Gene-Based Resistance to Erysiphe Species Causing Powdery Mildew Disease in Peas (Pisum sativum L.)
Abstract
:1. Introduction
2. Erysiphe Species Infecting Peas
3. Screening Methodology and Disease Scale
3.1. Screening under Natural Epiphytic Conditions
3.2. Controlled Conditions: Detached Leaf Method
3.3. PM Disease Scale in Pea
4. Genetics and Resistance Mechanism
4.1. Genetics
4.2. Resistance Mechanism and the Temperature-Based Reaction of Resistant Genes
5. Biochemical and Molecular basis of PM Resistance
5.1. The Biochemical Aspect
5.2. The Molecular Aspect
6. Molecular Characterization of er Genes on Linkage Groups
6.1. Allelic Variations at er1 Locus
6.2. Linkage Groups (LGs) of er1, er2 and Er3
6.3. Comparative Mapping
7. Breeding for Powdery Mildew Resistance
7.1. Conventional Approaches
7.2. Molecular Breeding Using Linked DNA Markers
8. Durable Resistance Strategies for PM Resistance
8.1. Gene Introgression from Related Species
8.2. Characterization and Introduction of Resistant Sources
8.3. Gene Pyramiding and Crop/Cultivar Diversification
8.4. Utilization of Susceptibility (S) Genes and Gene Editing for Resistance
9. Host–Pathogen Interaction and Disease Development
10. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Kreplak, J.; Madoui, M.-A.; Cápal, P.; Novák, P.; Labadie, K.; Aubert, G.; Bayer, P.E.; Gali, K.K.; Syme, R.A.; Main, D.; et al. A reference genome for pea provides insight into legume genome evolution. Nat. Genet. 2019, 51, 1411–1422. [Google Scholar] [CrossRef]
- Devi, J.; Sanwal, S.K.; Koley, T.K.; Mishra, G.P.; Karmakar, P.; Singh, P.M.; Singh, B. Variations in the total phenolics and antioxidant activities among garden pea (Pisum sativum L.) genotypes differing for maturity duration, seed and flower traits and their association with the yield. Sci. Hortic. 2019, 244, 141–150. [Google Scholar] [CrossRef]
- Devi, J.; Dubey, R.K.; Mishra, G.P.; Sagar, V.; Verma, R.K.; Singh, P.M.; Singh, J. Inheritance and stability studies of multi–flowering trait in vegetable pea (Pisum sativum L.), and its contribution in yield improvement. Sci. Hortic. 2021, 287, 110235. [Google Scholar] [CrossRef]
- FAO FAOSTAT. 2019. 2021. Available online: http://www.fao.org/faostat/en/#home (accessed on 12 April 2021).
- Devi, J.; Sanwal, S.; Koley, T.; Dubey, R.; Singh, P.; Singh, B. Variability and character association studies for horticultural and quality traits in garden pea (Pisum sativum L. var. hortense). Veg. Sci. 2018, 45, 161–165. [Google Scholar]
- Callan, B.E.; Carris, L.M. Fungi on living plants substrata, including fruits. In Biodiversity of Fungi; Elsevier: Amsterdam, The Netherlands, 2004; pp. 105–126. [Google Scholar]
- Vielba-Fernández, A.; Polonio, Á.; Ruiz-Jiménez, L.; de Vicente, A.; Pérez-García, A.; Fernández-Ortuño, D. fungicide resistance in powdery mildew fungi. Microorganisms 2020, 8, 1431. [Google Scholar] [CrossRef] [PubMed]
- Glawe, D.A. The powdery mildews: A Review of the world’s most familiar (yet poorly known) plant pathogens. Annu. Rev. Phytopathol. 2008, 46, 27–51. [Google Scholar] [CrossRef] [PubMed]
- Fondevilla, S.; Torres, A.M.; Moreno, M.T.; Rubiales, D. Identification of a new gene for resistance to powdery mildew in Pisum fulvum, a wild relative of pea. Breed. Sci. 2007, 57, 181–184. [Google Scholar] [CrossRef] [Green Version]
- Gritton, E.; Ebert, R. Interaction of planting indentation date and powdery mildew on pea plant performance. J. Am. Soc. Hortic. Sci. 1975, 100, 137–142. [Google Scholar]
