The Elucidation of Total Polyphenols, Individual Phenolic Compounds, Antioxidant Activity of Three Underutilized Fruit Species—Black Crowberry, Honeyberry, European Cranberry with Their Accumulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Photometric Quantification of Total Polyphenols
2.2. Detection of Individual Phenolic Compounds
2.3. Antioxidant Activity of Fruit
2.4. Statistical Analysis
2.5. Anatomical Cross—Section of Matured Fruit
3. Results and Discussion
4. Anatomical Observation of Matured Fruits
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Paulovicsova, B.; Turianica, I.; Juríková, T.; Baloghová, M.; Matuškovič, J. Antioxidant properties of selected less common fruit species. Lucrări Ştiinţifice Zootehnie Biotehnologii 2009, 42, 608–614. [Google Scholar]
- Olas, B. The multifunctionality of berries toward blood platelets and the role of berry phenolics in cardiovascular disorders. Platelets 2017, 28, 540–549. [Google Scholar] [CrossRef] [PubMed]
- Jurikova, T.; Mlcek, J.; Skrovankova, S.; Balla, S.; Sochor, J.; Baron, M.; Sumczynski, D. Black Crowberry (Empetrum nigrum L.) Flavonoids and Their Health Promoting Activity. Molecules 2016, 21, 1685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lavola, A.; Salonen, A.; Virjamo, V.; Julkunen-Tiitto, R. Phytochemical variation in the plant-part specific phenols of wild crowberry (Empetrum hermaphroditum Hagerup) populations. Phytochem. Lett. 2017, 21, 11–20. [Google Scholar] [CrossRef]
- Matsuura, G.; Saxena, S.W.; Farmer, R.E.; Hancock, G.H. Towers Antibacterial and antifungal compounds from Empetrum nigrum. Planta Med. 1995, 6, 580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jurikova, T.; Durisova, L.; Elias, P.; Mlcek, J.; Sochor, J.; Ondrasova, M. Evaluation of Fruit Anatomy, Accumulation and Detection of Polyphenols in Black Crowberry (Empetrum nigrum) from NW Slovakia. Acta Biol. Crac. Ser. Bot. 2019, 61, 25–33. [Google Scholar] [CrossRef]
- Park, S.Y.; Lee, E.S.; Han, S.H.; Lee, H.Y.; Lee, S. Antioxidative effects of two native berry species, Empetrum nigrum var. japonicum k. Koch and Rubus buergeri miq., from the Jeju island of Korea. J. Food Biochem. 2012, 36, 675–682. [Google Scholar] [CrossRef]
- Liisa, J.N.; Alakomi, H.L.; Kähkönen, M.P.; Heinonen, M.; Helander, I.M.; Oksman-Caldentey, K.M.; Puupponen-Pimiä, R.H. Berry phenolics: Antimicrobial properties and mechanisms of action against severe human pathogens. Nutr. Cancer 2006, 54, 18–32. [Google Scholar]
- Rauha, J.P.; Remes, S.; Heinonen, M.; Hopia, A.; Kähkönen, M. Antimicrobial effects of finnish plant extracts containing flavonoids and other phenolic compounds. Int. J. Food Microbiol. 2000, 56, 3–12. [Google Scholar] [CrossRef]
- Hamza, H.J.; Hindi, N.K.K.; Naji, H.; Al-Shirifi, H.M.H.; Hindi, A.K.K.; Yasir, A.A. Evaluation of anti-bacterial activity: Anti-adherence, anti-biofilm and anti-swarming of the crowberry aquatic extract in vivo studies. Biochem. Cell. Arch. 2018, 18, 1369–1375. [Google Scholar]
