Saliva Metabolomics in Dry Mouth Patients with Head and Neck Cancer or Sjögren’s Syndrome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Design
2.2. Patient-Reported Outcomes and Examination of Dry Mouth
2.3. Saliva Sample Collection and Sample Preparation
2.4. Metabolomics Analyses
3. Database and Statistics
3.1. Statistical Software
3.2. Metabolite Identification and Interpretation
4. Results
4.1. Clinical Features
4.2. HPLC-MS Metabolomics Analysis
4.3. Principal Component Analysis
4.4. Metabolite Identification and Ratios
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khalafalla, M.G.; Woods, L.T.; Jasmer, K.J.; Forti, K.M.; Camden, J.M.; Jensen, J.L.; Limesand, K.H.; Galtung, H.K.; Weisman, G.A. P2 Receptors as Therapeutic Targets in the Salivary Gland: From Physiology to Dysfunction. Front. Pharmacol. 2020, 11, 222. [Google Scholar] [CrossRef] [Green Version]
- Ramos-Casals, M.; Brito-Zerón, P.; Sisó-Almirall, A.; Bosch, X. Primary Sjogren syndrome. BMJ 2012, 344, e3821. [Google Scholar] [CrossRef] [Green Version]
- Saleh, J.; Figueiredo, M.A.; Cherubini, K.; Salum, F.G. Salivary hypofunction: An update on aetiology, diagnosis and therapeutics. Arch. Oral Biol. 2015, 60, 242–255. [Google Scholar] [CrossRef]
- Randall, K.; Stevens, J.; Yepes, J.F.; Randall, M.E.; Kudrimoti, M.; Feddock, J.; Xi, J.; Kryscio, R.J.; Miller, C.S. Analysis of factors influencing the development of xerostomia during intensity-modulated radiotherapy. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2013, 115, 772–779. [Google Scholar] [CrossRef] [Green Version]
- Jensen, S.B.; Pedersen, A.M.; Vissink, A.; Andersen, E.; Brown, C.G.; Davies, A.N.; Dutilh, J.; Fulton, J.S.; Jankovic, L.; Lopes, N.N.; et al. A systematic review of salivary gland hypofunction and xerostomia induced by cancer therapies: Prevalence, severity and impact on quality of life. Support. Care Cancer 2010, 18, 1039–1060. [Google Scholar] [CrossRef]
- Aqrawi, L.A.; Galtung, H.K.; Vestad, B.; Øvstebø, R.; Thiede, B.; Rusthen, S.; Young, A.; Guerreiro, E.M.; Utheim, T.P.; Chen, X.; et al. Identification of potential saliva and tear biomarkers in primary Sjögren’s syndrome, utilising the extraction of extracellular vesicles and proteomics analysis. Arthritis Res. Ther. 2017, 19, 14. [Google Scholar] [CrossRef] [Green Version]
- Aqrawi, L.A.; Galtung, H.K.; Guerreiro, E.M.; Øvstebø, R.; Thiede, B.; Utheim, T.P.; Chen, X.; Utheim, Ø.A.; Palm, Ø.; Skarstein, K.; et al. Proteomic and histopathological characterisation of sicca subjects and primary Sjögren’s syndrome patients reveals promising tear, saliva and extracellular vesicle disease biomarkers. Arthritis Res. Ther. 2019, 21, 181. [Google Scholar] [CrossRef] [Green Version]