- Smith, P.; Foster, E.; Boyd, L.; Brown, J.K. The early development of Erysiphe pisi on Pisum sativum L. Plant Pathol. 1996, 45, 302–309. [Google Scholar] [CrossRef]
- Kang, Y.; Zhou, M.; Merry, A.; Barry, K. Mechanisms of powdery mildew resistance of wheat – a review of molecular breeding. Plant Pathol. 2020, 69, 601–617. [Google Scholar] [CrossRef]
- Bheri, M.; Fareeda, G.; Makandar, R. Assessing host specialization of Erysiphe pisi on garden pea germplasm through genotypic and phenotypic characterization. Euphytica 2016, 212, 1–14. [Google Scholar] [CrossRef]
- Bheri, M.; Bhosle, S.M.; Makandar, R. Shotgun proteomics provides an insight into pathogenesis-related proteins using anamorphic stage of the biotroph, Erysiphe pisi pathogen of garden pea. Microbiol. Res. 2019, 222, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Fondevilla, S.; Rubiales, D. Powdery mildew control in pea. A review. Agron. Sustain. Dev. 2012, 32, 401–409. [Google Scholar] [CrossRef] [Green Version]
- Ghafoor, A.; McPhee, K. Marker assisted selection (MAS) for developing powdery mildew resistant pea cultivars. Euphytica 2012, 186, 593–607. [Google Scholar] [CrossRef]
- Sharma, B. Multiple allelism at Er locus for powdery mildew resistance in pea (Pisum sativum L.). Indian J. Genet. Plant Breed. 2016, 76, 512. [Google Scholar] [CrossRef]
- Heringa, R.J.; van Norel, A.; Tazelaar, M.F. Resistance to powdery mildew (Erisyphe polygoni D.C.) in peas (Pisum sativum L.). Euphytica 1969, 18, 163–169. [Google Scholar] [CrossRef]
- Hammarlund, C. Genetic Biologie und Physiologie Emiger Erysiphegen. 6:1. Hereditas 1925, 6, 1. [Google Scholar]
- Ondřej, M.; Dostálová, R.; Odstrčilová, L. Response of Pisum sativum germplasm resistant to Erysiphe pisi to inoculation with Erysiphe baeumleri, a new pathogen of pea. Plant Prot. Sci. 2005, 41, 95–103. [Google Scholar] [CrossRef] [Green Version]
- Attanayake, R.N.; Glawe, D.A.; McPhee, K.E.; Dugan, F.M.; Chen, W. Erysiphe trifolii- a newly recognized powdery mildew pathogen of pea. Plant Pathol. 2010, 59, 712–720. [Google Scholar] [CrossRef]
- Fondevilla, S.; Chattopadhyay, C.; Khare, N.; Rubiales, D. Erysiphe trifolii is able to overcome er1 and Er3, but not er2, resistance genes in pea. Eur. J. Plant Pathol. 2013, 136, 557–563. [Google Scholar] [CrossRef]
- Rana, J.C.; Banyal, D.K.; Sharma, K.D.; Sharma, M.K.; Gupta, S.K.; Yadav, S.K. Screening of pea germplasm for resistance to powdery mildew. Euphytica 2013, 189, 271–282. [Google Scholar] [CrossRef]
- Reddy, D.C.L.; Preethi, B.; Wani, M.A.; Aghora, T.S.; Aswath, C.; Mohan, N. Screening for powdery mildew (Erysiphe pisi D.C.) resistance gene-linked SCAR and SSR markers in five breeding lines of Pisum sativum L. J. Hortic. Sci. Biotechnol. 2015, 90, 78–82. [Google Scholar] [CrossRef]
- Warkentin, T.D.; Rashid, K.Y.; Zimmer, R.C. Effectiveness of a detached leaf assay for determination of the reaction of pea plants to powdery mildew. Can. J. Plant Pathol. 1995, 17, 87–89. [Google Scholar] [CrossRef]
- Banyal, D.K.; Tyagi, P.D. Comparison of screening techniques for evaluation of resistance among pea genotypes for powdery mildew. In Natural Resource Management for Sustainable Hill Agriculture; Ghabroo, S.K., Bhagat, R.M., Kapoor, A.C., Eds.; HPKV: Palampur, India, 1998; Volume II. [Google Scholar]
- Fondevilla, S.; Carver, T.L.W.; Moreno, M.T.; Rubiales, D. Macroscopic and histological characterisation of genes er1 and er2 for powdery mildew resistance in pea. Eur. J. Plant Pathol. 2006, 115, 309–321. [Google Scholar] [CrossRef]