- Bae, H.-S.; Kim, H.J.; Jeong, D.H.; Hosoya, T.; Kumazawa, S.; Jun, M.; Kim, O.-Y.; Kim, S.W.; Ahn, M.-R. In vitro and in vivo antiangiogenic activity of crowberry (Empetrum nigrum var. japonicum). Nat. Prod. Commun. 2016, 11, 503–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, K.C.; Kim, D.; Kim, S.C.; Jung, E.; Park, D.; Hyun, J.W. Empetrum nigrum var. japonicum extract suppresses ultraviolet B-induced cell damage via absorption of radiation and inhibition of oxidative stress. Evid. Based Complement. Altern. Med. 2013, 2013. [Google Scholar] [CrossRef] [Green Version]
- Jurikova, T.; Skrovankova, S.; Mlcek, J.; Balla, S.; Snopek, L. Bioactive Compounds, Antioxidant Activity, and Biological Effects of European Cranberry (Vaccinium oxycoccos). Molecules 2019, 24, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Die, J.V.; Jones, R.W.; Ogden, E.L.; Ehlenfeldt, M.K.; Rowland, L.J. Characterization and Analysis of Anthocyanin-Related Genes in Wild-Type Blueberry and the Pink-Fruited Mutant Cultivar ‘Pink Lemonade’: New Insights into Anthocyanin Biosynthesis. Agronomy 2020, 10, 1296. [Google Scholar] [CrossRef]
- Paudel, A.; Kaneko, K.; Watanabe, A.; Shigeki, M.; Motomu, K.; Hamamoto, H. Structure-activity relationship study of novel iminothiadiazolo-pyrimidinone antimicrobial agents. J. Antibiot. 2014, 67, 663–667. [Google Scholar] [CrossRef] [Green Version]
- Stobnicka, A.; Gniewosz, M. Antimicrobial protection of minced pork meat with the use of Swamp Cranberry (Vaccinium oxycoccos L.) fruit and pomace extracts. J. Food Sci. Technol. 2018, 55, 62–71. [Google Scholar] [CrossRef]
- Narwojsz, A.; Tańska, M.; Mazur, B.; Borowska, E.J. Fruit Physical Features, Phenolic Compounds Profile and Inhibition Activities of Cranberry Cultivars (Vaccinium macrocarpon) Compared to Wild-Grown Cranberry (Vaccinium oxycoccus). Plant Foods Hum. Nutr. 2019, 74, 303–306. [Google Scholar] [CrossRef] [Green Version]
- Konarska, A. Morphological, anatomical and ultrastructural changes in Vaccinium corymbosum fruits during ontogeny. Botany 2015, 93, 589–602. [Google Scholar] [CrossRef] [Green Version]
- Kranz, S.; Guellmar, A.; Olschowsky, P.; Tonndorf-Martini, S.; Heyder, M.; Pfister, W.; Reise, M.; Sigusch, B. Antimicrobial Effect of Natural Berry Juices on Common Oral Pathogenic Bacteria. Antibiotics 2020, 9, 533. [Google Scholar] [CrossRef]
- González de Llano, D.; Moreno-Arribas, M.V.; Bartolomé, B. Cranberry Polyphenols and Prevention against Urinary Tract Infections: Relevant Considerations. Molecules 2020, 25, 3523. [Google Scholar] [CrossRef]
- Holubec, V.; Smekalova, T.; Leisova-Svobodova, L. Morphological and molecular evaluation of the Far East fruit genetic resources of Lonicera caerulea L.—vegetation, ethnobotany, use and conservation. Genet. Resour. Crop. Evol. 2019, 66, 121–141. [Google Scholar] [CrossRef]
