Evaluation of Unconventional Protein Secretion by Saccharomyces cerevisiae and other Fungi
Abstract
:1. Introduction
2. Overview on Conventional and Unconventional Protein Secretions in Fungal Cells
2.1. Conventional Protein Secretion in Fungal Cells
2.2. Machineries of Unconventional Protein Secretion in Fungal Cells
2.2.1. Unconventional Secretion of Acb1 and Sod1p in Fungal Cells
2.2.2. Unconventional Secretion of Glycolytic Enzymes
3. Approaches for Evaluating Unconventional Protein Secretion
3.1. Methods of Secretome Analysis
- Prepare extracellular protein samples
- Test the samples by SDS-PAGE and Western blotting
- Non-targeted proteome analysis of secreted proteins
- Reconstruction of the UPS on specific proteins for further analysis
3.2. Proteome Databases
3.3. Re-Analysis of Fungal Secretome
4. Unconventionally Secreted Fungal Allergens
5. Discussion and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Simon-Nobbe, B.; Denk, U.; Poll, V.; Rid, R.; Breitenbach, M. The spectrum of fungal allergy. Int. Arch. Allergy Immunol. 2008, 145, 58–86. [Google Scholar] [CrossRef] [PubMed]
- Falahati, M.; Ghanbari, S.; Ebrahimi, M.; Ghazanfari, M.; Bazrafshan, F.; Farahyar, S.; Falak, R. Fractionation and identification of the allergic proteins in Aspergillus species. Curr. Med. Mycol. 2016, 2, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Asif, A.R.; Oellerich, M.; Amstrong, V.W.; Riemenschneider, B.; Monod, M.; Reichard, U. Proteome of conidial surface associated proteins of Aspergillus fumigatus reflecting potential vaccine candidates and allergens. J. Proteome Res. 2006, 5, 954–962. [Google Scholar] [CrossRef] [PubMed]
- Chaffin, W.L.; Lopez-Ribot, J.L.; Casanova, M.; Gozalbo, D.; Martinez, J.P. Cell wall and secreted proteins of Candida albicans: Identification, function, and expression. Microbiol. Mol. Biol. Rev. 1998, 62, 130–180. [Google Scholar] [PubMed]
- Schneiter, R.; Di Pietro, A. The cap protein superfamily: Function in sterol export and fungal virulence. Biomol. Concepts 2013, 4, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Ferro-Novick, S.; Brose, N. Nobel 2013 physiology or medicine: Traffic control system within cells. Nature 2013, 504, 98. [Google Scholar] [CrossRef] [PubMed]
- Palade, G. Intracellular aspects of the process of protein synthesis. Science 1975, 189, 867. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Villar, E.; Monteoliva, L.; Larsen, M.R.; Sachon, E.; Shabaz, M.; Pardo, M.; Pla, J.; Gil, C.; Roepstorff, P.; Nombela, C. Genetic and proteomic evidences support the localization of yeast enolase in the cell surface. Proteomics 2006, 6 (Suppl. 1), S107–S118. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, M.L.; Nakayasu, E.S.; Almeida, I.C.; Nimrichter, L. The impact of proteomics on the understanding of functions and biogenesis of fungal extracellular vesicles. J. Proteom. 2014, 97, 177–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faria-Oliveira, F.; Carvalho, J.; Ferreira, C.; Hernaez, M.L.; Gil, C.; Lucas, C. Quantitative differential proteomics of yeast extracellular matrix: There is more to it than meets the eye. BMC Microbiol. 2015, 15, 271. [Google Scholar] [CrossRef] [PubMed]
- Gil-Bona, A.; Llama-Palacios, A.; Parra, C.M.; Vivanco, F.; Nombela, C.; Monteoliva, L.; Gil, C. Proteomics unravels extracellular vesicles as carriers of classical cytoplasmic proteins in Candida albicans. J. Proteome Res. 2015, 14, 142–153. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Jeffery, C.J. An analysis of surface proteomics results reveals novel candidates for intracellular/surface moonlighting proteins in bacteria. Mol. Biosyst. 2016, 12, 1420–1431. [Google Scholar] [CrossRef] [PubMed]
- Gil-Bona, A.; Amador-Garcia, A.; Gil, C.; Monteoliva, L. The external face of Candida albicans: A proteomic view of the cell surface and the extracellular environment. J. Proteom. 2018, 180, 70–79. [Google Scholar] [CrossRef] [PubMed]
- Miura, N.; Kirino, A.; Endo, S.; Morisaka, H.; Kuroda, K.; Takagi, M.; Ueda, M. Tracing putative trafficking of the glycolytic enzyme enolase via SNARE-driven unconventional secretion. Eukaryot Cell 2012, 11, 1075–1082. [Google Scholar] [CrossRef] [PubMed]
- Conesa, A.; Punt, P.J.; van Luijk, N.; van den Hondel, C.A. The secretion pathway in filamentous fungi: A biotechnological view. Fungal Genet. Biol. 2001, 33, 155–171. [Google Scholar] [CrossRef] [PubMed]
- Feizi, A.; Osterlund, T.; Petranovic, D.; Bordel, S.; Nielsen, J. Genome-scale modeling of the protein secretory machinery in yeast. PLoS ONE 2013, 8, e63284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malhotra, V. Unconventional protein secretion: An evolving mechanism. EMBO J. 2013, 32, 1660–1664. [Google Scholar] [CrossRef] [PubMed]
- DTU Bioinformatics Department of Bio and Health Informatics ServerIP 4.1 Server. Available online: http://www.cbs.dtu.dk/services/SignalP (accessed on 27 August 2018).
- Nielsen, H. Predicting secretory proteins with SignalP. Methods Mol. Biol. 2017, 1611, 59–73. [Google Scholar] [PubMed]
- PSORT: Prediction of Protein Sorting Signals and Localization Sites in Amino Acid Sequences. Available online: https://psort.hgc.jp (accessed on 27 August 2018).
- Nakai, K.; Horton, P. PSort: A program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem. Sci. 1999, 24, 34–36. [Google Scholar] [CrossRef]
- DTU Bioinformatics Department of Bio and Health Informatics TargetP 1.1 Server. Available online: http://www.cbs.dtu.dk/services/TargetP (accessed on 27 August 2018).