- Kaczor-Urbanowicz, K.E.; Martin Carreras-Presas, C.; Aro, K.; Tu, M.; Garcia-Godoy, F.; Wong, D.T. Saliva diagnostics—Current views and directions. Exp. Biol. Med. 2017, 242, 459–472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaleckis, R.; Meister, I.; Zhang, P.; Wheelock, C.E. Challenges, progress and promises of metabolite annotation for LC-MS-based metabolomics. Curr. Opin. Biotechnol. 2019, 55, 44–50. [Google Scholar] [CrossRef]
- Villas-Boas, S.G.; Mas, S.; Akesson, M.; Smedsgaard, J.; Nielsen, J. Mass spectrometry in metabolome analysis. Mass Spectrom. Rev. 2005, 24, 613–646. [Google Scholar] [CrossRef]
- Clish, C.B. Metabolomics: An emerging but powerful tool for precision medicine. Mol. Case Stud. 2015, 1, a000588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kageyama, G.; Saegusa, J.; Irino, Y.; Tanaka, S.; Tsuda, K.; Takahashi, S.; Sendo, S.; Morinobu, A. Metabolomics analysis of saliva from patients with primary Sjogren’s syndrome. Clin. Exp. Immunol. 2015, 182, 149–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrala, M.; Mikkonen, J.J.W.; Pesonen, P.; Lappalainen, R.; Tjaderhane, L.; Niemela, R.K.; Seitsalo, H.; Salo, T.; Myllymaa, S.; Kullaa, A.M. Variability of salivary metabolite levels in patients with Sjogren’s syndrome. J. Oral Sci. 2020, 63, 22–26. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Ochoa, A.; Borras-Linares, I.; Quirantes-Pine, R.; Alarcon-Riquelme, M.E.; Beretta, L.; Segura-Carretero, A.; Precisesads Clinical, C. Discovering new metabolite alterations in primary sjogren’s syndrome in urinary and plasma samples using an HPLC-ESI-QTOF-MS methodology. J. Pharm. Biomed. Anal. 2020, 179, 112999. [Google Scholar] [CrossRef]
- Mikkonen, J.J.; Herrala, M.; Soininen, P.; Lappalainen, R.; Tjäderhane, L.; Seitsalo, H.; Niemelä, R.; Salo, T.; Kullaa, A.M.; Myllymaa, S. Metabolic profiling of saliva in patients with primary Sjögren’s syndrome. Metabolomics 2013, 3, 1. [Google Scholar]
- Vitali, C.; Bombardieri, S.; Jonsson, R.; Moutsopoulos, H.M.; Alexander, E.L.; Carsons, S.E.; Daniels, T.E.; Fox, P.C.; Fox, R.I.; Kassan, S.S.; et al. Classification criteria for Sjögren’s syndrome: A revised version of the European criteria proposed by the American-European Consensus Group. Ann. Rheum. Dis. 2002, 61, 554–558. [Google Scholar] [CrossRef] [Green Version]
- Narváez, J.; Sánchez-Fernández, S.Á.; Seoane-Mato, D.; Díaz-González, F.; Bustabad, S. Prevalence of Sjögren’s syndrome in the general adult population in Spain: Estimating the proportion of undiagnosed cases. Sci. Rep. 2020, 10, 10627. [Google Scholar] [CrossRef]
- Westgaard, K.L.; Hynne, H.; Amdal, C.D.; Young, A.; Singh, P.B.; Chen, X.; Rykke, M.; Hove, L.H.; Aqrawi, L.A.; Utheim, T.P.; et al. Oral and ocular late effects in head and neck cancer patients treated with radiotherapy. Sci. Rep. 2021, 11, 4026. [Google Scholar] [CrossRef]
