Determination of Enzyme Inhibition Potential and Anticancer Effects of Pistacia khinjuk Stocks Raised in In Vitro and In Vivo Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Methodology
2.2.1. Obtaining In Vitro Shoot Cultures
2.2.2. Preparation of Extracts
2.2.3. Cytotoxicity Analysis Using an MTT Test
2.2.4. Investigation of the Effects of Samples on Cell Proliferation
2.2.5. Determination of Antihypertensive Activity (Angiotensin I-Converting Enzyme, ACE, Inhibition)
2.2.6. Determination of Anticholinesterase Activity
2.2.7. Determination of Antiurease Activity
2.2.8. Determination of Antityrosinase Activity
2.2.9. Determination of Antielastase Activity
2.3. Statistical Analysis
3. Results
3.1. Evaluation of Seed Germination and Proliferation Studies
3.2. Cytotoxic Activity by MTT Test
3.3. Antihypertensive Activity
3.4. Anticholinesterase Activity
3.5. Antiurease and Antityrosinase Activity
3.6. Antielastase Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bozyel, M.E.; Merdamert, E. Antiurolithiatic activity of medicinal plants in Turkey. In Science, Ecology and Engineering Research in the Globalizing World; St. Kliment Ohridski University Press: Sofia, Bulgaria, 2018; pp. 152–167. [Google Scholar]
- Borris, R.P. Natural products research: Perspectives from a major pharmaceutical company. J. Ethnopharmacol. 1996, 51, 29–38. [Google Scholar] [CrossRef]
- Sarı, A.O.; Oğuz, B.; Bilgiç, A.; Tort, N.; Güvensen, A.; Şenol, S.G. Batı Anadolu’da halk ilacı olarak kullanılan Asteraceae türleri. Anadolu Jaari. 2008, 18, 1–15. [Google Scholar]
- Yang, L.; Wen, K.S.; Ruan, X.; Zhao, Y.X.; Wei, F.; Wang, Q. Response of plant secondary metabolites to environmental factors. Molecules 2018, 23, 762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bozorgi, M.; Memariani, Z.; Mobli, M.; Surmaghi, M.H.S.; Shams-Ardekani, M.R.; Rahimi, R. Five Pistacia species (P. vera, P. atlantica, P. terebinthus, P. khinjuk and P. lentiscus): A review of their traditional uses, phytochemistry, and pharmacology. Sci. World J. 2013, 219815, 1–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dimas, K.; Hatziantoniou, S.; Wyche, J.H.; Pantazis, P. A mastic gum extract induces suppression of growth of human colorectal tumour xenografts in immunodeficient mice. In Vivo 2009, 23, 63–68. [Google Scholar]
- Konstantinos, S.D.; Pantazis, P.; Ramanujam, R. Chios mastic gum: A Plant-produced resin exhibiting numerous diverse pharmaceutical and biomedical properties. In Vivo 2012, 26, 777–785. [Google Scholar]
- Paraschos, S.; Mitakou, S.; Skaltsounis, A.-L. Chios gum mastic: A review of its biological activities. Curr. Med. Chem. 2012, 19, 2292–2302. [Google Scholar] [CrossRef]
- Remila, S.; Kilani, D.A.; Delemasure, S.; Atmani, D. Antioxidant, cytoprotective, anti-inflammatory and anticancer activities of Pistacia lentiscus (Anacardiaceae) leaf and fruit extracts. Eur. J. Integr. 2015, 7, 274–286. [Google Scholar] [CrossRef]