- Emanuelsson, O.; Brunak, S.; von Heijne, G.; Nielsen, H. Locating proteins in the cell using TargetP, SignalP and related tools. Nat. Protoc. 2007, 2, 953–971. [Google Scholar] [CrossRef] [PubMed]
- Sperschneider, J.; Williams, A.H.; Hane, J.K.; Singh, K.B.; Taylor, J.M. Evaluation of secretion prediction highlights differing approaches needed for oomycete and fungal effectors. Front. Plant Sci. 2015, 6, 1168. [Google Scholar] [CrossRef] [PubMed]
- Wolf, J.M.; Casadevall, A. Challenges posed by extracellular vesicles from eukaryotic microbes. Curr. Opin Microbiol. 2014, 22, 73–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robbertse, B.; Tatusova, T. Fungal genome resources at NCBI. Mycology 2011, 2, 142–160. [Google Scholar] [PubMed]
- Colombo, M.; Raposo, G.; Thery, C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu. Rev. Cell Dev. Biol. 2014, 30, 255–289. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, M.L.; Oliveira, D.L.; Vargas, G.; Girard-Dias, W.; Franzen, A.J.; Frases, S.; Miranda, K.; Nimrichter, L. Analysis of yeast extracellular vesicles. Methods Mol. Biol. 2016, 1459, 175–190. [Google Scholar] [PubMed]
- Rodrigues, M.L.; Nakayasu, E.S.; Oliveira, D.L.; Nimrichter, L.; Nosanchuk, J.D.; Almeida, I.C.; Casadevall, A. Extracellular vesicles produced by Cryptococcus neoformans contain protein components associated with virulence. Eukaryot Cell 2008, 7, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Vallejo, M.C.; Nakayasu, E.S.; Matsuo, A.L.; Sobreira, T.J.; Longo, L.V.; Ganiko, L.; Almeida, I.C.; Puccia, R. Vesicle and vesicle-free extracellular proteome of Paracoccidioides brasiliensis: Comparative analysis with other pathogenic fungi. J. Proteome Res. 2012, 11, 1676–1685. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, D.L.; Nakayasu, E.S.; Joffe, L.S.; Guimaraes, A.J.; Sobreira, T.J.; Nosanchuk, J.D.; Cordero, R.J.; Frases, S.; Casadevall, A.; Almeida, I.C.; et al. Characterization of yeast extracellular vesicles: Evidence for the participation of different pathways of cellular traffic in vesicle biogenesis. PLoS ONE 2010, 5, e11113. [Google Scholar] [CrossRef] [PubMed]
- Zamith-Miranda, D.; Nimrichter, L.; Rodrigues, M.L.; Nosanchuk, J.D. Fungal extracellular vesicles: Modulating host-pathogen interactions by both the fungus and the host. Microbes Infect 2018. [Google Scholar] [CrossRef] [PubMed]
- Joffe, L.S.; Nimrichter, L.; Rodrigues, M.L.; Del Poeta, M. Potential roles of fungal extracellular vesicles during infection. mSphere 2016, 1. [Google Scholar] [CrossRef] [PubMed]
- Johansson, H.J.; Vallhov, H.; Holm, T.; Gehrmann, U.; Andersson, A.; Johansson, C.; Blom, H.; Carroni, M.; Lehtio, J.; Scheynius, A. Extracellular nanovesicles released from the commensal yeast Malassezia sympodialis are enriched in allergens and interact with cells in human skin. Sci. Rep. 2018, 8, 9182. [Google Scholar] [CrossRef] [PubMed]
- Kabani, M.; Melki, R. Sup35p in its soluble and prion states is packaged inside extracellular vesicles. MBio 2015, 6. [Google Scholar] [CrossRef] [PubMed]
- Kreimer, S.; Belov, A.M.; Ghiran, I.; Murthy, S.K.; Frank, D.A.; Ivanov, A.R. Mass-spectrometry-based molecular characterization of extracellular vesicles: Lipidomics and proteomics. J. Proteome Res. 2015, 14, 2367–2384. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, M.L.; Franzen, A.J.; Nimrichter, L.; Miranda, K. Vesicular mechanisms of traffic of fungal molecules to the extracellular space. Curr. Opin. Microbiol. 2013, 16, 414–420. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, M.L.; Godinho, R.M.; Zamith-Miranda, D.; Nimrichter, L. Traveling into outer space: Unanswered questions about fungal extracellular vesicles. PLoS Pathog 2015, 11, e1005240. [Google Scholar] [CrossRef] [PubMed]
- Nimrichter, L.; de Souza, M.M.; Del Poeta, M.; Nosanchuk, J.D.; Joffe, L.; Tavares Pde, M.; Rodrigues, M.L. Extracellular vesicle-associated transitory cell wall components and their impact on the interaction of fungi with host cells. Front. Microbiol. 2016, 7, 1034. [Google Scholar] [CrossRef] [PubMed]
- Giardina, B.J.; Stanley, B.A.; Chiang, H.L. Glucose induces rapid changes in the secretome of Saccharomyces cerevisiae. Proteome Sci. 2014, 12, 9. [Google Scholar] [CrossRef] [PubMed]
- Stein, K.; Chiang, H.L. Exocytosis and endocytosis of small vesicles across the plasma membrane in Saccharomyces cerevisiae. Membranes 2014, 4, 608–629. [Google Scholar] [CrossRef] [PubMed]
- Wolf, J.M.; Espadas-Moreno, J.; Luque-Garcia, J.L.; Casadevall, A. Interaction of Cryptococcus neoformans extracellular vesicles with the cell wall. Eukaryot Cell 2014, 13, 1484–1493. [Google Scholar] [CrossRef] [PubMed]
- Matos Baltazar, L.; Nakayasu, E.S.; Sobreira, T.J.; Choi, H.; Casadevall, A.; Nimrichter, L.; Nosanchuk, J.D. Antibody binding alters the characteristics and contents of extracellular vesicles released by Histoplasma capsulatum. mSphere 2016, 1. [Google Scholar] [CrossRef] [PubMed]