- Katoch, V.; Sharma, S.; Pathania, S.; Banayal, D.K.; Sharma, S.K.; Rathour, R. Molecular mapping of pea powdery mildew resistance gene er2 to pea linkage group III. Mol. Breed. 2010, 25, 229–237. [Google Scholar] [CrossRef]
- Singh, J.; Dhall, R.K.; Aujla, I.S. Characterization of resistance response of garden pea (Pisum sativum L.) against powdery mildew (Erysiphe pisi DC) in sub-tropical plains of India. Sabrao J. Breed. Genet. 2015, 47, 384–393. [Google Scholar]
- Tiwari, K.R.; Penner, G.A.; Warkentin, T.D. Inheritance of powdery mildew resistance in pea. Can. J. Plant Sci. 1997, 77, 307–310. [Google Scholar] [CrossRef] [Green Version]
- Nisar, M.; Ghafoor, A.; Khan, M.R.; Qureshi, A.S. Screening of Pisum sativum L. germplasm against Erysiphe pisi Syd. Acta Biol. Crac. Ser. Bot. 2006, 48, 33–37. [Google Scholar]
- Saari, E.E.; Prescott, J.M. A scale for appraising foliar intensity of wheat diseases. Plant Dis. Report. 1975, 59, 377–380. [Google Scholar]
- Falloon, R.E.; Viljanen-Rollinson, S.L.H.; Coles, G.D.; Poff, J.D. Disease severity keys for powdery and downy mildews of pea, and powdery scab of potato. N. Z. J. Crop Hortic. Sci. 1995, 23, 31–37. [Google Scholar] [CrossRef] [Green Version]
- Warkentin, T.D.; Rashid, K.Y.; Xue, A.G. Fungicidal control of powdery mildew in field pea. Can. J. Plant Sci. 1996, 76, 933–935. [Google Scholar] [CrossRef]
- León, D.P.; Checa, Ó.E.; Obando, P.A. Inheritance of resistance of two pea lines to powdery mildew. Agron. J. 2020, 112, 2466–2471. [Google Scholar] [CrossRef]
- Harland, S.C. Inheritance of immunity to mildew in peruvian forms of Pisum sativum. Heredity 1948, 2, 263–269. [Google Scholar] [CrossRef] [Green Version]
- Bobkov, S.V.; Selikhova, T.N. Introgession of powdery mildew resistance into cultural pea from wild accession of P. fulvum. IOP Conf. Ser. Earth Environ. Sci. 2021, 650, 012091. [Google Scholar] [CrossRef]
- Sokhi, S.S.; Jhooty, J.S.; Bains, S.S. Resistance in pea against powdery mildew. Indian Phytopathol. 1979, 32, 571–574. [Google Scholar]
- Kumar, H.; Singh, R.B. Genetic analysis of adult plant resistance to powdery mildew in pea (Pisum sativum L.). Euphytica 1981, 30, 147–151. [Google Scholar] [CrossRef]
- Prasanth, K.; Varalakshmi, B.; Venugopalan, R.; Sriram, S. Screening of bitter gourd germplasm and advanced breeding lines against powdery mildew. Indian Phytopathol. 2019, 72, 15–22. [Google Scholar] [CrossRef]
- Gupta, V.K.; Rathore, P.K.; Singh, J.M. Quantitative genetic analysis of powdery mildew resistance in pea. In Proceedings of the European Association for Grain Legume Research, Copenhagen, Denmark, 9–13 July 1995; p. 202. [Google Scholar]
- Tiwari, K.R.; Penner, G.A.; Warkentin, T.D.; Rashid, K.Y. Pathogenic variation in Erysiphe pisi, the causal organism of powdery mildew of pea. Can. J. Plant Pathol. 1997, 19, 267–271. [Google Scholar] [CrossRef]
- Vaid, A.; Tyagi, P.D. Genetics of powdery mildew resistance in pea. Euphytica 1997, 96, 203–206. [Google Scholar] [CrossRef]
- Sharma, B. The Pisum genus has only one recessive gene for powdery mildew resistance. Pisum Genet. 2003, 35, 22–27. [Google Scholar]
- Janila, P.; Sharma, B. RAPD and SCAR markers for powdery mildew resistance gene er in pea. Plant Breed. 2004, 123, 271–274. [Google Scholar] [CrossRef]
- Ek, M.; Eklund, M.; Von Post, R.; Dayteg, C.; Henriksson, T.; Weibull, P.; Ceplitis, A.; Isaac, P.; Tuvesson, S. Microsatellite markers for powdery mildew resistance in pea (Pisum sativum L.). Hereditas 2005, 142, 86–91. [Google Scholar] [CrossRef] [PubMed]