- Hashemi, L.; Samani, M.A.; Moradi, T.M.; Alidadi, S. Anticancer activity and phenolic compounds of Pistacia atlantica extract. Int. J. Pharm. Phytopharm. Res. 2017, 7, 26–31. [Google Scholar]
- Ghasemynasab Parizi, M.; Ahmadi, A.; Mazloomi, S.M. A review on pistachio: Its composition and benefits regarding the prevention or treatment of diseases. JOHE 2016, 4, 57–69. [Google Scholar]
- Chan, K. Some aspects of toxic contaminants in herbal medicines. Chemosphere 2003, 52, 1361–1371. [Google Scholar] [CrossRef] [Green Version]
- Singh, M.; Singh, A.K.; Singh, S.; Pandey, P.; Chandra, S.; Gambhir, I.S. Angiotensin-converting enzyme gene I/D polymorphism increases the susceptibility to hypertension and additive diseases: A study on north Indian patients. Clin. Exp. Hypertens. 2016, 38, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Labdelli, A.; Zemour, K.; Simon, V.; Cerny, M.; Adda, A.; Merah, O. Pistacia atlantica Desf., a source of healthy vegetable oil. Appl. Sci. 2019, 9, 2552. [Google Scholar] [CrossRef] [Green Version]
- Rahman, H.S. Phytochemical analysis and antioxidant and anticancer activities of mastic gum resin from Pistacia atlantica subspecies kurdica. Onco Targets Ther. 2018, 11, 4559–4572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seifaddinipour, M.; Farghadani, R.; Namvar, F.; Mohamad, J.; Abdul Kadir, H. Cytotoxic effects and anti-angiogenesis potential of pistachio (Pistacia vera L.) Hulls against MCF-7 human breast cancer cells. Molecules 2018, 23, 110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buriani, A.; Fortinguerra, S.; Vincenzo, S.; Dall’Acqua, S.; Innocenti, G.; Montopoli, M.; Gabbia, D.; Carrara, M. Human adenocarcinoma cell line sensitivity to essential oil phytocomplexes from Pistacia species: A multivariate approach. Molecules 2017, 22, 1336. [Google Scholar] [CrossRef] [Green Version]
- Almehdar, H.; Abdallah, H.; Osman, A.; AbdelSattar, E. In vitro cytotoxic screening of selected Saudi medicinal plants. J. Nat. Med. 2012, 66, 406–412. [Google Scholar] [CrossRef]
- Sakagami, H.; Kishino, K.; Kobayashi, M.; Hashimoto, K.; Iida, S.; Shimetani, A.; Nakamura, Y.; Takahashi, K.; Ikarashi, T.; Fukamachi, H.; et al. Selective antibacterial and apoptosis modulating activities of mastic. In Vivo 2009, 23, 215–223. [Google Scholar]
- Tilkat, E.; Işıkalan, Ç.; Onay, A. In vitro propagation of khinjuk pistachio (Pistacia khınjuk Stocks) through seedling apical shoot tip culture. Propag. Ornam. Plants 2005, 5, 1–5. [Google Scholar]
- Ertas, A.; Boga, M.; Yilmaz, M.A.; Yesil, Y.; Tel, G.; Temel, H.; Hasimi, N.; Gazioglu, I.; Ozturk, M.; Ugurlu, P. A detailed study on the chemical and biological profiles of essential oil and methanol extract of Thymus nummularius (Anzer tea): Rosmarinic acid. Ind. Crop. Prod. 2015, 67, 336–345. [Google Scholar] [CrossRef]