- Jurikova, T.; Rop, O.; Mlcek, J.; Sochor, J.; Balla, S.; Szekeres, L.; Hegedusova, A.; Hubalek, J.; Adam, V.; Kizek, R. Phenolic profile of edible honeysuckle berries (genus Lonicera) and their biological effects. Molecules 2012, 17, 61–79. [Google Scholar] [CrossRef] [Green Version]
- Jurikova, T.; Sochor, J.; Rop, O.; Mlček, J.; Balla, S.; Szekes, L.; Zitný, R.; Zitka, O.; Kizek, R. Evaluation of polyphenolic profile and nutritional value of non-traditional fruit species in the Czech republic—A comparative study. Molecules 2012, 17, 8968–8981. [Google Scholar] [CrossRef]
- Kucharska, A.Z.; Sokół-Łętowska, A.; Oszmiański, J.; Piórecki, N.; Fecka, I. Iridoids, Phenolic Compounds and Antioxidant Activity of Edible Honeysuckle Berries (Lonicera caerulea var. kamtschatica Sevast.). Molecules 2017, 22, 405. [Google Scholar] [CrossRef] [Green Version]
- Ďurišová, Ľ.; Juríková, T.; Eliáš, P., Jr.; Mlček, J. Reproductive biology of two edible honeysuckles [Lonicera edulis Turcz. ex Freyn., Lonicera kamtchatica (Sevast.) Pojark.] in the cinditions of southwestern Slovakia. Acta Sci. Pol. Hortorum Cultus 2020, 19, 63–72. [Google Scholar] [CrossRef]
- Molina, A.K.; Vega, E.N.; Pereira, C.; Dias, M.I.; Heleno, S.A.; Rodrigues, P.; Fernandes, I.P.; Barreiro, M.F.; Kostić, M.; Soković, M.; et al. Promising Antioxidant and Antimicrobial Food Colourants from Lonicera caerulea L. Antioxidants 2019, 8, 394. [Google Scholar] [CrossRef] [Green Version]
- Becker, R.; Szakiel, A. Phytochemical characteristics and potential therapeutic properties of blue honeysuckle Lonicera caerulea L. (Caprifoliaceae). J. Herb. Med. 2019, 16, 100237. [Google Scholar] [CrossRef]
- Amararathna, M.; Hoskin, D.W.; Rupasinghe, H.P.V. Cyanidin-3-O-Glucoside-Rich Haskap Berry Administration Suppresses Carcinogen-Induced Lung Tumorigenesis in A/JCr Mice. Molecules 2020, 25, 3823. [Google Scholar] [CrossRef]
- Fang, Z.; Li, J.; Yang, R.; Fang, L.; Zhang, Y. A Review: The Triterpenoid Saponins and Biological Activities of Lonicera Linn. Molecules 2020, 25, 3773. [Google Scholar] [CrossRef]
- Gołba, M.; Sokół-Łętowska, A.; Kucharska, A.Z. Health Properties and Composition of Honeysuckle Berry Lonicera caerulea L. An Update on Recent Studies. Molecules 2020, 25, 749. [Google Scholar] [CrossRef] [Green Version]
- Valenta, K.; Kalbitzer, U.; Razafimandimby, D.; Omeja, P.; Ayasse, M.; Chapman, C.A.; Nevo, O. The evolution of fruit colour: Phylogeny, abiotic factors and the role of mutualists. Sci. Rep. 2018, 8, 14302. [Google Scholar] [CrossRef] [Green Version]
- Bae, R.-N.; Kim, K.-W.; Kim, T.-C.; Lee, S.-K. Anatomical observations of anthocyanin rich cells in apple skins. HortScience 2006, 41, 733–736. [Google Scholar] [CrossRef] [Green Version]
- Konarska, A. Characteristic of fruit (Prunus domestica L.) skin: Structure and antioxidant content. Int. J. Food Prop. 2015, 18, 2487–2499. [Google Scholar] [CrossRef]