- Pereira, G.; Leitão, J. Two powdery mildew resistance mutations induced by ENU in Pisum sativum L. affect the locus er1. Euphytica 2010, 171, 345–354. [Google Scholar] [CrossRef] [Green Version]
- Iglesias-García, R.; Rubiales, D.; Fondevilla, S. Penetration resistance to Erysiphe pisi in pea mediated by er1 gene is associated with protein cross-linking but not with callose apposition or hypersensitive response. Euphytica 2015, 201, 381–387. [Google Scholar] [CrossRef] [Green Version]
- Fondevilla, S.; Cubero, J.I.; Rubiales, D. Confirmation that the Er3 gene, conferring resistance to Erysiphe pisi in pea, is a different gene from er1 and er2 genes. Plant Breed. 2011, 130, 281–282. [Google Scholar] [CrossRef] [Green Version]
- Hückelhoven, R. Cell Wall–Associated mechanisms of disease resistance and susceptibility. Annu. Rev. Phytopathol. 2007, 45, 101–127. [Google Scholar] [CrossRef]
- Janila, P.; Sharma, B.; Mishra, S.K. Inheritance of powdery mildew resistance in pea (Pisum sativum L.). Indian J. Genet. 2001, 61, 129–131. [Google Scholar]
- Liu, S.M.; O’Brien, L.; Moore, S.G. A single recessive gene confers effective resistance to powdery mildew of field pea grown in northern New South Wales. Aust. J. Exp. Agric. 2003, 43, 373. [Google Scholar] [CrossRef]
- Sun, S.; Wang, Z.; Fu, H.; Duan, C.; Wang, X.; Zhu, Z. Resistance to powdery mildew in the pea cultivar Xucai 1 is conferred by the gene er1. Crop J. 2015, 3, 489–499. [Google Scholar] [CrossRef] [Green Version]
- Nisar, M.; Ghafoor, A. Linkage of a RAPD marker with powdery mildew resistance er-1 gene in Pisum sativum L. Russ. J. Genet. 2011, 47, 300–304. [Google Scholar] [CrossRef]
- Ali, S.M.; Sharma, B.; Ambrose, M.J. Current status and future strategy in breeding pea to improve resistance to biotic and abiotic stresses. Euphytica 1993, 73, 115–126. [Google Scholar] [CrossRef]
- Schroeder, W.T.; Providenti, R. Breakdown of the er resistance to powdery mildew in Pisum sativum. Phytopathology 1965, 55, 1075. [Google Scholar]
- Lahoz, E.; Carrieri, R.; Parisi, B.; Pentangelo, A.; Raimo, F. Overcoming of the resistance in resistant genotypes of dry pea (Pisum sativum) by an isolate of Erysiphe pisi in Italy. J. Plant Pathol. 2013, 95, 171–176. [Google Scholar] [CrossRef]
- Sun, S.; Deng, D.; Wang, Z.; Duan, C.; Wu, X.; Wang, X.; Zong, X.; Zhu, Z. A novel er1 allele and the development and validation of its functional marker for breeding pea (Pisum sativum L.) resistance to powdery mildew. Theor. Appl. Genet. 2016, 129, 909–919. [Google Scholar] [CrossRef]
- Sun, S.; Fu, H.; Wang, Z.; Duan, C.; Zong, X.; Zhu, Z. Discovery of a novel er1 allele conferring powdery mildew resistance in chinese pea (Pisum sativum L.) landraces. PLoS ONE 2016, 11, e0147624. [Google Scholar] [CrossRef]
- Martins, D.; de Araújo, S.S.; Rubiales, D.; Vaz Patto, M.C. Legume crops and biotrophic pathogen interactions: A continuous cross-talk of a multilayered array of defense mechanisms. Plants 2020, 9, 1460. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Jha, A.B.; Dubey, R.S.; Pessarakli, M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot. 2012, 2012, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Maranon, J. A biochemical study of resistance to mildew in Oenothera. Philipp. J. Sci. 1924, 24, 369–446. [Google Scholar]
- Soundhiriyan, V.; Kamalakannan, A.; Jeyakumar, P.; Paranidharan, V.; Latha, T.K.S. Morphology and biochemical parameters associated with powdery mildew resistance in mongbean. Green Farming 2018, 4, 704–709. [Google Scholar]
- Kalia, P.; Sharma, S.K. Biochemical genetics of powdery mildew resistance in pea. Theor. Appl. Genet. 1988, 76, 795–799. [Google Scholar] [CrossRef]