- Tashbayev, B.; Garen, T.; Palm, O.; Chen, X.; Herlofson, B.B.; Young, A.; Hove, L.H.; Rykke, M.; Singh, P.B.; Aqrawi, L.A.; et al. Patients with non-Sjogren’s sicca report poorer general and oral health-related quality of life than patients with Sjogren’s syndrome: A cross-sectional study. Sci. Rep. 2020, 10, 2063. [Google Scholar] [CrossRef]
- Tashbayev, B.; Rusthen, S.; Young, A.; Herlofson, B.B.; Hove, L.H.; Singh, P.B.; Rykke, M.; Aqrawi, L.A.; Chen, X.; Utheim, O.A.; et al. Interdisciplinary, Comprehensive Oral and Ocular Evaluation of Patients with Primary Sjogren’s Syndrome. Sci. Rep. 2017, 7, 10761. [Google Scholar] [CrossRef]
- Skogvold, H.B.; Sandås, E.M.; Østeby, A.; Løkken, C.; Rootwelt, H.; Rønning, P.O.; Wilson, S.R.; Elgstøen, K.B.P. Bridging the Polar and Hydrophobic Metabolome in Single-Run Untargeted Liquid Chromatography-Mass Spectrometry Dried Blood Spot Metabolomics for Clinical Purposes. J. Proteome Res. 2021, 20, 4010–4021. [Google Scholar] [CrossRef]
- Proctor, G.B. The physiology of salivary secretion. Periodontology 2000 2016, 70, 11–25. [Google Scholar] [CrossRef] [Green Version]
- Idrees, M.; Nassani, M.; Kujan, O. Assessing the association between unstimulated whole salivary flow rate (UWSFR) and oral health status among healthy adult subjects: A cross-sectional study. Med. Oral Patol. Oral Cir. Bucal. 2018, 23, e384–e390. [Google Scholar] [CrossRef]
- Pedersen, A.M.L.; Sorensen, C.E.; Proctor, G.B.; Carpenter, G.H.; Ekstrom, J. Salivary secretion in health and disease. J. Oral Rehabil. 2018, 45, 730–746. [Google Scholar] [CrossRef]
- Turner, J.T.; Landon, L.A.; Gibbons, S.J.; Talamo, B.R. Salivary gland P2 nucleotide receptors. Crit. Rev. Oral Biol. Med. 1999, 10, 210–224. [Google Scholar] [CrossRef]
- Nam, K.; Kim, H.J.; Yoo, A. Efficacy and Safety of Topical 3% Diquafosol Ophthalmic Solution for the Treatment of Multifactorial Dry Eye Disease: Meta-Analysis of Randomized Clinical Trials. Ophthalmic Res. 2019, 61, 188–198. [Google Scholar] [CrossRef]
- Schrader, A.M.; Camden, J.M.; Weisman, G.A. P2Y2 nucleotide receptor up-regulation in submandibular gland cells from the NOD.B10 mouse model of Sjogren’s syndrome. Arch. Oral Biol. 2005, 50, 533–540. [Google Scholar] [CrossRef]
- Priolo, C.; Khabibullin, D.; Reznik, E.; Filippakis, H.; Ogórek, B.; Kavanagh, T.R.; Nijmeh, J.; Herbert, Z.T.; Asara, J.M.; Kwiatkowski, D.J.; et al. Impairment of gamma-glutamyl transferase 1 activity in the metabolic pathogenesis of chromophobe renal cell carcinoma. Proc. Natl. Acad. Sci. USA 2018, 115, E6274–E6282. [Google Scholar] [CrossRef] [Green Version]
- Ballatori, N.; Krance, S.M.; Notenboom, S.; Shi, S.; Tieu, K.; Hammond, C.L. Glutathione dysregulation and the etiology and progression of human diseases. Biol. Chem. 2009, 390, 191–214. [Google Scholar] [CrossRef] [Green Version]