- Mojarraba, M.; Langzian, M.S.; Emamic, S.A.; Asilic, J.; Tayarani-Najaranb, Z. In vitro antiproliferative and apoptotic activity of different fractions of Artemisia armeniaca. Rev. Bras. Farm. 2013, 23, 783–788. [Google Scholar] [CrossRef] [Green Version]
- Yener, I.; Tokul Olmez, O.; Ertas, A.; Yilmaz, M.A.; Firat, M.; Irtegun Kandemir, S.; Ozturk, M.; Kolak, U.; Temel, H. A detailed study on chemical and biological profile of nine Euphorbia species from Turkey with chemometric approach: Remarkable cytotoxicity of E. fistulasa and promising tannic acid content of E. eriophora. Ind. Crop. Prod. 2018, 123, 442–453. [Google Scholar] [CrossRef]
- Kwon, Y.I.; Vattem, D.A.; Shetty, K. Evaluation of clonal herbs of Lamiaceae species for management of diabetes and hypertension. Asia Pac. J. Clin. Nutr. 2006, 15, 107–118. [Google Scholar] [PubMed]
- Ellman, G.L.; Courtney, K.D.; Andres, V.; Featherstone, R.M. A new and rapid colourimetric determination of acetylcholinesterase activity. Biochem. Pharm. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- Hina, Z.; Ghazala, H.R.; Arfa, K.; Huma, S.; Sabiha, T.; Ajmal, K. Anti-urease Activity of Mimusops elengi L. (Sapotaceae). E. J. Med. Pl. 2015, 6, 223–230. [Google Scholar]
- Hearing, V.J.; Jiménez, M. Mammalian tyrosinase—The critical regulatory control point in melanocyte pigmentation. Int. J. Biochem. 1987, 19, 1141–1147. [Google Scholar] [CrossRef]
- Melzig, M.F.; Löser, B.; Ciesielski, S. Inhibition of neutrophil elastase activity by phenolic compounds from plants. Pharmazie 2011, 56, 967–970. [Google Scholar]
- Güven, A.; Gürsul, I. Bitki doku kültürlerinde sekonder metabolit sentezi. Gıda 2014, 39, 299–306. [Google Scholar]
- Bibi, Y.; Nisa, S.; Zia, M.; Waheed, A.; Ahmed, S.; Chaudhary, M.F. The study of anticancer and antifungal activities of Pistacia integerrima extract in vitro. Indian J. Pharm. Sci. 2012, 74, 375–379. [Google Scholar]
- Sifia, I.; Dzoyem, J.P.; Ouinten, M.; Yousfi, M.; McGaw, L.J.; Eloff, J.N. Antimycobacterial, antioxidant and cytotoxic activities of essentıal oil of gall of Pistacia atlantica Desf. from Algeria. Afr. J. Tradit. Complement Altern. Med. 2015, 12, 150–155. [Google Scholar] [CrossRef] [Green Version]
- Jaafari-Ashkvandi, Z.; Shirazi, S.Y.; Rezaeifard, S.; Hamedi, A.; Erfani, N. Cytotoxic effects of Pistacia atlantica (Baneh) fruit extract on human KB cancer cell line. Acta Med. (Hradec Králové) 2019, 62, 30–34. [Google Scholar] [CrossRef]
- Koyuncu, İ. Urfa fıstığından (Pistacia vera L.) elde edilen çeşitli ekstraktların antikanser özelliklerinin incelenmesi. Harran Ünv. Tıp Fak. Derg. 2018, 15, 72–75. [Google Scholar]
- Yemmen, M.; Landolsi, A.; Ben Hamida, J.; Mégraud, F.; Trabelsi Ayadi, M. Antioxidant activities, anticancer activity and polyphenolics profile, of leaf, fruit and stem extracts of Pistacia lentiscus from Tunisia. Cell. Mol. Biol. 2017, 63, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Mirian, M.; Behrooeian, M.; Ghanadian, M.; Dana, N.; Sadeghi-Aliabadi, H. Cytotoxicity and antiangiogenic effects of Rhus coriaria, Pistacia vera and Pistacia khinjuk oleoresin methanol extracts. Res. Pharm. Sci. 2015, 10, 233–240. [Google Scholar] [PubMed]
