Antimicrobial and Antiviral Properties of Triclosan-Containing Polymer Composite: Aging Effects of pH, UV, and Sunlight Exposure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Polymer Composites with Triclosan
2.3. Characterization of Polymer Composite
2.4. Antimicrobial Activity Tests of Polymer Composites
2.4.1. Preparation of Test Samples
2.4.2. Preparation of Test Culture Suspension
2.4.3. Inoculation
2.4.4. Washing Samples
2.4.5. Inoculation and Enumeration of Bacteria
2.4.6. Test of Validity of the Results
2.5. Antiviral Activity Tests of Polymer Composite with Triclosan
2.5.1. Sterilization of Samples
2.5.2. Application of Viruses and Flushing of Virus-Containing Material
2.5.3. Sample Preparation before Culturing in Chicken Embryos
2.5.4. Virus Culture in Developing Chicken Embryos
2.5.5. Preparation of 0.5% Suspension of Chicken Erythrocytes
2.5.6. Determination of Hemagglutinating Antigen Titer (RGA)
2.5.7. Isolation of Total RNA from Allantois
2.5.8. RT-PCR Setup
2.5.9. Determination of EID50 of IBV According to the Method of Reed and Mench
3. Results and Discussion
3.1. Preparation of Polymer Composites with Triclosan
3.2. Antimicrobial Activity of Polymer Composites with Triclosan
3.3. Antiviral Activity of Polymer Composite with Triclosan
3.3.1. Study of the Influence of the Surface of a Composite Triclosan-Containing Material on the Infectious Activity of the Influenza Virus
3.3.2. Study of the Influence of the Surface of a Composite Triclosan-Containing Material on the Infectious Activity of IBV
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Salwiczek, M.; Qu, Y.; Gardiner, J.; Strugnell, R.; Lithgow, T.; McLean, K.M.; Thissen, H. Emerging rules for effective antimicrobial coatings. Trends Biotechnol. 2014, 32, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Hoque, J.; Akkapeddi, P.; Yadav, V.; Manjunath, G.B.; Uppu, D.S.S.M.; Konai, M.M.; Yarlagadda, V.; Sanyal, K.; Haldar, J. Broad Spectrum Antibacterial and Antifungal Polymeric Paint Materials: Synthesis, Structure–Activity Relationship, and Membrane-Active Mode of Action. ACS Appl. Mater. Interfaces 2015, 7, 1804–1815. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Preventing Diarrhoea through Better Water, Sanitation and Hygiene; World Health Organization: Geneva, Switzerland, 2014; pp. 1–48. Available online: http://apps.who.int/iris/bitstream/10665/150112/1/9789241564823_eng.pdf?ua=1&ua=1 (accessed on 9 December 2022).
- WHO Coronavirus (COVID-19) Dashboard. 2022. Available online: https://covid19.who.int/ (accessed on 9 December 2022).
- Riddell, S.; Goldie, S.; Hill, A.; Eagles, D.; Drew, T.W. The effect of temperature on persistence of SARS-CoV-2 on common surfaces. Virol. J. 2020, 17, 145. [Google Scholar] [CrossRef] [PubMed]
- Kasloff, S.B.; Leung, A.; Strong, J.E.; Funk, D.; Cutts, T. Stability of SARS-CoV-2 on critical personal protective equipment. Sci. Rep. 2021, 11, 984. [Google Scholar] [CrossRef] [PubMed]
- Carrascosa, C.; Raheem, D.; Ramos, F.; Saraiva, A.; Raposo, A. Microbial Biofilms in the Food Industry—A Comprehensive Review. Int. J. Environ. Res. Public Health 2021, 18, 2014. [Google Scholar] [CrossRef]