- Assmann, C.E.; Stefanello, N.; Bottari, N.B.; Baldissarelli, J.; Schetinger, M.R.C.; Morsch, V.M.M.; Bagatini, M.D. Crosstalk between the Purinergic and Immune Systems: Implications for the Glutathione Antioxidant System in Health and Disease. In Glutathione System and Oxidative Stress in Health and Disease; Books on Demand: Norderstedt, Germany, 2020; p. 3. [Google Scholar]
- Mondanelli, G.; Iacono, A.; Carvalho, A.; Orabona, C.; Volpi, C.; Pallotta, M.T.; Matino, D.; Esposito, S.; Grohmann, U. Amino acid metabolism as drug target in autoimmune diseases. Autoimmun. Rev. 2019, 18, 334–348. [Google Scholar] [CrossRef]
- Domingo-Almenara, X.; Montenegro-Burke, J.R.; Benton, H.P.; Siuzdak, G. Annotation: A Computational Solution for Streamlining Metabolomics Analysis. Anal. Chem. 2018, 90, 480–489. [Google Scholar] [CrossRef] [Green Version]
Characteristics | HNC (n = 10) | pSS (n = 9) | Controls (n = 10) | p-Value |
---|---|---|---|---|
Mean ± SD | Mean ± SD | Mean ± SD | ||
Age (years) | 59.1 ± 8.5 | 53.2 ± 13.9 | 53.7 ± 2.3 | 0.3 |
% | % | % | ||
Ethnicity | 0.4 | |||
Scandinavian | 100% | 100% | 90% | |
Other | 10% | |||
Smoking status | 0.1 | |||
Yes | 30% | 11% | 0% | |
No | 70% | 89% | 100% | |
Education level | 0.7 | |||
Basic | 0% | 0% | 0% | |
Secondary | 10% | 20% | 10% | |
Higher | 90% | 80% | 90% | |
Occupation | 0.2 | |||
Working | 40% | 60% | 100% | |
Sick leave | 50% | 20% | 0% | |
Student | 0% | 0% | 0% | |
Retired | 10% | 20% | 0% |
Level of ID | Identification |
---|---|
Level 1 | Validated identification using in-house library (MS/MS spectrum and retention time match). |
Level 2 | Putative identification using online databases (MS/MS spectrum match). |
Level 3 | Putative identification supported by additional information. |
Level 4 | Tentative identification using online databases (chemical formula). |
Level 5 | Unique feature. Molecular mass ± 5 ppm. |
Clinical Parameter | HNC (n = 10) | pSS (n = 9) | Controls (n = 10) | p-Value |
---|---|---|---|---|
Mean ± SD | Mean ± SD | Mean ± SD | ||
UWS (mL/min) 1 | 0.13 ± 0.1 | 0.09 ± 0.07 a | 0.27 ± 0.23 a | 0.03 |
SWS (mL/min) 2 | 1.0 ± 0.3 | 0.7 ± 0.4 a | 1.6 ± 0.9 a | 0.01 |
Name | Level | Ratio: HNC/Controls | Ratio: pSS/Controls | Ratio: HNC/pSS | ESI |
---|---|---|---|---|---|
Pyrogallol ** | 4 | ↑ | ↑ | ↓ | + |
O-Phosphorylethanolamine | 1 | ↑↑ | ↑ | − | |
319.99404 *,** | 5 | ↑↑ | ↑ | − | |
163.00087 *,** | 5 | ↑ | ↑↑ | + | |
Uridine monophosphate ** | 1 | ↑ | ↑↑ | − | |
134.99907 *,** | 5 | ↑ | ↑↑ | − | |
Streptidine ** | 4 | ↑ | ↑ | + | |
Vanillin ** | 2 | ↑ | ↑ | + | |
178.97480 *,** | 5 | ↑ | ↑ | + | |
Vanillin ** | 2 | ↑ | ↑ | − | |
Creatine ** | 1 | ↑ | ↑ | − | |
Cytidine 5′-monophosphate ** | 1 | ↑ | ↑ | − | |
Uridine ** | 1 | ↑ | ↑ | − | |
Υ-L-Glutamyl-L-glutamic acid ** | 2 | ↓ | ↓ | + | |