- Moskowitz, A.H.; Hrazdina, G. Vacuolar content of fruit subepidermal cells from Vitis species. Plant Physiol. 1981, 68, 686–692. [Google Scholar] [CrossRef] [Green Version]
- Eliáš, P. Populačná a Reprodukčná Biológia Vybraných Ohrozených Druhov Flóry Slovenska. Ph.D. Thesis, Slovak University of Agriculture in Nitra, Nitra, Slovakia, 2004; 113p. [Google Scholar]
- Futák, J. Fytogeografické členenie. In Atlas Slovenskej Socialistickej Republiky; Mazúr, E., Ed.; Veda, vyd. SAV and Slovenský úrad geodézie a kartografie: Bratislava, Slovakia, 1980; p. 88. [Google Scholar]
- Costa, R.; Capillo, G.; Albergamo, A.; Li Volsi, R.; Bartolomeo, G.; Bua, G.; Dugo, G. A multi-screening Evaluation of the Nutritional and Nutraceutical Potential of the Mediterranean Jellyfish Pelagia noctiluca. Mar. Drugs 2019, 17, 172. [Google Scholar] [CrossRef] [Green Version]
- Albergamo, A.; Costa, R.; Bartolomeo, G.; Rando, R.; Vadalá, R.; Nava, V.; Ditta, F. Grape water: Reclaim and valorization of a by—product from the industrial cryoconcentration of grape (Vitis vinifera) must. J. Sci. Food Agric. 2020, 100, 2971–2981. [Google Scholar] [CrossRef]
- Sytařová, I.; Orsavová, J.; Snopek, L.; Mlček, J.; Byczyński, Ł.; Mišurcová, L. Impact of phenolic compounds and vitamins C and E on antioxidant activity of sea buckthorn (Hippophaë rhamnoides L.) berries and leaves of diverse ripening times. Food Chem. 2020, 310. [Google Scholar] [CrossRef]
- Sumczynski, D.; Kotásková, E.; Orsavová, J.; Valášek, P. Contribution of individual phenolics to antioxidant activity and in vitro digestibility of wild rices (Zizania aquatica L.). Food Chem. 2017, 218, 107–115. [Google Scholar] [CrossRef]
- Lee, Y.T.; Don, M.-J.; Hung, P.-S.; Shen, Y.-C.; Lo, Y.-S.; Chang, K.-W.; Chen, C.-F.; Ho, L.-K. Cytotoxicity of phenolic acid phenethyl esters on oral cancer cells. Cancer Lett. 2004, 223, 19–25. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant aktivity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; CisnerosZevallos, L.; Byrne, D.H. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
- Pazourková, Z. Botanická Mikrotechnika; Scriptum, Univerzita Karlova: Praha, Czechia, 1986. [Google Scholar]
- Němec, B. Botanická Mikrotechnika; Nakladatelství Československé Akademie Věd: Praha, Czechia, 1962. [Google Scholar]
- Rupasinghe, H.P.V.; Jayasankar, S.; Lay, W. Variation in total phenolic and antioxidant capacity among European plum genotypes. Sci. Hortic. 2007, 108, 243–246. [Google Scholar] [CrossRef]
- Dudonne, S.; Dube, P.; Anhe, F.F.; Pilon, G.; Marette, A.; Lemire, M.; Harris, C.; Dewailly, E.; Desjardins, Y. Comprehensive analysis of phenolic compounds and abscisic acid profiles of twelve native canadian berries. J. Food Compos. Anal. 2015, 44, 214–224. [Google Scholar] [CrossRef]
- Bakowska-Barczak, A.M.; Marianchuk, M.; Kolodziejczyk, P. Survey of bioactive components in Western Canadian berriesThis article is one of a selection of papers published in this special issue (part 2 of 2) on the Safety and Efficacy of Natural Health Products. Can. J. Physiol. Pharmacol. 2007, 85, 1139–1152. [Google Scholar] [CrossRef]