- Duran, J.M.; Anjard, C.; Stefan, C.; Loomis, W.F.; Malhotra, V. Unconventional secretion of Acb1 is mediated by autophagosomes. J. Cell Biol. 2010, 188, 527–536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruns, C.; McCaffery, J.M.; Curwin, A.J.; Duran, J.M.; Malhotra, V. Biogenesis of a novel compartment for autophagosome-mediated unconventional protein secretion. J. Cell Biol. 2011, 195, 979–992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cruz-Garcia, D.; Malhotra, V.; Curwin, A.J. Unconventional protein secretion triggered by nutrient starvation. Semin. Cell Dev. Biol. 2018. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Zhao, Y.; Kirkman, E.; Lin, X. Secreted Acb1 contributes to the yeast-to-hypha transition in Cryptococcus neoformans. Appl. Environ. Microbiol. 2016, 82, 1069–1079. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Garcia, D.; Brouwers, N.; Duran, J.M.; Mora, G.; Curwin, A.J.; Malhotra, V. A diacidic motif determines unconventional secretion of wild-type and ALS-linked mutant SOD1. J. Cell Biol. 2017. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.K.; Zhang, X.Z.; Lu, C.D.; Tai, P.C. An internal hydrophobic helical domain of Bacillus subtilis enolase is essential but not sufficient as a non-cleavable signal for its secretion. Biochem. Biophys. Res. Commun. 2014, 446, 901–905. [Google Scholar] [CrossRef] [PubMed]
- Boel, G.; Pichereau, V.; Mijakovic, I.; Maze, A.; Poncet, S.; Gillet, S.; Giard, J.C.; Hartke, A.; Auffray, Y.; Deutscher, J. Is 2-phosphoglycerate-dependent automodification of bacterial enolases implicated in their export? J. Mol. Biol. 2004, 337, 485–496. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.K.; Ewis, H.E.; Zhang, X.; Lu, C.D.; Hu, H.J.; Pan, Y.; Abdelal, A.T.; Tai, P.C. Nonclassical protein secretion by Bacillus subtilis in the stationary phase is not due to cell lysis. J. Bacteriol. 2011, 193, 5607–5615. [Google Scholar] [CrossRef] [PubMed]
- Miura, N.; Ueda, M. Evaluation of unconventional protein secretion in Saccharomyces cerevisiae. Methods Mol. Biol. 2015, 1270, 51–70. [Google Scholar] [PubMed]
- Brown, K.J.; Formolo, C.A.; Seol, H.; Marathi, R.L.; Duguez, S.; An, E.; Pillai, D.; Nazarian, J.; Rood, B.R.; Hathout, Y. Advances in the proteomic investigation of the cell secretome. Expert Rev. Proteom. 2012, 9, 337–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vivek-Ananth, R.P.; Mohanraj, K.; Vandanashree, M.; Jhingran, A.; Craig, J.P.; Samal, A. Comparative systems analysis of the secretome of the opportunistic pathogen Aspergillus fumigatus and other Aspergillus species. Sci. Rep. 2018, 8, 6617. [Google Scholar] [CrossRef] [PubMed]
- Futcher, B.; Latter, G.I.; Monardo, P.; McLaughlin, C.S.; Garrels, J.I. A sampling of the yeast proteome. Mol. Cell Biol. 1999, 19, 7357–7368. [Google Scholar] [CrossRef] [PubMed]
- Kulak, N.A.; Pichler, G.; Paron, I.; Nagaraj, N.; Mann, M. Minimal, encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells. Nat. Methods 2014, 11, 319–324. [Google Scholar] [CrossRef] [PubMed]
- Morisaka, H.; Matsui, K.; Tatsukami, Y.; Kuroda, K.; Miyake, H.; Tamaru, Y.; Ueda, M. Profile of native cellulosomal proteins of Clostridium cellulovorans adapted to various carbon sources. AMB Express 2012, 2, 37. [Google Scholar] [CrossRef] [PubMed]
- ProteomeXchange. Available online: http://www.proteomexchange.org (accessed on 27 August 2018).
- Deutsch, E.W.; Csordas, A.; Sun, Z.; Jarnuczak, A.; Perez-Riverol, Y.; Ternent, T.; Campbell, D.S.; Bernal-Llinares, M.; Okuda, S.; Kawano, S.; et al. The proteomeXchange consortium in 2017: Supporting the cultural change in proteomics public data deposition. Nucleic Acids Res. 2017, 45, D1100–D1106. [Google Scholar] [CrossRef] [PubMed]
- Vizcaino, J.A.; Deutsch, E.W.; Wang, R.; Csordas, A.; Reisinger, F.; Rios, D.; Dianes, J.A.; Sun, Z.; Farrah, T.; Bandeira, N.; et al. ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nat. Biotechnol. 2014, 32, 223–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- PRIDE Archive. Available online: https://www.ebi.ac.uk/pride/archive (accessed on 27 August 2018).
- Vizcaino, J.A.; Csordas, A.; Del-Toro, N.; Dianes, J.A.; Griss, J.; Lavidas, I.; Mayer, G.; Perez-Riverol, Y.; Reisinger, F.; Ternent, T.; et al. 2016 update of the PRIDE database and its related tools. Nucleic Acids Res. 2016, 44, 11033. [Google Scholar] [CrossRef] [PubMed]
- Peptide Atlas. Available online: http://www.peptideatlas.org (accessed on 27 August 2018).
- Deutsch, E.W. The PeptideAtlas project. Methods Mol. Biol. 2010, 604, 285–296. [Google Scholar] [PubMed]
- Mass Spectrometry Interactive Virtual Environment MassIVE. Available online: https://massive.ucsd.edu/ProteoSAFe/static/massive.jsp (accessed on 27 August 2018).
- Japan Proteome Standard Repository/Database jPOST. Available online: https://jpostdb.org (accessed on 27 August 2018).