- Ciolacu, L.; Zand, E.; Negrau, C.; Jaeger, H. Bacterial attachment and biofilm formation on antimicrobial sealants and stainless steel surfaces. Foods 2022, 11, 3096. [Google Scholar] [CrossRef]
- Liu, X.; Tang, B.; Gu, Q.; Yu, X. Elimination of the formation of biofilm in industrial pipes using enzyme cleaning technique. Methodsx 2014, 1, e130–e136. [Google Scholar] [CrossRef]
- Wang, B.; Lin, Q.; Jin, T.; Shen, C.; Tang, J.; Han, Y.; Chen, H. Surface modification of intraocular lenses with hyaluronic acid and lysozyme for the prevention of endophthalmitis and posterior capsule opacification. RSC Adv. 2015, 5, 3597–3604, Erratum in RSC Adv. 2022, 12, 7403–7404. [Google Scholar] [CrossRef]
- Guyomard, A.; Dé, E.; Jouenne, T.; Malandain, J.-J.; Muller, G.; Glinel, K. Incorporation of a Hydrophobic Antibacterial Peptide into Amphiphilic Polyelectrolyte Multilayers: A Bioinspired Approach to Prepare Biocidal Thin Coatings. Adv. Funct. Mater. 2008, 18, 758–765. [Google Scholar] [CrossRef]
- Vimala, K.; Mohan, Y.M.; Sivudu, K.S.; Varaprasad, K.; Ravindra, S.; Reddy, N.N.; Padma, Y.; Sreedhar, B.; MohanaRaju, K. Fabrication of porous chitosan films impregnated with silver nanoparticles: A facile approach for superior antibacterial application. Colloids Surf. B. Biointerfaces 2010, 76, 248–258. [Google Scholar] [CrossRef]
- Ahmad, R.; Mohsin, M.; Ahmad, T.; Sardar, M. Alpha amylase assisted synthesis of TiO₂ nanoparticles: Structural characterization and application as antibacterial agents. J. Hazard. Mater. 2015, 283, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.L.; Jin, T.W.; Han, Y.M.; Shen, C.H.; Li, Q.; Lin, Q.K.; Chen, H. Bio-inspired terpolymers containing dopamine, cations and MPC: A versatile platform to construct a recycle antibacterial and antifouling surface. J. Mater. Chem. B 2015, 3, 5501–5510. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Elkin, I.; Chen, J.; Klibanov, A.M. Why do Some Immobilized N-Alkylated Polyethylenimines Far Surpass Others in Inactivating Influenza Viruses? Biomacromolecules 2015, 16, 351–356. [Google Scholar] [CrossRef]
- Ueberschaar, N.; Xu, Z.; Scherlach, K.; Metsä-Ketelä, M.; Bretschneider, T.; Dahse, H.-M.; Görls, H.; Hertweck, C. Synthetic Remodeling of the Chartreusin Pathway to Tune Antiproliferative and Antibacterial Activities. J. Am. Chem. Soc. 2013, 135, 17408–17416. [Google Scholar] [CrossRef]
- Lichter, J.A.; Van Vliet, K.J.; Rubner, M.F. Design of Antibacterial Surfaces and Interfaces: Polyelectrolyte Multilayers as a Multifunctional Platform. Macromolecules 2009, 42, 8573–8586. [Google Scholar] [CrossRef]
- Simoncic, B.; Tomsic, B. Structures of Novel Antimicrobial Agents for Textiles—A Review. Text. Res. J. 2010, 80, 1721–1737. [Google Scholar] [CrossRef]
- Granados, A.; Pleixats, R.; Vallribera, A. Recent Advances on Antimicrobial and Anti-Inflammatory Cotton Fabrics Containing Nanostructures. Molecules 2021, 26, 3008. [Google Scholar] [CrossRef] [PubMed]