- Kearney, P.M.; Whelton, M.; Reynolds, K.; Muntner, P.; Whelton, P.K.; He, J. Global burden of hypertension: Analysis of worldwide data. Lancet 2005, 365, 217–223. [Google Scholar] [CrossRef]
- Mancia, G.; Sega, R.; Milesi, C.; Cesana, G.; Zanchetti, A. Blood pressure control in the hypertensive population. Lancet 1997, 349, 454–457. [Google Scholar] [CrossRef]
- Ahmed, Z.B.; Yousfi, M.; Viaene, J.; Dejaegher, B.; Demeyer, K.; Mangelings, D.; Heyden, Y.V. Potentially antidiabetic and antihypertensive compounds identified from Pistacia atlantica leaf extracts by LC fingerprinting. J. Pharm. Biomed. Anal. 2018, 5, 149–547. [Google Scholar] [CrossRef]
- Ronchi, S.N.; Brasil, G.A.; Marques do Nascimento, A.; Miranda de Lima, E.; Scherer, R.; Helber, B.; Romão, C.W.; Boëchat, G.A.P.; Lenz, D.; Fronza, M.; et al. Phytochemical and in vitro and in vivo biological investigation on the antihypertensive activity of mango leaves (Mangifera indica L.). Ther. Adv. Cardiovasc. Dis. 2015, 9, 244–256. [Google Scholar]
- Şener, S.Ö.; Korkmaz, N.; Akkaya, Ş.; Badem, M.; Aliyazıcıoğlu, R.; Özgen, U.; Alpay Karaoğlu, Ş. Investigation of phenolic compounds by RP-HPLC and antioxidant, antimicrobial, tyrosinase inhibitor activities of Clinopodium vulgare L. subsp. vulgare extract. Güfbed Gustij 2018, 8, 230–238. [Google Scholar]
- Bilgin, S.B.; Aydın, S.; Şahin, Y.; Akyurt, I. Üreaz ve elastaz aktivitelerine Giresun’dan toplanan Cystoseira barbata (Stackhouse) C. Agardh deniz yosununun inhibisyon etkisinin incelenmesi. Karadeniz Fen Bilim. Derg. 2016, 6, 124–131. [Google Scholar]
- Salinas Ibáñez, A.G.; Arismendi Sosa, A.C.; Ferramola, F.F.; Paredes, J.; Wendel, G.; Maria, A.O.; Vega, A.E. Inhibition of Helicobacter pylori and its associated urease by two regional plants of San Luis Argentina. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 2097–2106. [Google Scholar] [CrossRef] [Green Version]
- Mahernia, S.; Bagherzadeh, K.; Mojab, F.; Amanlou, M. Urease inhibitory activities of some commonly consumed herbal medicines. Iran J. Pharm. Res. 2015, 14, 943–947. [Google Scholar] [PubMed]
Samples | HT-29 | MCF-7 | |||||
---|---|---|---|---|---|---|---|
(200 µg/mL) a | (IC50) b | (200 µg/mL) a | (IC50) b | (200 µg/mL) a | (IC50) b | ||
In vitro | R | 67.51 ± 1.12 | 125.45 ± 2.39 | 69.11 ± 1.70 | 129.58 ± 0.37 | 95.72 ± 1.82 | ≥200 |
S | 74.17 ± 2.02 | 132.34 ± 1.69 | 54.06 ± 2.67 | 114.47 ± 2.61 | 92.81 ± 0.49 | ≥200 | |
L | 76.60 ± 2.49 | 150.29 ± 1.50 | 74.02 ± 1.15 | 152.39 ± 1.30 | 92.65 ± 0.61 | ≥200 | |
In vivo Female | R | 33.17 ± 1.29 | 59.60 ± 0.69 | 29.63 ± 0.54 | 31.86 ± 1.40 | 93.51 ± 1.95 | ≥200 |
S | 40.58 ± 2.78 | 78.59 ± 1.19 | 36.26 ± 2.07 | 54.45 ± 1.18 | 95.40 ± 1.69 | ≥200 | |