- Aly, A.A.; Mansour, M.T.M.; Mohamed, H.I. Association of increase in some biochemical components with flax resistance to powdery mildew. Gesunde Pflanz. 2017, 69, 47–52. [Google Scholar] [CrossRef]
- Sarhan, E.A.D.; Abd-Elsyed, M.H.F.; Ebrahiem, A.M.Y. Biological control of cucumber powdery mildew (Podosphaera xanthii) (Castagne) under greenhouse conditions. Egypt. J. Biol. Pest Control 2020, 30, 65. [Google Scholar] [CrossRef]
- Soliman, M.H.; El-Mohamedy, R.S.R. Induction of Defense-related physiological and antioxidant enzyme response against powdery mildew disease in okra (Abelmoschus esculentus L.) plant by using chitosan and potassium salts. Mycobiology 2017, 45, 409–420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohapatra, C.; Chand, R.; Navathe, S.; Sharma, S. Histo-chemical and biochemical analysis reveals association of er1 mediated powdery mildew resistance and redox balance in pea. Plant Physiol. Biochem. 2016, 106, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Curto, M.; Camafeita, E.; Lopez, J.A.; Maldonado, A.M.; Rubiales, D.; Jorrín, J.V. A proteomic approach to study pea (Pisum sativum) responses to powdery mildew (Erysiphe pisi). Proteomics 2006, 6, S163–S174. [Google Scholar] [CrossRef] [PubMed]
- Pazarlar, S.; Cetinkaya, N.; Bor, M.; Ozdemir, F. Ozone triggers different defence mechanisms against powdery mildew (Blumeria graminis DC. Speer f. sp. tritici) in susceptible and resistant wheat genotypes. Funct. Plant Biol. 2017, 44, 1016. [Google Scholar] [CrossRef]
- Singh, K.P.; Kumari, P.; Rai, P.K. Current status of the disease-resistant gene(s)/QTLs, and strategies for improvement in Brassica juncea. Front. Plant Sci. 2021, 12, 617405. [Google Scholar] [CrossRef]
- Agurto, M.; Schlechter, R.O.; Armijo, G.; Solano, E.; Serrano, C.; Contreras, R.A.; Zúñiga, G.E.; Arce-Johnson, P. RUN1 and REN1 pyramiding in grapevine (Vitis vinifera cv. Crimson Seedless) displays an improved defense response leading to enhanced resistance to powdery mildew (Erysiphe necator). Front. Plant Sci. 2017, 8, 758. [Google Scholar] [CrossRef] [Green Version]
- Noir, S.; Colby, T.; Harzen, A.; Schmidt, J.; Panstruga, R. A proteomic analysis of powdery mildew (Blumeria graminis f.sp. hordei) conidiospores. Mol. Plant Pathol. 2009, 10, 223–236. [Google Scholar] [CrossRef]
- Leach, M.D.; Klipp, E.; Cowen, L.E.; Brown, A.J.P. Fungal Hsp90: A biological transistor that tunes cellular outputs to thermal inputs. Nat. Rev. Microbiol. 2012, 10, 693–704. [Google Scholar] [CrossRef] [Green Version]
- Bhosle, S.M.; Makandar, R. Comparative transcriptome of compatible and incompatible interaction of Erysiphe pisi and garden pea reveals putative defense and pathogenicity factors. FEMS Microbiol. Ecol. 2021, 97, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Arthur, J.C.; Lich, J.D.; Aziz, R.K.; Kotb, M.; Ting, J.P.-Y. Heat Shock Protein 90 Associates with Monarch-1 and Regulates Its Ability to Promote Degradation of NF-κB-Inducing Kinase. J. Immunol. 2007, 179, 6291–6296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, S.; Ellwood, S.; Calis, O.; Patrick, E.; Li, T.; Coleman, M.; Turner, J.G. Broad-spectrum mildew resistance in arabidopsis thaliana mediated by RPW8. Science 2001, 291, 118–120. [Google Scholar] [CrossRef] [PubMed]
- Foster-Hartnett, D.; Danesh, D.; Peñuela, S.; Sharopova, N.; Endre, G.; Vandenbosch, K.A.; Young, N.D.; Samac, D.A. Molecular and cytological responses of Medicago truncatula to Erysiphe pisi. Mol. Plant Pathol. 2007, 8, 307–319. [Google Scholar] [CrossRef] [PubMed]