- Okuda, S.; Watanabe, Y.; Moriya, Y.; Kawano, S.; Yamamoto, T.; Matsumoto, M.; Takami, T.; Kobayashi, D.; Araki, N.; Yoshizawa, A.C.; et al. jPOSTrepo: An international standard data repository for proteomes. Nucleic Acids Res. 2017, 45, D1107–D1111. [Google Scholar] [CrossRef] [PubMed]
- iProX-integrated Proteome resources. Available online: http://www.iprox.org (accessed on 27 August 2018).
- PanoramaWeb. Available online: https://panoramaweb.org/project/home/begin.view (accessed on 27 August 2018).
- Sharma, V.; Eckels, J.; Taylor, G.K.; Shulman, N.J.; Stergachis, A.B.; Joyner, S.A.; Yan, P.; Whiteaker, J.R.; Halusa, G.N.; Schilling, B.; et al. Panorama: A targeted proteomics knowledge base. J. Proteome Res. 2014, 13, 4205–4210. [Google Scholar] [CrossRef] [PubMed]
- Perez-Riverol, Y.; Alpi, E.; Wang, R.; Hermjakob, H.; Vizcaino, J.A. Making proteomics data accessible and reusable: Current state of proteomics databases and repositories. Proteomics 2015, 15, 930–949. [Google Scholar] [CrossRef] [PubMed]
- Girard, V.; Dieryckx, C.; Job, C.; Job, D. Secretomes: The fungal strike force. Proteomics 2013, 13, 597–608. [Google Scholar] [CrossRef] [PubMed]
- Vaudel, M.; Burkhart, J.M.; Zahedi, R.P.; Oveland, E.; Berven, F.S.; Sickmann, A.; Martens, L.; Barsnes, H. PeptideShaker enables reanalysis of MS-derived proteomics data sets. Nat. Biotechnol. 2015, 33, 22–24. [Google Scholar] [CrossRef] [PubMed]
- PRIDE Inspector. Available online: https://github.com/PRIDE-Toolsuite/pride-inspector (accessed on 27 August 2018).
- Wang, R.; Fabregat, A.; Rios, D.; Ovelleiro, D.; Foster, J.M.; Cote, R.G.; Griss, J.; Csordas, A.; Perez-Riverol, Y.; Reisinger, F.; et al. PRIDE Inspector: A tool to visualize and validate ms proteomics data. Nat. Biotechnol. 2012, 30, 135–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braconi, D.; Amato, L.; Bernardini, G.; Arena, S.; Orlandini, M.; Scaloni, A.; Santucci, A. Surfome analysis of a wild-type wine Saccharomyces cerevisiae strain. Food Microbiol. 2011, 28, 1220–1230. [Google Scholar] [CrossRef] [PubMed]
- Zeiner, C.A.; Purvine, S.O.; Zink, E.M.; Pasa-Tolic, L.; Chaput, D.L.; Haridas, S.; Wu, S.; LaButti, K.; Grigoriev, I.V.; Henrissat, B.; et al. Comparative analysis of secretome profiles of manganese(ii)-oxidizing Ascomycete fungi. PLoS ONE 2016, 11, e0157844. [Google Scholar] [CrossRef] [PubMed]
- Zeiner, C.A.; Purvine, S.O.; Zink, E.M.; Pasa-Tolic, L.; Chaput, D.L.; Wu, S.; Santelli, C.M.; Hansel, C.M. Quantitative itraq-based secretome analysis reveals species-specific and temporal shifts in carbon utilization strategies among manganese(ii)-oxidizing Ascomycete fungi. Fungal Genet. Biol. 2017, 106, 61–75. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Calvo, L.; Ullan, R.V.; Fernandez-Aguado, M.; Garcia-Lino, A.M.; Balana-Fouce, R.; Barreiro, C. Secreted protein extract analyses present the plant pathogen Alternaria alternata as a suitable industrial enzyme toolbox. J. Proteom. 2018, 177, 48–64. [Google Scholar] [CrossRef] [PubMed]
- Wartenberg, D.; Lapp, K.; Jacobsen, I.D.; Dahse, H.M.; Kniemeyer, O.; Heinekamp, T.; Brakhage, A.A. Secretome analysis of Aspergillus fumigatus reveals Asp-hemolysin as a major secreted protein. Int. J. Med. Microbiol. 2011, 301, 602–611. [Google Scholar] [CrossRef] [PubMed]
- de Gouvea, P.F.; Bernardi, A.V.; Gerolamo, L.E.; de Souza Santos, E.; Riano-Pachon, D.M.; Uyemura, S.A.; Dinamarco, T.M. Transcriptome and secretome analysis of Aspergillus fumigatus in the presence of sugarcane bagasse. BMC Genom. 2018, 19, 232. [Google Scholar] [CrossRef] [PubMed]
- Murad, A.M.; Laumann, R.A.; Mehta, A.; Noronha, E.F.; Franco, O.L. Screening and secretomic analysis of enthomopatogenic Beauveria bassiana isolates in response to cowpea weevil (Callosobruchus maculatus) exoskeleton. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2007, 145, 333–338. [Google Scholar] [CrossRef] [PubMed]
- Dionisio, G.; Kryger, P.; Steenberg, T. Label-free differential proteomics and quantification of exoenzymes from isolates of the entomopathogenic fungus Beauveria bassiana. Insects 2016, 7. [Google Scholar] [CrossRef] [PubMed]
- Pitarch, A.; Sanchez, M.; Nombela, C.; Gil, C. Sequential fractionation and two-dimensional gel analysis unravels the complexity of the dimorphic fungus Candida albicans cell wall proteome. Mol. Cell Proteom. 2002, 1, 967–982. [Google Scholar] [CrossRef]
- de Groot, P.W.; de Boer, A.D.; Cunningham, J.; Dekker, H.L.; de Jong, L.; Hellingwerf, K.J.; de Koster, C.; Klis, F.M. Proteomic analysis of Candida albicans cell walls reveals covalently bound carbohydrate-active enzymes and adhesins. Eukaryot Cell 2004, 3, 955–965. [Google Scholar] [CrossRef] [PubMed]
- Thomas, D.P.; Bachmann, S.P.; Lopez-Ribot, J.L. Proteomics for the analysis of the Candida albicans biofilm lifestyle. Proteomics 2006, 6, 5795–5804. [Google Scholar] [CrossRef] [PubMed]