N-Tridecanoylglycine | 4 | ↑↑ | ↑↑ | − | |
(E)-2-[(2S)-2-Amino-2-carboxyethoxy]-2-hydroxyethenediazonium | 4 | ↑↑ | + | ||
N-Acetylvaline | 4 | ↓↓ | + | ||
Xylitol | 2 | ↑ | ↑ | − | |
DL-Stachydrine | 2 | ↓ | ↓ | + | |
Xylitol | 1 | ↑ | + | ||
DL-3-Aminoisobutyric acid | 1 | ↑ | + | ||
282.03789 * | 5 | ↑ | + | ||
194.07065 * | 5 | ↑ | + | ||
Butylparaben | 4 | ↑ | − | ||
Diethylene glycol | 4 | ↓ | + | ||
2,2′-[1,2-Propanediylbis(oxy)]diethanol | 4 | ↓ | + | ||
4-Morpholinylacetic acid | 4 | ↓ | + | ||
499.26496 * | 5 | ↓ | + | ||
474.54143 * | 5 | ↓ | + | ||
Hydroxychloroquine | 2 | ↑↑ | ↓↓ | − | |
Hydroxychloroquine | 2 | ↑↑ | ↓↓ | + | |
Cytosine | 1 | ↑↑ | + | ||
214.61102 * | 5 | ↓↓ | + | ||
Monodesethylchloroquine | 2 | ↑ | ↓↓ | + | |
2-Aminoadipic acid | 1 | ↑ | ↑ | − | |
N-(1-{[Methyl(2-methyl-2-propanyl)carbamoyl]amino}ethyl)-alpha-asparagine | 4 | ↑ | ↓ | + | |
asn-val | 4 | ↑ | ↓ | + | |
Meprobamate | 4 | ↑ | ↓ | + | |
Threonylphenylalanine | 4 | ↑ | ↓ | + | |
225.07485 * | 5 | ↑ | ↓ | + | |
396.23525 * | 5 | ↑ | ↓ | + | |
Pantothenic acid | 4 | ↑ | − | ||
Paraldehyde | 4 | ↑ | − | ||
Pyr-Val-OH | 4 | ↑ | − | ||
345.09776 | 5 | ↑ | − | ||
1-Methylnicotinamide | 1 | ↑ | + | ||
Tyrosylalanine | 2 | ↑ | + | ||
gamma-L-glutamyl-L-tyrosine | 4 | ↑ | + | ||
Gly-Leu | 4 | ↑ | + | ||
Leucylasparagine | 4 | ↑ | + | ||
Phenylalanylproline | 4 | ↓ | + | ||
L-Alanyl-L-glutamine | 2 | ↓ | + | ||
127.02446 * | 5 | ↑ | + | ||
324.03541 * | 5 | ↑ | + | ||
459.26897 * | 5 | ↑ | + | ||
Asp-Val | 2 | ↓ | + | ||
Gly-Phe | 2 | ↓ | + | ||
L-gamma-Glutamyl-L-leucine | 2 | ↓ | + | ||
Phenylalanylalanine | 2 | ↓ | + | ||
Threonylleucine | 2 | ↓ | + |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hynne, H.; Sandås, E.M.; Elgstøen, K.B.P.; Rootwelt, H.; Utheim, T.P.; Galtung, H.K.; Jensen, J.L. Saliva Metabolomics in Dry Mouth Patients with Head and Neck Cancer or Sjögren’s Syndrome. Cells 2022, 11, 323. https://doi.org/10.3390/cells11030323
Hynne H, Sandås EM, Elgstøen KBP, Rootwelt H, Utheim TP, Galtung HK, Jensen JL. Saliva Metabolomics in Dry Mouth Patients with Head and Neck Cancer or Sjögren’s Syndrome. Cells. 2022; 11(3):323. https://doi.org/10.3390/cells11030323
Chicago/Turabian StyleHynne, Håvard, Elise Mørk Sandås, Katja Benedikte Prestø Elgstøen, Helge Rootwelt, Tor P. Utheim, Hilde Kanli Galtung, and Janicke Liaaen Jensen. 2022. "Saliva Metabolomics in Dry Mouth Patients with Head and Neck Cancer or Sjögren’s Syndrome" Cells 11, no. 3: 323. https://doi.org/10.3390/cells11030323
APA StyleHynne, H., Sandås, E. M., Elgstøen, K. B. P., Rootwelt, H., Utheim, T. P., Galtung, H. K., & Jensen, J. L. (2022). Saliva Metabolomics in Dry Mouth Patients with Head and Neck Cancer or Sjögren’s Syndrome. Cells, 11(3), 323. https://doi.org/10.3390/cells11030323