 4861 Hz | 2.0% |
2nd bending | 4965 Hz | 4630 Hz | 6.7% | 4899 Hz | 1.3% |
On average: | 5.9% | On average: | 1.2% |
Mode Type | Experimental Study | FEM Model | Relative Error δ |
---|---|---|---|
1st bending | 2074 Hz | 1991 Hz | 4.0% |
1st bending | 2076 Hz | 1998 Hz | 3.8% |
1st torsional | 4192 Hz | 3992 Hz | 4.7% |
2nd bending | 4812 Hz | 4863 Hz | 1.1% |
2nd bending | 5171 Hz | 4902 Hz | 3.8% |
On average: | 3.8% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dunaj, P. Mesoscale Modeling of Polymer Concrete Dynamic Properties. Polymers 2023, 15, 4311. https://doi.org/10.3390/polym15214311
Dunaj P. Mesoscale Modeling of Polymer Concrete Dynamic Properties. Polymers. 2023; 15(21):4311. https://doi.org/10.3390/polym15214311
Chicago/Turabian StyleDunaj, Paweł. 2023. "Mesoscale Modeling of Polymer Concrete Dynamic Properties" Polymers 15, no. 21: 4311. https://doi.org/10.3390/polym15214311
APA StyleDunaj, P. (2023). Mesoscale Modeling of Polymer Concrete Dynamic Properties. Polymers, 15(21), 4311. https://doi.org/10.3390/polym15214311