- Maddi, A.; Bowman, S.M.; Free, S.J. Trifluoromethanesulfonic acid-based proteomic analysis of cell wall and secreted proteins of the Ascomycetous fungi Neurospora crassa and Candida albicans. Fungal Genet. Biol. 2009, 46, 768–781. [Google Scholar] [CrossRef] [PubMed]
- Sorgo, A.G.; Heilmann, C.J.; Dekker, H.L.; Brul, S.; de Koster, C.G.; Klis, F.M. Mass spectrometric analysis of the secretome of Candida albicans. Yeast 2010, 27, 661–672. [Google Scholar] [CrossRef] [PubMed]
- Sorgo, A.G.; Heilmann, C.J.; Dekker, H.L.; Bekker, M.; Brul, S.; de Koster, C.G.; de Koning, L.J.; Klis, F.M. Effects of fluconazole on the secretome, the wall proteome, and wall integrity of the clinical fungus Candida albicans. Eukaryot Cell 2011, 10, 1071–1081. [Google Scholar] [CrossRef] [PubMed]
- Ene, I.V.; Heilmann, C.J.; Sorgo, A.G.; Walker, L.A.; de Koster, C.G.; Munro, C.A.; Klis, F.M.; Brown, A.J. Carbon source-induced reprogramming of the cell wall proteome and secretome modulates the adherence and drug resistance of the fungal pathogen Candida albicans. Proteomics 2012, 12, 3164–3179. [Google Scholar] [CrossRef] [PubMed]
- Gil-Bona, A.; Monteoliva, L.; Gil, C. Global proteomic profiling of the secretome of Candida albicans ecm33 cell wall mutant reveals the involvement of ecm33 in sap2 secretion. J. Proteome Res. 2015, 14, 4270–4281. [Google Scholar] [CrossRef] [PubMed]
- Insenser, M.R.; Hernaez, M.L.; Nombela, C.; Molina, M.; Molero, G.; Gil, C. Gel and gel-free proteomics to identify Saccharomyces cerevisiae cell surface proteins. J. Proteom. 2010, 73, 1183–1195. [Google Scholar] [CrossRef] [PubMed]
- Rowe, J.D.; Harbertson, J.F.; Osborne, J.P.; Freitag, M.; Lim, J.; Bakalinsky, A.T. Systematic identification of yeast proteins extracted into model wine during aging on the yeast lees. J. Agric. Food Chem. 2010, 58, 2337–2346. [Google Scholar] [CrossRef] [PubMed]
- World-2DPAGE List. Available online: https://world-2dpage.expasy.org/list (accessed on 27 August 2018).
- Achatz, G.; Oberkofler, H.; Lechenauer, E.; Simon, B.; Unger, A.; Kandler, D.; Ebner, C.; Prillinger, H.; Kraft, D.; Breitenbach, M. Molecular cloning of major and minor allergens of Alternaria alternata and Cladosporium herbarum. Mol. Immunol. 1995, 32, 213–227. [Google Scholar] [CrossRef]
- Kurup, V.P.; Shen, H.D.; Vijay, H. Immunobiology of fungal allergens. Int. Arch. Allergy Immunol. 2002, 129, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Sevinc, M.S.; Kumar, V.; Abebe, M.; Casley, W.L.; Vijay, H.M. Isolation and characterization of a cDNA clone encoding one IgE-binding fragment of Penicillium brevicompactum. Int. Arch. Allergy Immunol. 2005, 138, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Mayer, C.; Appenzeller, U.; Seelbach, H.; Achatz, G.; Oberkofler, H.; Breitenbach, M.; Blaser, K.; Crameri, R. Humoral and cell-mediated autoimmune reactions to human acidic ribosomal P2 protein in individuals sensitized to Aspergillus fumigatus p2 protein. J. Exp. Med. 1999, 189, 1507–1512. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Muradia, G.; Curran, I.H.; Rode, H.; Vijay, H.M. A cDNA clone coding for a novel allergen, cla h iii, of Cladosporium herbarum identified as a ribosomal P2 protein. J. Immunol. 1995, 154, 710–717. [Google Scholar] [PubMed]
- Hoff, M.; Ballmer-Weber, B.K.; Niggemann, B.; Cistero-Bahima, A.; San Miguel-Moncin, M.; Conti, A.; Haustein, D.; Vieths, S. Molecular cloning and immunological characterisation of potential allergens from the mould Fusarium culmorum. Mol. Immunol. 2003, 39, 965–975. [Google Scholar] [CrossRef]
- Saxena, S.; Madan, T.; Muralidhar, K.; Sarma, P.U. cDNA cloning, expression and characterization of an allergenic l3 ribosomal protein of Aspergillus fumigatus. Clin. Exp. Immunol. 2003, 134, 86–91. [Google Scholar] [CrossRef] [PubMed]
- Tang, R.B.; Chen, Y.S.; Chou, H.; Lee, S.S.; Tai, H.Y.; Shen, H.D. cDNA cloning and immunologic characterization of a novel EF-1beta allergen from Penicillium citrinum. Allergy 2005, 60, 366–371. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.D.; Choo, K.B.; Lee, H.H.; Hsieh, J.C.; Lin, W.L.; Lee, W.R.; Han, S.H. The 40-kilodalton allergen of Candida albicans is an alcohol dehydrogenase: Molecular cloning and immunological analysis using monoclonal antibodies. Clin. Exp. Allergy 1991, 21, 675–681. [Google Scholar] [CrossRef] [PubMed]
- Westwood, G.S.; Huang, S.W.; Keyhani, N.O. Molecular and immunological characterization of allergens from the entomopathogenic fungus Beauveria bassiana. Clin. Mol. Allergy 2006, 4, 12. [Google Scholar] [CrossRef] [PubMed]
- Simon-Nobbe, B.; Probst, G.; Kajava, A.V.; Oberkofler, H.; Susani, M.; Crameri, R.; Ferreira, F.; Ebner, C.; Breitenbach, M. IgE-binding epitopes of enolases, a class of highly conserved fungal allergens. J. Allergy Clin. Immunol. 2000, 106, 887–895. [Google Scholar] [CrossRef] [PubMed]