L | 38.48 ± 2.72 | 74.10 ± 2.45 | 33.19 ± 0.87 | 42.25 ± 2.25 | 93.39 ± 0.96 | ≥200 | |
In vivo Male | R | 35.95 ± 1.38 | 68.47 ± 2.41 | 31.34 ± 0.48 | 36.11 ± 0.44 | 92.69 ± 0.46 | ≥200 |
S | 41.15 ± 0.59 | 81.65 ± 2.39 | 34.18 ± 1.37 | 44.25 ± 1.54 | 92.27 ± 0.20 | ≥200 | |
L | 37.65 ± 0.49 | 72.36 ± 2.26 | 32.80 ± 0.20 | 41.64 ± 0.64 | 97.19 ± 1.42 | ≥200 |
Enzyme Activity (50 µg/mL) a | |||||||
---|---|---|---|---|---|---|---|
Inhibition % | |||||||
Samples | Antihypertensive (ACE) | AChE | BChE | Antiurease | Antityrosinase | Antielastase | |
In vitro | R | I.A. | I.A. | 23.44 ± 0.46 | I.A. | 6.88 ± 0.13 | 6.65 ± 0.13 |
S | 85.16 ± 1.53 | I.A. | 37.65 ± 0.75 | I.A. | I.A. | 37.37 ± 0.74 | |
L | I.A. | I.A. | 38.10 ± 0.76 | I.A. | I.A. | I.A. | |
In vivo Female | R | 95.18 ± 2.19 | I.A. | 71.76 ± 1.43 | 43.66 ± 0.87 | 54.81 ± 1.09 | 58.72 ± 1.17 |
S | 95.88 ± 1.96 | I.A. | 33.85 ± 0.67 | I.A. | 23.42 ± 0.46 | 22.36 ± 0.44 | |
L | 41.11 ± 0.84 | I.A. | 75.20 ± 1.50 | 29.86 ± 0.59 | 17.44 ± 0.38 | 58.25 ± 1.16 | |
In vivo Male | R | 84.78 ± 1.05 | I.A. | 70.86 ± 1.41 | 56.31 ± 1.12 | 50.89 ± 1.01 | 57.54 ± 1.15 |
S | 77.05 ± 0.48 | I.A. | 38.73 ± 0.77 | 11.08 ± 0.22 | 26.82 ± 0.53 | 22.83 ± 0.45 | |
L | 33.15 ± 0.64 | I.A. | 46.70 ± 0.93 | 26.03 ± 0.52 | 15.82 ± 0.31 | 46.52 ± 0.93 | |
Lisinopril b | 96.64 ± 1.85 | - | - | - | - | - | |
Galanthamine b | - | 85.32 ± 0.72 | 78.28 ± 0.26 | - | - | - | |
Kojic acid b | - | - | - | - | 81.54 ± 0.63 | - | |
Thiourea b | - | - | - | 98.85 ± 0.54 | - | - | |
Oleanolic acid b | - | - | - | - | - | 39.46 ± 0.52 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tilkat, E.A.; Batibay, H.; Yener, I.; Yilmaz, P.K.; Akdeniz, M.; Kaplan, A.; Ercisli, S.; Ertas, A.; Holubec, V. Determination of Enzyme Inhibition Potential and Anticancer Effects of Pistacia khinjuk Stocks Raised in In Vitro and In Vivo Conditions. Agronomy 2021, 11, 154. https://doi.org/10.3390/agronomy11010154
Tilkat EA, Batibay H, Yener I, Yilmaz PK, Akdeniz M, Kaplan A, Ercisli S, Ertas A, Holubec V. Determination of Enzyme Inhibition Potential and Anticancer Effects of Pistacia khinjuk Stocks Raised in In Vitro and In Vivo Conditions. Agronomy. 2021; 11(1):154. https://doi.org/10.3390/agronomy11010154
Chicago/Turabian StyleTilkat, Emine Ayaz, Hayri Batibay, Ismail Yener, Pelin Koseoglu Yilmaz, Mehmet Akdeniz, Alevcan Kaplan, Sezai Ercisli, Abdulselam Ertas, and Vojtech Holubec. 2021. "Determination of Enzyme Inhibition Potential and Anticancer Effects of Pistacia khinjuk Stocks Raised in In Vitro and In Vivo Conditions" Agronomy 11, no. 1: 154. https://doi.org/10.3390/agronomy11010154
APA StyleTilkat, E. A., Batibay, H., Yener, I., Yilmaz, P. K., Akdeniz, M., Kaplan, A., Ercisli, S., Ertas, A., & Holubec, V. (2021). Determination of Enzyme Inhibition Potential and Anticancer Effects of Pistacia khinjuk Stocks Raised in In Vitro and In Vivo Conditions. Agronomy, 11(1), 154. https://doi.org/10.3390/agronomy11010154