- Edgar, K.J.; Zhang, H. Antibacterial modification of Lyocell fiber: A review. Carbohydr. Polym. 2020, 250, 116932. [Google Scholar] [CrossRef]
- Shafiq, M.; Yasin, T.; Shaista, R.A.M. Structural, thermal, and antibacterial properties of chitosan/ZnO composites. Polym. Compos. 2013, 16, 101–113. [Google Scholar] [CrossRef]
- Sinicropi, M.S.; Iacopetta, D.; Ceramella, J.; Catalano, A.; Mariconda, A.; Pellegrino, M.; Saturnino, C.; Longo, P.; Aquaro, S. Triclosan: A Small Molecule with Controversial Roles. Antibiotics 2022, 11, 735. [Google Scholar] [CrossRef]
- Fisher, L.E.; Hook, A.L.; Ashraf, W.; Yousef, A.; Barrett, D.A.; Scurr, D.J.; Chen, X.; Smith, E.F.; Fay, M.; Parmenter, C.D.; et al. Biomaterial modification of urinary catheters with antimicrobials to give long-term broadspectrum antibiofilm activity. J. Control. Release 2015, 202, 57–64. [Google Scholar] [CrossRef]
- Iyigundogdu, Z.U.; Demir, O.; Asutay, A.B.; Sahin, F. Developing Novel Antimicrobial and Antiviral Textile Products. Appl. Biochem. Biotechnol. 2017, 181, 1155–1166. [Google Scholar] [CrossRef] [PubMed]
- Orhan, M. Triclosan applications for biocidal functionalization of polyester and cotton surfaces. J. Eng. Fibers Fabr. 2020, 15, 1558925020940104. [Google Scholar] [CrossRef]
- Bernier, S.P.; Surette, M.G. Concentration-dependent activity in natural environments. Front. Microbiol. 2013, 4, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shevtsova, T.; Cavallaro, G.; Lazzara, G.; Milioto, S.; Donchak, V.; Harhay, K.; Korolko, S.; Budkowski, A.; Stetsyshyn, Y. Temperature-responsive hybrid nanomaterials based on modified halloysite nanotubes uploaded with silver nanoparticles. Colloids Surfaces A Physicochem. Eng. Asp. 2022, 641, 128525. [Google Scholar] [CrossRef]
- Xu, D.; Su, Y.; Zhao, L.; Meng, F.; Liu, C.; Guan, Y.; Zhang, J.; Luo, J. Antibacterial and antifouling properties of a polyurethane surface modified with perfluoroalkyl and silver nanoparticles. J. Biomed. Mater. Res. Part A 2017, 105, 531–538. [Google Scholar] [CrossRef]
- Balne, P.K.; Harini, S.; Dhand, C.; Dwivedi, N.; Chalasani, M.L.S.; Verma, N.K.; Barathi, V.A.; Beuerman, R.; Agrawal, R.; Lakshminarayanan, R. Surface characteristics and antimicrobial properties of modified catheter surfaces by polypyrogallol and metal ions. Mater. Sci. Eng. C 2018, 90, 673–684. [Google Scholar] [CrossRef]
- Kamalipour, J.; Masoomi, M.; Khonakdar, H.A.; Razavi, S.M.R. Preparation and release study of Triclosan in polyethylene/Triclosan anti-bacterial blend. Colloids Surf. B Biointerfaces 2016, 145, 891–898. [Google Scholar] [CrossRef]
- Kaffashi, B.; Davoodi, S.; Oliaei, E. Poly(ε-caprolactone)/triclosan loaded polylactic acid nanoparticles composite: A long-term antibacterial bionanocomposite with sustained release. Int. J. Pharm. 2016, 508, 10–21. [Google Scholar] [CrossRef]
- Rogalsky, S.; Bardeau, J.-F.; Wu, H.; Lyoshina, L.; Bulko, O.; Tarasyuk, O.; Makhno, S.; Cherniavska, T.; Kyselov, Y.; Koo, J.H. Structural, thermal and antibacterial properties of polyamide 11/polymeric biocide polyhexamethylene guanidine dodecylbenzenesulfonate composites. J. Mater. Sci. 2016, 51, 7716–7730. [Google Scholar] [CrossRef]