- Lai, H.Y.; Tam, M.F.; Tang, R.B.; Chou, H.; Chang, C.Y.; Tsai, J.J.; Shen, H.D. cDNA cloning and immunological characterization of a newly identified enolase allergen from Penicillium citrinum and Aspergillus fumigatus. Int. Arch. Allergy Immunol. 2002, 127, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Ishiguro, A.; Homma, M.; Torii, S.; Tanaka, K. Identification of Candida albicans antigens reactive with immunoglobulin e antibody of human sera. Infect Immun. 1992, 60, 1550–1557. [Google Scholar] [PubMed]
- Mason, A.B.; Buckley, H.R.; Gorman, J.A. Molecular cloning and characterization of the Candida albicans enolase gene. J. Bacteriol. 1993, 175, 2632–2639. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.; Gupta, R.; Jhingran, A.; Singh, B.P.; Sridhara, S.; Gaur, S.N.; Arora, N. Cloning, recombinant expression and activity studies of a major allergen "enolase" from the fungus Curvularia lunata. J. Clin. Immunol. 2006, 26, 360–369. [Google Scholar] [CrossRef] [PubMed]
- Holland, M.J.; Holland, J.P.; Thill, G.P.; Jackson, K.A. The primary structures of two yeast enolase genes. Homology between the 5′ noncoding flanking regions of yeast enolase and glyceraldehyde-3-phosphate dehydrogenase genes. J. Biol. Chem. 1981, 256, 1385–1395. [Google Scholar] [PubMed]
- Chou, H.; Tam, M.F.; Lee, S.S.; Tai, H.Y.; Chang, C.Y.; Chou, C.T.; Shen, H.D. A vacuolar serine protease (rho m 2) is a major allergen of Rhodotorula mucilaginosa and belongs to a class of highly conserved pan-fungal allergens. Int. Arch. Allergy Immunol. 2005, 138, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Muthuvel, A.; Rajamani, R.; Senthilvelan, M.; Manikandan, S.; Sheeladevi, R. Modification of allergenicity and immunogenicity of formate dehydrogenase by conjugation with linear mono methoxy polyethylene glycol: Improvement in detoxification of formate in methanol poisoning. Clin. Chim. Acta 2006, 374, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Schneider, P.B.; Denk, U.; Breitenbach, M.; Richter, K.; Schmid-Grendelmeier, P.; Nobbe, S.; Himly, M.; Mari, A.; Ebner, C.; Simon-Nobbe, B. Alternaria alternata NADP-dependent mannitol dehydrogenase is an important fungal allergen. Clin. Exp. Allergy 2006, 36, 1513–1524. [Google Scholar] [CrossRef] [PubMed]
- Simon-Nobbe, B.; Denk, U.; Schneider, P.B.; Radauer, C.; Teige, M.; Crameri, R.; Hawranek, T.; Lang, R.; Richter, K.; Schmid-Grendelmeier, P.; et al. NADP-dependent mannitol dehydrogenase, a major allergen of Cladosporium herbarum. J. Biol. Chem. 2006, 281, 16354–16360. [Google Scholar] [CrossRef] [PubMed]
- Onishi, Y.; Kuroda, M.; Yasueda, H.; Saito, A.; Sono-Koyama, E.; Tunasawa, S.; Hashida-Okado, T.; Yagihara, T.; Uchida, K.; Yamaguchi, H.; et al. Two-dimensional electrophoresis of Malassezia allergens for atopic dermatitis and isolation of Mal f 4 homologs with mitochondrial malate dehydrogenase. Eur. J. Biochem. 1999, 261, 148–154. [Google Scholar] [CrossRef] [PubMed]
- De Vouge, M.W.; Thaker, A.J.; Zhang, L.; Muradia, G.; Rode, H.; Vijay, H.M. Molecular cloning of IgE-binding fragments of Alternaria alternata allergens. Int. Arch. Allergy Immunol. 1998, 116, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Muradia, G.; De Vouge, M.W.; Rode, H.; Vijay, H.M. An allergenic polypeptide representing a variable region of HSP 70 cloned from a cDNA library of Cladosporium herbarum. Clin. Exp. Allergy 1996, 26, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.D.; Au, L.C.; Lin, W.L.; Liaw, S.F.; Tsai, J.J.; Han, S.H. Molecular cloning and expression of a Penicillium citrinum allergen with sequence homology and antigenic crossreactivity to a HSP 70 human heat shock protein. Clin. Exp. Allergy 1997, 27, 682–690. [Google Scholar] [CrossRef] [PubMed]
- Bowyer, P.; Denning, D.W. Genomic analysis of allergen genes in Aspergillus spp: The relevance of genomics to everyday research. Med. Mycol. 2007, 45, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Andersson, A.; Rasool, O.; Schmidt, M.; Kodzius, R.; Fluckiger, S.; Zargari, A.; Crameri, R.; Scheynius, A. Cloning, expression and characterization of two new IgE-binding proteins from the yeast Malassezia sympodialis with sequence similarities to heat shock proteins and manganese superoxide dismutase. Eur. J. Biochem. 2004, 271, 1885–1894. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Reddy, L.V.; Sochanik, A.; Kurup, V.P. Isolation and characterization of a recombinant heat shock protein of Aspergillus fumigatus. J. Allergy Clin. Immunol. 1993, 91, 1024–1030. [Google Scholar] [CrossRef]
- Crameri, R.; Faith, A.; Hemmann, S.; Jaussi, R.; Ismail, C.; Menz, G.; Blaser, K. Humoral and cell-mediated autoimmunity in allergy to Aspergillus fumigatus. J. Exp. Med. 1996, 184, 265–270. [Google Scholar] [CrossRef] [PubMed]