- Glazebrook, J. Genes controlling expression of defense responses in Arabidopsis—2001 status. Curr. Opin. Plant Biol. 2001, 4, 301–308. [Google Scholar] [CrossRef]
- Gjetting, T.; Carver, T.L.W.; Skøt, L.; Lyngkjær, M.F. Differential gene expression in individual papilla-resistant and powdery mildew-infected barley epidermal cells. Mol. Plant-Microbe Interact. 2004, 17, 729–738. [Google Scholar] [CrossRef] [Green Version]
- Jansen, M.; Schaffrath, U. The barley mutant emr2 shows enhanced resistance against several fungal leaf pathogens. Plant Breed. 2009, 128, 124–129. [Google Scholar] [CrossRef]
- Barilli, E.; Rubiales, D.; Gjetting, T.; Lyngkjaer, M.F. Differential gene transcript accumulation in peas in response to powdery mildew (Erysiphe pisi) attack. Euphytica 2014, 198, 13–28. [Google Scholar] [CrossRef]
- Sharma, G.; Aminedi, R.; Saxena, D.; Gupta, A.; Banerjee, P.; Jain, D.; Chandran, D. Effector mining from the Erysiphe pisi haustorial transcriptome identifies novel candidates involved in pea powdery mildew pathogenesis. Mol. Plant Pathol. 2019, 20, 1506–1522. [Google Scholar] [CrossRef] [Green Version]
- Humphry, M.; Reinstädler, A.; Ivanov, S.; Bisseling, T.; Panstruga, R. Durable broad-spectrum powdery mildew resistance in pea er1 plants is conferred by natural loss-of-function mutations in PsMLO1. Mol. Plant Pathol. 2011, 12, 866–878. [Google Scholar] [CrossRef]
- Pavan, S.; Schiavulli, A.; Appiano, M.; Marcotrigiano, A.R.; Cillo, F.; Visser, R.G.F.; Bai, Y.; Lotti, C.; Ricciardi, L. Pea powdery mildew er1 resistance is associated to loss-of-function mutations at a MLO homologous locus. Theor. Appl. Genet. 2011, 123, 1425–1431. [Google Scholar] [CrossRef]
- Bai, Y.; Pavan, S.; Zheng, Z.; Zappel, N.F.; Reinstädler, A.; Lotti, C.; De Giovanni, C.; Ricciardi, L.; Lindhout, P.; Visser, R.; et al. Naturally occurring broad-spectrum powdery mildew resistance in a central american tomato accession is caused by loss of MLO function. Mol. Plant-Microbe Interact. 2008, 21, 30–39. [Google Scholar] [CrossRef] [Green Version]
- Lyngkjær, M.F.; Newton, A.C.; Atzema, J.L.; Baker, S.J. The Barley mlo-gene: An important powdery mildew resistance source. Agronomie 2000, 20, 745–756. [Google Scholar] [CrossRef] [Green Version]
- Piffanelli, P.; Ramsay, L.; Waugh, R.; Benabdelmouna, A.; D’Hont, A.; Hollricher, K.; Jørgensen, J.H.; Schulze-Lefert, P.; Panstruga, R. A barley cultivation-associated polymorphism conveys resistance to powdery mildew. Nature 2004, 430, 887–891. [Google Scholar] [CrossRef] [Green Version]
- Santo, T.; Rashkova, M.; Alabaça, C.; Leitão, J. The ENU-induced powdery mildew resistant mutant pea (Pisum sativum L.) lines S(er1mut1) and F(er1mut2) harbour early stop codons in the PsMLO1 gene. Mol. Breed. 2013, 32, 723–727. [Google Scholar] [CrossRef]
- Ma, Y.; Coyne, C.J.; Main, D.; Pavan, S.; Sun, S.; Zhu, Z.; Zong, X.; Leitão, J.; McGee, R.J. Development and validation of breeder-friendly KASPar markers for er1, a powdery mildew resistance gene in pea (Pisum sativum L.). Mol. Breed. 2017, 37, 1–7. [Google Scholar] [CrossRef]
- Sun, S.; Deng, D.; Duan, C.; Zong, X.; Xu, D.; He, Y.; Zhu, Z. Two novel er1 alleles conferring powdery mildew (Erysiphe pisi) resistance identified in a worldwide collection of pea (Pisum sativum L.) germplasms. Int. J. Mol. Sci. 2019, 20, 5071. [Google Scholar] [CrossRef] [Green Version]