- Woo, G.; Mittelman, M.; Santerre, J. Synthesis and characterization of a novel biodegradable antimicrobial polymer. Biomaterials 2000, 21, 1235–1246. [Google Scholar] [CrossRef] [PubMed]
- Namivandi-Zangeneh, R.; Sadrearhami, Z.; Bagheri, A.; Sauvage-Nguyen, M.; Ho, K.K.K.; Kumar, N.; Wong, E.H.H.; Boyer, C. Nitric Oxide-Loaded Antimicrobial Polymer for the Synergistic Eradication of Bacterial Biofilm. ACS Macro Lett. 2018, 7, 592–597. [Google Scholar] [CrossRef] [PubMed]
- Vilas, J.L.; Laza, J.M.; Garay, M.T.; Rodríguez, M.; León, L.M. Unsaturated polyester resins cure: Kinetic, rheologic, and mechanical-dynamical analysis. I. Cure kinetics by DSC and TSR. J. Appl. Polym. Sci. 2001, 79, 447–457. [Google Scholar] [CrossRef]
- Tauanov, Z.; Zakiruly, O.; Baimenova, Z.; Baimenov, A.; Akimbekov, N.S.; Berillo, D. Antimicrobial Properties of the Triclosan-Loaded Polymeric Composite Based on Unsaturated Polyester Resin: Synthesis, Characterization and Activity. Polymers 2022, 14, 676. [Google Scholar] [CrossRef]
- Wiegand, C.; Völpel, A.; Ewald, A.; Remesch, M.; Kuever, J.; Bauer, J.; Griesheim, S.; Hauser, C.; Thielmann, J.; Tonndorf-Martini, S.; et al. Critical physiological factors influencing the outcome of antimicrobial testing according to ISO 22196/JIS Z 2801. PLoS ONE 2018, 13, e0194339. [Google Scholar] [CrossRef] [Green Version]
- Muñoz-Bonilla, A.; Fernández-García, M. Polymeric materials with antimicrobial activity. Prog. Polym. Sci. 2012, 37, 281–339. [Google Scholar] [CrossRef]
- Petersen, R.C. Triclosan antimicrobial polymers. AIMS Mol. Sci. 2016, 3, 88–103. [Google Scholar] [CrossRef]
- Kalyon, B.D.; Olgun, U. Antibacterial efficacy of triclosan-incorporated polymers. Am. J. Infect. Control 2001, 29, 124–125. [Google Scholar] [CrossRef]
- Zu, G.; Steinmüller, M.; Keskin, D.; Van Der Mei, H.C.; Mergel, O.; Van Rijn, P. Antimicrobial Nanogels with Nanoinjection Capabilities for Delivery of the Hydrophobic Antibacterial Agent Triclosan. ACS Appl. Polym. Mater. 2020, 2, 5779–5789. [Google Scholar] [CrossRef]
- Machado, A.H.S.; Garcia, I.M.; da Motta, A.D.S.; Leitune, V.C.B.; Collares, F.M. Triclosan-loaded chitosan as antibacterial agent for adhesive resin. J. Dent. 2019, 83, 33–39. [Google Scholar] [CrossRef]
- Dellanno, C.; Vega, Q.; Boesenberg, D. The antiviral action of common household disinfectants and antiseptics against murine hepatitis virus, a potential surrogate for SARS coronavirus. Am. J. Infect. Control 2009, 37, 649–652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lages, S.; Ramakrishnan, M.; Goyal, S. In-vivo efficacy of hand sanitisers against feline calicivirus: A surrogate for norovirus. J. Hosp. Infect. 2008, 68, 159–163. [Google Scholar] [CrossRef] [PubMed]
- Dixon, G.J.; Sidwell, R.W.; Mcneil, E. Quantitative Studies on Fabrics as Disseminators of Viruses. II. Persistence of poliomyelitis virus on cotton and wool fabrics. Appl. Environ. Microbiol. 1966, 14, 183–188. [Google Scholar] [CrossRef] [PubMed]
Polymeric Matrix | Antimicrobial Agent | Target Microorganism | Ref. |
