Deciphering the Code: Stem Cell-Immune Function and Cardiac Regeneration
Funding
Conflicts of Interest
References
- Steinhoff, G.; Nesteruk, J.; Wolfien, M.; Große, J.; Ruch, U.; Vasudevan, P.; Müller, P. Stem cells and heart disease—Brake or accelerator? Adv. Drug Deliv. Rev. 2017, 120, 2–24. [Google Scholar] [CrossRef] [PubMed]
- Steinhoff, G.; Nesteruk, J.; Wolfien, M.; Kundt, G.; Börgermann, J.; David, R.; Garbade, J.; Große, J.; Haverich, A.; Hennig, H.; et al. Cardiac function improvement and bone marrow response—Outcome analysis of the randomized PERFECT phase III clinical trial of intramyocardial CD133+ Application after myocardial infarction. EBioMedicine 2017, 22, 208–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolfien, M.; Klatt, D.; Salybekov, A.A.; Ii, M.; Komatsu-Horii, M.; Gaebel, R.; Philippou-Massier, J.; Schrinner, E.; Akimaru, H.; Akimaru, E.; et al. Hematopoietic stem-cell senescence and myocardial repair—Coronary artery disease genotype/phenotype analysis of post-MI myocardial regeneration response induced by CABG/CD133+ bone marrow hematopoietic stem cell treatment in RCT PERFECT Phase 3. EBioMedicine 2020, 57, 102862. [Google Scholar] [CrossRef] [PubMed]
- Galow, A.-M.; Wolfien, M.; Müller, P.; Bartsch, M.; Brunner, R.M.; Hoeflich, A.; Wolkenhauer, O.; David, R.; Goldammer, T. Integrative cluster analysis of whole hearts reveals proliferative cardiomyocytes in adult mice. Cells 2020, 9, 1144. [Google Scholar] [CrossRef] [PubMed]
- Faulkner, A.; Dang, Z.; Avolio, E.; Thomas, A.C.; Batstone, T.; Lloyd, G.R.; Weber, R.J.; Najdekr, L.; Jankevics, A.; Dunn, W.B.; et al. Multi-omics analysis of diabetic heart disease in the db/db model reveals potential targets for treatment by a longevity-associated gene. Cells 2020, 9, 1283. [Google Scholar] [CrossRef] [PubMed]
- Lang, C.I.; Döring, P.; Gäbel, R.; Vasudevan, P.; Lemcke, H.; Müller, P.; Stenzel, J.; Lindner, T.; Joksch, M.; Kurth, J.; et al. [68Ga]-NODAGA-RGD Positron Emission Tomography (PET) for assessment of post myocardial infarction angiogenesis as a predictor for left ventricular remodeling in mice after cardiac stem cell therapy. Cells 2020, 9, 1358. [Google Scholar] [CrossRef] [PubMed]
- Brasil, G.V.; Dos Santos, D.S.; Mendonça, E.A.; Mesquita, F.C.P.; Kasai-Brunswick, T.H.; Da Cunha, S.T.; Pimentel, C.F.; De Vasconcelos-Dos-Santos, A.; Mendez-Otero, R.; Filho, C.F.D.A.; et al. Therapy with cardiomyocytes derived from pluripotent cells in chronic chagasic cardiomyopathy. Cells 2020, 9, 1629. [Google Scholar] [CrossRef] [PubMed]
- Baumert, B.; Sobuś, A.; Gołąb-Janowska, M.; Paczkowska, E.; Łuczkowska, K.; Rogińska, D.; Zawiślak, A.; Milczarek, S.; Osękowska, B.; Pawlukowska, W.; et al. Repeated application of autologous bone marrow-derived lineage-negative stem/progenitor cells—focus on immunological pathways in patients with ALS. Cells 2020, 9, 1822. [Google Scholar] [CrossRef] [PubMed]
- Vasudevan, P.; Wolfien, M.; Lemcke, H.; Lang, C.I.; Skorska, A.; Gaebel, R.; Koczan, D.; Lindner, T.; Engelmann, R.; Vollmar, B.; et al. Cardiomyocyte transplantation after myocardial infarction alters the immune response in the heart. Cells 2020, 9, 1825. [Google Scholar] [CrossRef] [PubMed]
- Tobin, S.W.; Alibhai, F.J.; Weisel, R.D.; Li, R.-K. Considering cause and effect of immune cell aging on cardiac repair after myocardial infarction. Cells 2020, 9, 1894. [Google Scholar] [CrossRef] [PubMed]
- Klatt, D.; Ha, T.-C.; Schinke, M.; Selich, A.; Lieske, A.; Dahlke, J.; Morgan, M.; Maetzig, T.; Schambach, A. Competitive sgRNA screen identifies p38 MAPK as a druggable target to improve HSPC engraftment. Cells 2020, 9, 2194. [Google Scholar] [CrossRef]
- Bellu, E.; Garroni, G.; Cruciani, S.; Balzano, F.; Serra, D.; Satta, R.; Montesu, M.A.; Fadda, A.; Mulas, M.; Sarais, G.; et al. Smart Nanofibers with natural extracts prevent senescence patterning in a dynamic cell culture model of human skin. Cells 2020, 9, 2530. [Google Scholar] [CrossRef] [PubMed]
- Chanda, P.; Sukhovershin, R.; Cooke, J. mRNA-enhanced cell therapy and cardiovascular regeneration. Cells 2021, 10, 187. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Steinhoff, G. Deciphering the Code: Stem Cell-Immune Function and Cardiac Regeneration. Cells 2021, 10, 592. https://doi.org/10.3390/cells10030592
Steinhoff G. Deciphering the Code: Stem Cell-Immune Function and Cardiac Regeneration. Cells. 2021; 10(3):592. https://doi.org/10.3390/cells10030592
Chicago/Turabian StyleSteinhoff, Gustav. 2021. "Deciphering the Code: Stem Cell-Immune Function and Cardiac Regeneration" Cells 10, no. 3: 592. https://doi.org/10.3390/cells10030592
APA StyleSteinhoff, G. (2021). Deciphering the Code: Stem Cell-Immune Function and Cardiac Regeneration. Cells, 10(3), 592. https://doi.org/10.3390/cells10030592