- Senica, M.; Stampar, F.; Mikulic-Petkovsek, M. Blue honeysuckle (Lonicera cearulea L. subs. edulis) berry; a rich source of some nutrients and their differences among four different cultivars. Sci. Hortic. 2018, 238, 215–221. [Google Scholar] [CrossRef]
- Jurikova, T.; Sochor, J.; Mlcek, J.; Balla, S.; Ercisli, S.; Durisova, L.; Kynicky, J. Polyphenolic Compounds and Antioxidant Activity in Berries of Four Russian Cultivars of Lonicera kamtschatica (Sevast.) Pojark. Erwerb. Obstbau 2014, 56, 117–122. [Google Scholar] [CrossRef]
- Cehula, M.; Mlček, J.; Juríková, T.; Žiarovská, J.; Paulen, O.; Dokoupil, L.; Adámková, A.; Babosova, R. Assessment of Genetic Diversity of Edible Honeysuckle Monitored through RAPD in Relative to Bioactive Substances. Agronomy 2020, 10, 868. [Google Scholar] [CrossRef]
- Lacramioara, O.; Ciprian, M. Antioxidants content in Empetrum nigrum fresh and dried fruits. Iran. J. Public Health 2016, 45, 263–265. [Google Scholar]
- Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Juménez, L. Polyphenols: Food resources and bioavaibility. Am. J. Clinic. Nutr. 2004, 74, 727–747. [Google Scholar] [CrossRef] [Green Version]
- Laaksonen, O.; Sandell, M.; Järvinen, R.; Kallio, H. Orosensory contributing compounds in crowberry (Empetrum nigrum) press-by products. Food Chem. 2011, 124, 1514–1524. [Google Scholar] [CrossRef]
- Česonienė, L.; Daubaras, R.; Paulauskas, A.; Žukauskienė, J.; Zych, M. Morphological and genetic diversity of European cranberry (Vaccinium oxycoccos L., Ericaceae) clones in Lithuanian reserves. Acta Soc. Bot. Pol. 2013, 82, 211–217. [Google Scholar] [CrossRef] [Green Version]
- Česonienė, L.; Daubaras, R.; Jasutiene, I.; Miliauskiene, I.; Zych, M. Investigations of anthocyanins, organic acids, and sugars show great variability in nutritional and medicinal value of European cranberry (Vaccinium oxycoccos) fruit. J. Appl. Bot. Food Qual. 2015, 88, 295–299. [Google Scholar]
- Paulovicsova, B.; Turianica, I.; Jurikova, T.; Baloghova, M.; Matuskovic, J. Antioxidant properties of selected less common fruit species. Lucr. Stiifice Zooteh. Biotech. 2009, 42, 608–613. [Google Scholar]
- Plekhanova, M.N.; Streltsyna, S.A. Fruit Chemical Composition of Lonicera Subsect. In Caerulea (Caprifoliaceae species), Genetic Resourses in Russia and Neighbouring Countries; Estonian Agricultural University–Forest Research Institut: Tartu, Estonia, 1998; pp. 143–146. [Google Scholar]
- Deineka, V.I.; Sorokopudov, V.N.; Deineka, L.A.; Shaposhnik, E.I.; Koltsov, S.V. Anthocyans from fruit of some plants of the Caprifoliaceae family. Chem. Nat. Compd. 2005, 41, 162–164. [Google Scholar] [CrossRef]
- Mlcek, J.; Jurikova, T.; Skrovankova, S.; Sochor, J. Quercetin and its anti-allergic immune response. Molecules 2016, 21, 623. [Google Scholar] [CrossRef]