---|---|---|---|
Polyethylene glycol | Sulfamethoxazole and trimethoprim | S. aureus; E. coli | [26] |
Zwitterionic PTMAEMA-co-PSPE polymer | Poly(styrenesulfonate), quaternary ammonium, H2O2 enzyme | S. aureus | [27] |
Phenylboronic acid polymer brushes | Vancomycin | S. aureus, S. epidermidis | [28] |
Poly(glycidyl methacrylate) brushes | Quaternized polyethylenimine | S. aureus | [29] |
Polyethylene | Triclosan | E. coli; Klebsiella pneumoniae; S. aureus | [30] |
Poly(ε-caprolactone)/polylactic acid nanoparticles | Triclosan | S. aureus; E. coli | [31] |
Polyamide 11/polymeric biocide polyhexamethylene guanidine | Dodecylbenzenesulfonate | E. coli; Bacillus subtilis | [32] |
Polyurethane | Ciprofloxacin | Pseudomonas aeruginosa | [33] |
Polymer of oligoethylene glycol, cationic primary amine, and hydrophobic ethylhexyl | Nitric oxide | P. aeruginosa | [34] |
Sample Name | Composition of Samples | Weight % |
---|---|---|
Reference polymer composite | MEKP | 2 |
Unsaturated polyester resin | 28 | |
CaCO3 | 70 | |
5 wt.% triclosan-loaded polymer composite | MEKP | 2 |
Triclosan | 5 | |
Unsaturated polyester resin | 28 | |
CaCO3 | 65 |
Surface Type of Sample | Chemical Composition |
---|---|
Sample | Unsaturated ester of orthophthalic acid, calcium carbonate, and methyl ethyl ketone peroxide with triclosan content of 5 wt.%; 8 cm in diameter |
Reference sample | Unsaturated ester of orthophthalic acid, calcium carbonate, and methyl ethyl ketone peroxide without triclosan; 8 cm in diameter |
Release liner size | 40 mm × 40 mm |
Culture medium | Nutrient agar, pH 7.4 ± 0.2 Incubation time and conditions: 37 ± 1 °C; 18–24 h |
Inoculum preparation medium | 1/50 Nutrient broth, pH 7.4 ± 0.2 Inoculum concentration—2.5–10.0 × 105 CFU/mL Amount of applied inoculum—0.4 mL |
Contact time and incubation conditions | 5, 15, and 30 min and 1, 2, and 4 h 37 ± 1 °C; humidity: ≥90% |
Neutralizer | Tryptic soy broth with lecithin and tween-80, pH 6.8–7.2 |
Medium for counting CFU | Nutrient agar, pH 7.4 ± 0.2 Incubation time and condition—37 ± 1 °C; 40–48 h |
Sample Number | Incubation Time, min | Strain of Virus |
---|---|---|
No. 1 | 10 | Influenza virus (strain A/WKO/46/19) |
No. 2 | 30 | |
No. 3 | 60 | |
No. 4 | 10 | Coronavirus, IBV (strain “H-120” serotype Massachusetts) |
No. 5 | 30 | |
No. 6 | 60 |
Chemical Elements | Polymer Composite | Polymer Composite with 5 wt.% Triclosan |
---|---|---|
Mg | 0.40 | 0.39 |
Ca | 48.99 | 47.61 |
S | 0.02 | 0.02 |
Fe | 0.01 | 0.01 |
Cl | - | 1.67 |
Sample | Ca | Mg | C | O | Cl |
---|---|---|---|---|---|
Polymer composite | 21.20 | 0.50 | 34.09 | 44.20 | - |
Polymer composite with 5 wt.% triclosan | 22.89 | 0.77 | 29.97 | 44.45 | 1.92 |
Exp. No. | Strain | Average Number of CFU | Average Value, Log10 | Value of Lmax/Lmin | Value of (Lmax − Lmin)/Lmean |
---|---|---|---|---|---|
1 (after 7 days) | S. aureus 6538-P | 4.25 × 103 | 3.628 | 3.615/3.641 | 0.007 |
2 (after 14 days) | 3.34 × 103 | 3.524 | 3.495/3.552 | 0.016 | |
3 (after 1 month) | 3.38 × 103 | 3.528 | 3.503/3.552 | 0.014 | |
4 (after 2 months) | 4.00 × 103 | 3.602 | 3.574/3.628 | 0.015 |