- Pavan, S.; Schiavulli, A.; Appiano, M.; Miacola, C.; Visser, R.G.F.; Bai, Y.; Lotti, C.; Ricciardi, L. Identification of a complete set of functional markers for the selection of er1 powdery mildew resistance in Pisum sativum L. Mol. Breed. 2013, 31, 247–253. [Google Scholar] [CrossRef]
- Sudheesh, S.; Lombardi, M.; Leonforte, A.; Cogan, N.O.I.; Materne, M.; Forster, J.W.; Kaur, S. Consensus genetic map construction for field pea (Pisum sativum L.), trait dissection of biotic and abiotic stress tolerance and development of a diagnostic marker for the er1 powdery mildew resistance gene. Plant Mol. Biol. Report. 2015, 33, 1391–1403. [Google Scholar] [CrossRef]
- Sun, S.; He, Y.; Dai, C.; Duan, C.; Zhu, Z. Two major er1 alleles confer powdery mildew resistance in three pea cultivars bred in Yunnan Province, China. Crop J. 2016, 4, 353–359. [Google Scholar] [CrossRef] [Green Version]
- Fu, H.N.; Sun, S.L.; Zhu, Z.D.; Duan, C.X.; Yang, X.M. CPhenotypic and genotypic identification of powdery mildew resistance in pea cultivars or lines from Canada. J. Plant Genet. Resour. 2014, 15, 1028–1033. [Google Scholar]
- Wang, Z.Y.; Fu, H.N.; Sun, S.L.; Duan, C.X.; Wu, X.F.; Yang, X.M.; Zhu, Z. Identification of powdery mildew resistance gene in pea line X9002. Acta Agron. Sin. 2015, 41, 515–523. [Google Scholar] [CrossRef]
- Marx, G.A. New linkage relations for chromosome III of Pisum. Pisum Newsl. 1971, 3, 18–19. [Google Scholar]
- Weeden NF, W.B. Linkage map for the garden pea Pisum sativum based on molecular markers. In Genetic Maps, 5th ed.; O’Brien, S.J., Ed.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 1990. [Google Scholar]
- Timmerman, G.M.; Frew, T.J.; Weeden, N.F.; Miller, A.L.; Goulden, D.S. Linkage analysis of er-1, a recessive Pisum sativum gene for resistance to powdery mildew fungus (Erysiphe pisi D.C.). Theor. Appl. Genet. 1994, 88, 1050–1055. [Google Scholar] [CrossRef]
- Dirlewanger, E.; Isaac, P.G.; Ranade, S.; Belajouza, M.; Cousin, R.; de Vienne, D. Restriction fragment length polymorphism analysis of loci associated with disease resistance genes and developmental traits in Pisum sativum L. Theor. Appl. Genet. 1994, 88, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Fondevilla, S.; Rubiales, D.; Moreno, M.T.; Torres, A.M. Identification and validation of RAPD and SCAR markers linked to the gene Er3 conferring resistance to Erysiphe pisi DC in pea. Mol. Breed. 2008, 22, 193–200. [Google Scholar] [CrossRef]
- Cobos, M.J.; Satovic, Z.; Rubiales, D.; Fondevilla, S. Er3 gene, conferring resistance to powdery mildew in pea, is located in pea LGIV. Euphytica 2018, 214, 203. [Google Scholar] [CrossRef]
- Tonguc, M.; Weeden, N. Identification and mapping of molecular markers linked to er1 gene in pea. J. Plant. Mol. Biol. Biotech. 2010, 1, 1–5. [Google Scholar]
- Tiwari, K.R.; Penner, G.A.; Warkentin, T.D. Identification of AFLP markers for powdery mildew resistance gene er2 in pea. Pisum Genet. 1999, 31, 27–29. [Google Scholar]
- Santos, C.; Polanco, C.; Rubiales, D.; Vaz Patto, M.C. The MLO1 powdery mildew susceptibility gene in Lathyrus species: The power of high-density linkage maps in comparative mapping and synteny analysis. Plant Genome 2021, 14. [Google Scholar] [CrossRef]
- Rispail, N.; Rubiales, D. Genome-wide identification and comparison of legume MLO gene family. Sci. Rep. 2016, 6, 32673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polanco, C.; Sáenz de Miera, L.E.; Bett, K.; Pérez de la Vega, M. A genome-wide identification and comparative analysis of the lentil MLO genes. PLoS ONE 2018, 13, e0194945. [Google Scholar] [CrossRef] [PubMed]