- Fluckiger, S.; Scapozza, L.; Mayer, C.; Blaser, K.; Folkers, G.; Crameri, R. Immunological and structural analysis of IgE-mediated cross-reactivity between manganese superoxide dismutases. Int. Arch. Allergy Immunol. 2002, 128, 292–303. [Google Scholar] [CrossRef] [PubMed]
- Limacher, A.; Kloer, D.P.; Fluckiger, S.; Folkers, G.; Crameri, R.; Scapozza, L. The crystal structure of Aspergillus fumigatus cyclophilin reveals 3D domain swapping of a central element. Structure 2006, 14, 185–195. [Google Scholar] [CrossRef] [PubMed]
- Shankar, J.; Singh, B.P.; Gaur, S.N.; Arora, N. Recombinant glutathione-s-transferase a major allergen from Alternaria alternata for clinical use in allergy patients. Mol. Immunol. 2006, 43, 1927–1932. [Google Scholar] [CrossRef] [PubMed]
- Fukutomi, Y.; Taniguchi, M. Sensitization to fungal allergens: Resolved and unresolved issues. Allergol. Int. 2015, 64, 321–331. [Google Scholar] [CrossRef] [PubMed]
- Petersen, T.N.; Brunak, S.; von Heijne, G.; Nielsen, H. Signalp 4.0: Discriminating signal peptides from transmembrane regions. Nat. Methods 2011, 8, 785–786. [Google Scholar] [CrossRef] [PubMed]
- McCotter, S.W.; Horianopoulos, L.C.; Kronstad, J.W. Regulation of the fungal secretome. Curr. Genet. 2016, 62, 533–545. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, C.A.; Schekman, R. Distinct sets of sec genes govern transport vesicle formation and fusion early in the secretory pathway. Cell 1990, 61, 723–733. [Google Scholar] [CrossRef]
- Baker, D.; Hicke, L.; Rexach, M.; Schleyer, M.; Schekman, R. Reconstitution of sec gene product-dependent intercompartmental protein transport. Cell 1988, 54, 335–344. [Google Scholar] [CrossRef]
- Deshaies, R.J.; Schekman, R. A yeast mutant defective at an early stage in import of secretory protein precursors into the endoplasmic reticulum. J. Cell Biol. 1987, 105, 633–645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novick, P.; Schekman, R. Secretion and cell-surface growth are blocked in a temperature-sensitive mutant of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 1979, 76, 1858–1862. [Google Scholar] [CrossRef] [PubMed]
- Bao, Z.; Xiao, H.; Liang, J.; Zhang, L.; Xiong, X.; Sun, N.; Si, T.; Zhao, H. Homology-integrated CRISPR-Cas (Hi-CRISPR) system for one-step multigene disruption in Saccharomyces cerevisiae. ACS Synth Biol. 2015, 4, 585–594. [Google Scholar] [CrossRef] [PubMed]
- Giaever, G.; Nislow, C. The yeast deletion collection: A decade of functional genomics. Genetics 2014, 197, 451–465. [Google Scholar] [CrossRef] [PubMed]
- Si, T.; Chao, R.; Min, Y.; Wu, Y.; Ren, W.; Zhao, H. Automated multiplex genome-scale engineering in yeast. Nat. Commun. 2017, 8, 15187. [Google Scholar] [CrossRef] [PubMed]
- Hughes, T.R.; Marton, M.J.; Jones, A.R.; Roberts, C.J.; Stoughton, R.; Armour, C.D.; Bennett, H.A.; Coffey, E.; Dai, H.; He, Y.D.; et al. Functional discovery via a compendium of expression profiles. Cell 2000, 102, 109–126. [Google Scholar] [CrossRef]
- Miura, N.; Shinohara, M.; Tatsukami, Y.; Sato, Y.; Morisaka, H.; Kuroda, K.; Ueda, M. Spatial reorganization of Saccharomyces cerevisiae enolase to alter carbon metabolism under hypoxia. Eukaryot Cell 2013, 12, 1106–1119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gyorgy, B.; Hung, M.E.; Breakefield, X.O.; Leonard, J.N. Therapeutic applications of extracellular vesicles: Clinical promise and open questions. Annu. Rev. Pharmacol. Toxicol. 2015, 55, 439–464. [Google Scholar] [CrossRef] [PubMed]
Major Fungi with Known Allergens | Number of Extracellular Proteins Identified | Method 1 | Ref. | Year | Database 2 | ID |
---|---|---|---|---|---|---|
Alternaria alternata | 1383 | LC-MS/MS | [77] | 2016 | - | - |
1315 | iTRAQ | [78] | 2017 | - | - | |
95 | 2-DE | [79] | 2018 | - | - | |
Aspergillus fumigatus | 64 | 2-DE | [80] | 2011 | - | - |
128 | SDS-PAGE, LC-MS/MS | [81] | 2018 | - | - | |
437 | In sillico analysis of previous secretome data | [54] | 2018 | - | - | |
Beauveria bassiana | 13 | 2-DE | [82] | 2007 | - | - |
50 | LC-MS/MS | [83] | 2016 | - | - | |
Candida albicans | 27 | 2-DE | [84] | 2002 | W2 | - |
14 | LC-MS/MS | [85] | 2004 | - | - | |
48 | 2-DE | [86] | 2006 | - | - | |
50 | LC-MS/MS | [87] | 2009 | - | - | |
143 | LC-MS/MS | [88] | 2010 | - | - | |
84 | LC-MS/MS | [89] | 2011 | - | - | |
41 | LC-MS/MS | [90] | 2012 | PX | PXD000008 | |
96 | LC-MS/MS | [11] | 2015 | PX | PXD000525 | |
170 | LC-MS/MS | [91] | 2015 | PX | PXD000525 | |
Saccharomyces cerevisiae | 99 | 2-DE LC-MS/MS | [92] | 2010 | - | - |
219 | LC-MS/MS | [93] | 2010 | - | - | |
127 | LC-MS/MS | [77] | 2010 | - | - | |
42 | LC-MS/MS | [78] | 2011 | - | - | |
42 | LC-MS | [79] | 2012 | P | PRD000729 | |