Exp. No. | Control | Sunlight | Antimicrobial Activity, Log10/% * | UV | Antimicrobial Activity, Log10/% * | Acidic Phase | Antimicrobial Activity, Log10/% * | Basic Phase | Antimicrobial Activity, Log10/% * |
---|---|---|---|---|---|---|---|---|---|
Avg. Number of CFU/Avg. Log10 Value | Avg. Number of CFU/Avg. Log10 Value | Avg. Number of CFU/Avg. Log10 Value | Avg. Number of CFU/Avg. Log10 Value | ||||||
1 (after 7 days) | 3.59 × 103/3.556 | 0.06/−1.204 | 4.760/100% | 0.06/−1.204 | 4.760/100% | 0.06/−1.204 | 4.760/100% | 0.06/−1.204 | 4.760/100% |
2 (after 14 days) | 2.66 × 103/3.424 | 0.06/−1.204 | 4.628/100% | 0.06/−1.204 | 4.628/100% | 0.06/−1.204 | 4.628/100% | 0.06/−1.204 | 4.628/100% |
3 (after 1 month) | 4.09 × 103/3.612 | 0.06/−1.204 | 4.816/100% | 0.06/−1.204 | 4.816/100% | 0.06/−1.204 | 4.816/100% | 0.06/−1.204 | 4.816/100% |
4 (after 2 months) | 3.47 × 103/3.540 | 0.06/−1.204 | 4.744/100% | 0.06/−1.204 | 4.744/100% | 0.06/−1.204 | 4.744/100% | 0.06/−1.204 | 4.744/100% |
Sample | Titer of Viral Particles in 1 mL before Infection | Incubation Time, mins | Average Titer RGA | Standard Deviation |
---|---|---|---|---|
Petri dishes | 10,000 | 10 | 341.3 | 147.8 |
30 | 256.0 | 0 | ||
60 | 213.3 | 73.9 | ||
1000 | 10 | 256.0 | 0 | |
30 | 213.3 | 73.9 | ||
60 | 213.3 | 73.9 | ||
100 | 10 | 256.0 | 0 | |
30 | 213.3 | 73.9 | ||
60 | 213.3 | 73.9 | ||
10 | 10 | 256.0 | 0 | |
30 | 213.3 | 73.9 | ||
60 | 170.7 | 73.9 | ||
Polymer composites | 10,000 | 10 | 213.3 | 73.9 |
30 | 170.7 | 73.9 | ||
60 | 0 | 0 | ||
1000 | 10 | 170.7 | 73.9 | |
30 | 32.0 | 32 | ||
60 | 0 | 0 | ||
100 | 10 | 128.0 | 0 | |
30 | 0 | 0 | ||
60 | 0 | 0 | ||
10 | 10 | 64.0 | 0 | |
30 | 0 | 0 | ||
60 | 0 | 0 | ||
Influenza virus A/WKO/46/19 | 10,000 | × | 341.3 | 147.8 |
1000 | × | 341.3 | 147.8 | |
100 | × | 213.3 | 73.9 | |
10 | × | 213.3 | 73.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tauanov, Z.; Zakiruly, O.; Baimenova, Z.; Baimenov, A.; Akimbekov, N.S.; Berillo, D. Antimicrobial and Antiviral Properties of Triclosan-Containing Polymer Composite: Aging Effects of pH, UV, and Sunlight Exposure. Polymers 2023, 15, 1236. https://doi.org/10.3390/polym15051236
Tauanov Z, Zakiruly O, Baimenova Z, Baimenov A, Akimbekov NS, Berillo D. Antimicrobial and Antiviral Properties of Triclosan-Containing Polymer Composite: Aging Effects of pH, UV, and Sunlight Exposure. Polymers. 2023; 15(5):1236. https://doi.org/10.3390/polym15051236
Chicago/Turabian StyleTauanov, Zhandos, Olzhas Zakiruly, Zhuldyz Baimenova, Alzhan Baimenov, Nuraly S. Akimbekov, and Dmitriy Berillo. 2023. "Antimicrobial and Antiviral Properties of Triclosan-Containing Polymer Composite: Aging Effects of pH, UV, and Sunlight Exposure" Polymers 15, no. 5: 1236. https://doi.org/10.3390/polym15051236
APA StyleTauanov, Z., Zakiruly, O., Baimenova, Z., Baimenov, A., Akimbekov, N. S., & Berillo, D. (2023). Antimicrobial and Antiviral Properties of Triclosan-Containing Polymer Composite: Aging Effects of pH, UV, and Sunlight Exposure. Polymers, 15(5), 1236. https://doi.org/10.3390/polym15051236