- Ehala, S.; Vaher, M.; Kaljurand, M. Characterization of phenolic profiles of Northern European berries by capillary electrophoresis and determination of their antioxidant activity. J. Agric. Food Chem. 2005, 53, 6484–6490. [Google Scholar] [CrossRef]
- Gniewosz, M.; Stobnicka, A. Bioactive components content, antimicrobial activity, and foodborne pathogen control in minced pork by cranberry pomace extracts. J. Food Saf. 2018, 38, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Ogawa, K.; Sakakibara, H.; Iwata, R.; Ishii, T.; Sato, T.; Goda, T.; Shimoi, K.; Kumazawa, S. Anthocyanin composition and antioxidant activity of the crowberry (Empetrum nigrum) and other berries. J. Agric. Food Chem. 2008, 56, 4457–4462. [Google Scholar] [CrossRef]
- Hakkinen, S.; Heinonen, M.; Karenlampi, S.; Mykkanen, H.; Ruuskanen, J.; Torronen, R. Screening of selected flavonoids and phenolic acids in 19 berries. Food Res. 1999, 32, 345–353. [Google Scholar] [CrossRef]
- Kähkönen, M.P.; Hopia, A.I.; Heinonen, M. Berry phenolics and their antioxidant activity. J. Agric. Food Chem. 2001, 49, 4076–4082. [Google Scholar] [CrossRef]
- Määttä-Riihinen, K.R.; Kamal-Eldin, A.; Mattila, P.H.; González-Paramás, A.M.; Törrönen, A.R. Distribution and contents of phenolic compounds in eighteen scandinavian berry species. J. Agric. Food Chem. 2004, 52, 4477–4486. [Google Scholar] [CrossRef] [PubMed]
- Zadernowski, R.; Naczk, M.; Nesterowicz, J. Phenolic acid profiles in some small berries. J. Agric. Food Chem. 2005, 53, 2118–2124. [Google Scholar] [CrossRef] [PubMed]
- Ermis, E.; Hertel, C.; Schneider, C.; Carle, R.; Stintzing, F.; Schmidt, H. Characterization of in vitro antifungal activities of small and American cranberry (Vaccinium oxycoccos L. And V. Macrocarpon Aiton) and lingonberry (Vaccinium vitis-idaea L.) concentrates in sugar reduced fruit spreads. J. Food Microbiol. 2015, 204, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Szkudlarz, P. The morfological and anatomical structure of fleshly fruits in family Ericaceae. Bio. Bull. Pozn. 1999, 36, 43–56. [Google Scholar]
- Chanoca, A.; Kovinich, N.; Burkel, B.; Stecha, S.; Bohorquez-Restrepo, A.; Ueda, T.; Eliceiri, K.W.; Grotewold, E.; Otegui, M. Anthocyanin vacuolar inclusions form by a microautophagy mechanism. Plant. Cell 2015, 27, 2545–2559. [Google Scholar] [CrossRef] [Green Version]
- Mao, W.; Angen, G. Fruit anatomy of Lonicera edulis and its taxonomic significance. Bull. Bot. Res. 1988, 8, 203–206. [Google Scholar]
- Nikitin, A.A.; Pankova, I.A. Anatomicheskiy Atlas Poleznykh i Nekotorykh Yadovitykh Rasteniy; USSR: Nauka, Leningrad, 1982; 768p. [Google Scholar]
- Pourcel, L.; Irani, N.G.; Lu, Y.; Riedl, K.; Schwartz, S.; Grotewold, E. The formation of anthocyanic vacuolar inclusions in Arabidopsis thaliana and implications for the sequestration of anthocyanin pigments. Mol. Plants 2010, 3, 78–90. [Google Scholar] [CrossRef]
Parameter. | European Cranberry | Honeyberry | Black Cowberry |
---|---|---|---|