347 | iTRAQ | [80] | 2014 | - | - | |
694 | 2-DE MALDI-TOF/TOF LC-MS/MS | [81] | 2015 | PX | PXD001133 |
Cellular Process | Description | Accession Number |
---|---|---|
Carbohydrate Metabolism | Cdc19p, Pyruvate kinase | gi|6319279 |
Eno1p, Enolase | gi|6321693 | |
Eno2p, Enolase II | gi|6321968 | |
Pdc1p, Major pyruvate decarboxylase | gi|6323073 | |
Pgk1p, 3-Phosphoglycerate kinase | gi|10383781 | |
Tdh3p, Glyceraldehyde-3-phosphate dehydrogenase | gi|6321631 | |
Protein Folding | Ssa1p, Hsp70 family | gi|144228166 |
Other Functions | Tif2p, Translation initiation factor eIF4A | gi|6322323 |
Classification | Allergens | Species | Genbank Accession No. | Ref. |
---|---|---|---|---|
Translation | Acid ribosomal protein P1 | Alternaria alternata | X84216 | [95] |
Cladosporium herbarum | X85180 | [96] | ||
Penicillium brevicompactum | AY786077 | [97] | ||
Acid ribosomal protein P2 | Alternaria alternata | X78222, U87806 | [95] | |
Aspergillus fumigatus | AJ224333 | [98] | ||
Cladosporium herbarum | X78223 | [95,99] | ||
Fusarium culmorum | AY077706 | [100] | ||
L3 ribosomal protein | Aspergillus fumigatus | AF464911 | [101] | |
Elongation factor 1 beta | Penicillium citrinum | AY363911 | [102] | |
Metabolism | Alcohol dehydrogenase | Candida albicans | X81694 | [103] |
Aldehyde dehydrogenase | Alternaria alternata | X78227, P42041 | [95] | |
Beauveria bassiana | DQ767721 | [104] | ||
Cladosporium herbarum | X78228 | [95] | ||
Enolase | Alternaria alternata | U82437 | [105] | |
Aspergillus fumigatus | AF284645 | [106] | ||
Beauveria bassiana | DQ767719 | [104] | ||
Candida albicans | L04943 | [107,108] | ||
Cladosporium herbarum | X78226 | [95] | ||
Curvularia lunata | AY034826 | [109] | ||
Penicillium citrinum | AF254643 | [106] | ||
Saccharomyces cerevisiae | J01322 | [106,110] | ||
Rhodotorula mucilaginosa | AY547285 | [111] | ||
Formate dehydrogenase | Candida boidinii | AJ011046 | [112] | |
Mannitol dehydrogenase | Alternaria alternata | AY191815 | [113] | |
Cladosporium herbarum | AY191816 | [114] | ||
Mitochondrial malate dehydrogenase | Malassezia furfur | AF084828 | [115] | |
Heat shock proteins | HSP70 | Alternaria alternata | U87807, U87808 | [116] |
Cladosporium herbarum | X81860 | [117] | ||
Penicillium citrinum | U64207 | [118] | ||
HSP88 | Malassezia sympodialis | AJ428052 | [119,120] | |
HSP90 | Aspergillus fumigatus | U92465 | [121] | |
Others | MnSOD | Aspergillus fumigatus | U53561 | [122] |
Saccharomyces cerevisiae | X02156 | [123] | ||
Malassezia sympodialis | AJ548421 | [120] | ||
Peptidyl-prolyl isomerase | Aspergillus fumigatus | AJ006689 | [124] | |
Protein disulfide isomerase | Alternaria alternata | X84217 | [95] | |
Thioredoxin-like protein | Fusarium culmorum | AY077707 | [100] | |
GST | Alternaria alternata | AY514673 | [125] |
Classification | Secreted Protein | Species | Ref. |
---|---|---|---|
Metabolism | Alcohol dehydrogenase | Alternaria alternata | [78] |
Candida albicans | [84,91] | ||
Saccharomyces cerevisiae | [31,40,76] | ||
Aldehyde dehydrogenase | Candida albicans | [91] | |
Saccharomyces cerevisiae | [31,40] | ||
Enolase | Aspergillus fumigatus | [80] | |
Candida albicans | [11,84,89,91] | ||
Saccharomyces cerevisiae | [14,31,40,76,93] | ||
Formate dehydrogenase | Aspergillus fumigatus | [80] | |
Candida albicans | [91] | ||
Mitochondrial malate dehydrogenase | Aspergillus fumigatus | [80] | |
Saccharomyces cerevisiae | [14,40] | ||
Heat shock proteins | HSP70 | Candida albicans | [11,91] |
Saccharomyces cerevisiae | [31,40] | ||
HSP90 | Candida albicans | [84,89] | |
Saccharomyces cerevisiae | [14,31,40] | ||
Others | SOD | Aspergillus fumigatus | [80] |
Saccharomyces cerevisiae | [14,31,40,76] | ||
Peptidyl-prolyl isomerase | Candida albicans | [91] | |
Saccharomyces cerevisiae | [14,31,40] | ||
Protein disulfide isomerase | Candida albicans | [88] | |
Saccharomyces cerevisiae | [14,31] | ||
Thioredoxin | Candida albicans | [91] | |
Saccharomyces cerevisiae | [14,31,40] | ||
GST | Saccharomyces cerevisiae | [31] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miura, N.; Ueda, M. Evaluation of Unconventional Protein Secretion by Saccharomyces cerevisiae and other Fungi. Cells 2018, 7, 128. https://doi.org/10.3390/cells7090128
Miura N, Ueda M. Evaluation of Unconventional Protein Secretion by Saccharomyces cerevisiae and other Fungi. Cells. 2018; 7(9):128. https://doi.org/10.3390/cells7090128
Chicago/Turabian StyleMiura, Natsuko, and Mitsuyoshi Ueda. 2018. "Evaluation of Unconventional Protein Secretion by Saccharomyces cerevisiae and other Fungi" Cells 7, no. 9: 128. https://doi.org/10.3390/cells7090128
APA StyleMiura, N., & Ueda, M. (2018). Evaluation of Unconventional Protein Secretion by Saccharomyces cerevisiae and other Fungi. Cells, 7(9), 128. https://doi.org/10.3390/cells7090128