total polyphenols content (TPC) (gallic acid mg/g fresh weight of fruit) | 1.61 ± 0.16 ‡ | 3.11 ± 1.67 | 5.65 ± 0.01 ‡ |
antioxidant activity of fruit (mmol TROLOX g/ fresh weight of fruit) | 1.62 ± 0.03 *,‡ | 3.02 ± 0.05 *,† | 7.43 ± 0.34 †,‡ |
Selected Polyphenolic Compounds of Fruit (µg/g FW of Fruit) | European Cranberry | Honeyberry | Black Cowberry |
---|---|---|---|
gallic acid | 1.62 ± 0.09 *,‡ | 15.07 ± 2.45 *,† | 21.82 ± 1.53 +,‡ |
catechin | 206.0 ± 3.84 *,‡ | 38.88 ± 3.78 *,† | 7.03 ± 1.35 +,‡ |
vanillic acid | 0.77 ± 0.04 *,‡ | 2.34 ± 0.76 *,† | 6.40 ± 0.24 +,‡ |
caffeic acid | 1.02 ± 0.10 *,‡ | 5.98 ± 1.67 *,† | 0.66 ± 0.09 +,‡ |
syringic acid | 6.67 ± 0.05 ‡ | ND | 3.82 ± 0.46 ‡ |
trans p-coumaric acid | 4.98 ± 1.84 ‡ | 9.87 ± 2.67 † | 0.44 ± 0.13 +,‡ |
coumaric acid | 0.50 ± 0.03 * | 6.4 ± 2.56 *,† | 1.66 ± 0.24 † |
ferulic acid | 38.52 ± 1.35 *,‡ | 20.70 ± 2.78 *,† | 77.73 ± 3.99 +,‡ |
rutin | 28.48 ± 0.83 ‡ | 27.99 ± 1.78 † | 2.21 ± 0.93 +,‡ |
protocatequinic acid | 2.04 ± 0.02 ‡ | 1.44 ± 0.76 † | 0.12 ± 0.03 +,‡ |
resveratrol | 0.24 ± 0.01 | 1.55 ± 0.56 | 0.34 ± 0.16 |
cinnamic acid | 3.43 ± 0.15 ‡ | 4.44 ± 3.34 | 0.59 ± 0.11 ‡ |
quercetin | 1.49 ± 0.19 * | 12.18 ± 7.88 *,† | 2.32 ± 0.27 † |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Juríková, T.; Mlček, J.; Balla, Š.; Ondrášová, M.; Dokoupil, L.; Sochor, J.; Ďurišová, L.; Eliáš, P., Jr.; Adámková, A.; Baroň, M.; et al. The Elucidation of Total Polyphenols, Individual Phenolic Compounds, Antioxidant Activity of Three Underutilized Fruit Species—Black Crowberry, Honeyberry, European Cranberry with Their Accumulation. Agronomy 2021, 11, 73. https://doi.org/10.3390/agronomy11010073
Juríková T, Mlček J, Balla Š, Ondrášová M, Dokoupil L, Sochor J, Ďurišová L, Eliáš P Jr., Adámková A, Baroň M, et al. The Elucidation of Total Polyphenols, Individual Phenolic Compounds, Antioxidant Activity of Three Underutilized Fruit Species—Black Crowberry, Honeyberry, European Cranberry with Their Accumulation. Agronomy. 2021; 11(1):73. https://doi.org/10.3390/agronomy11010073
Chicago/Turabian StyleJuríková, Tünde, Jiří Mlček, Štefan Balla, Monika Ondrášová, Libor Dokoupil, Jiří Sochor, L’uba Ďurišová, Pavol Eliáš, Jr., Anna Adámková, Mojmír Baroň, and et al. 2021. "The Elucidation of Total Polyphenols, Individual Phenolic Compounds, Antioxidant Activity of Three Underutilized Fruit Species—Black Crowberry, Honeyberry, European Cranberry with Their Accumulation" Agronomy 11, no. 1: 73. https://doi.org/10.3390/agronomy11010073
APA StyleJuríková, T., Mlček, J., Balla, Š., Ondrášová, M., Dokoupil, L., Sochor, J., Ďurišová, L., Eliáš, P., Jr., Adámková, A., Baroň, M., & Ercisli, S. (2021). The Elucidation of Total Polyphenols, Individual Phenolic Compounds, Antioxidant Activity of Three Underutilized Fruit Species—Black Crowberry, Honeyberry, European Cranberry with Their Accumulation. Agronomy, 11(1), 73. https://doi.org/10.3390/agronomy11010073