- Rubiales, D.; Osuna-Caballero, S.; González-Bernal, M.J.; Cobos, M.J.; Flores, F. Pea breeding lines adapted to autumn sowings in broomrape prone mediterranean environments. Agronomy 2021, 11, 769. [Google Scholar] [CrossRef]
- Shahid, M.; Shah, S.; Shah, A.; Ghufranulhaq; Ali, H.; Ishtiaq, S. Resistance in pea germplasm/lines to powdery mildew under natural conditions. Mycopath 2010, 8, 77–80. [Google Scholar]
- Pandey, K.K.; Pandey, P.K.; Kalloo, G.; Kumar, R.; Singh, B. Sources of resistance against powdery mildew of pea and its pathogen reaction in natural and artificial conditions. Veg. Sci. 1999, 26, 160–163. [Google Scholar]
- Azmat, M.A.; Khan, A.A.; Saeed, A.; Ashraf, M.; Niaz, S. Screening pea germplasm against Erysiphe polygoni for Disease Severity and Latent Period. Int. J. Veg. Sci. 2012, 18, 153–160. [Google Scholar] [CrossRef]
- Azmat, M.A.; Khan, A.A. Inheritance of er1-based broad-spectrum powdery mildew resistance in pea (Pisum sativum L.). Not. Bot. Horti Agrobot. Cluj-Napoca 2013, 41, 485. [Google Scholar] [CrossRef] [Green Version]
- Chaudhary, J.; Banyal, D.K. Evaluation of pea genotypes for resistance against powdery mildew caused by Erysiphe pisi. Indian Phytopathol. 2017, 70. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, K.R.; Penner, G.A.; Warkentin, T.D. Identification of coupling and repulsion phase RAPD markers for powdery mildew resistance gene er-1 in pea. Genome 1998, 41, 440–444. [Google Scholar] [CrossRef]
- Loridon, K.; McPhee, K.; Morin, J.; Dubreuil, P.; Pilet-Nayel, M.L.; Aubert, G.; Rameau, C.; Baranger, A.; Coyne, C.; Lejeune-Hènaut, I.; et al. Microsatellite marker polymorphism and mapping in pea (Pisum sativum L.). Theor. Appl. Genet. 2005, 111, 1022–1031. [Google Scholar] [CrossRef]
- Pereira, G.; Marques, C.; Ribeiro, R.; Formiga, S.; Dâmaso, M.; Tavares Sousa, M.; Farinhó, M.; Leitão, J.M. Identification of DNA markers linked to an induced mutated gene conferring resistance to powdery mildew in pea (Pisum sativum L.). Euphytica 2010, 171, 327–335. [Google Scholar] [CrossRef]
- Srivastava, R.K.; Mishra, S.K.; Singh, A.K.; Mohapatra, T. Development of a coupling-phase SCAR marker linked to the powdery mildew resistance gene “er1” in pea (Pisum sativum L.). Euphytica 2012, 186, 855–866. [Google Scholar] [CrossRef] [Green Version]
- Fondevilla, S.; Carver, T.L.W.; Moreno, M.T.; Rubiales, D. Identification and characterization of sources of resistance to Erysiphe pisi Syd. in Pisum spp. Plant Breed. 2007, 126, 113–119. [Google Scholar] [CrossRef]
- Kosterin, O.E. Prospects of the use of wild relatives for pea breeding. Russ. J. Genet. Appl. Res. 2016, 6, 233–243. [Google Scholar] [CrossRef]
- Smýkal, P.; Coyne, C.J.; Ambrose, M.J.; Maxted, N.; Schaefer, H.; Blair, M.W.; Berger, J.; Greene, S.L.; Nelson, M.N.; Besharat, N.; et al. Legume crops phylogeny and genetic diversity for science and breeding. CRC Crit. Rev. Plant Sci. 2015, 34, 43–104. [Google Scholar] [CrossRef] [Green Version]
- Bogdanova, V.S.; Galieva, E.R. Meiotic abnormalities as expression of nuclear-cytoplasmic incompatibility in crosses of Pisum sativum subspecies. Russ. J. Genet. 2009, 45, 623–627. [Google Scholar] [CrossRef]
- Bogdanova, V.S.; Kosterin, O.E.; Yadrikhinskiy, A.K. Wild peas vary in their cross-compatibility with cultivated pea (Pisum sativum subsp. sativum L.) depending on alleles of a nuclear–cytoplasmic incompatibility locus. Theor. Appl. Genet. 2014, 127, 1163–1172. [Google Scholar] [CrossRef]
- Bogdanova, V.S.; Kosterin, O.E. Hybridization barrier between Pisum fulvum Sibth. et Smith and P. sativum L. is partly due to nuclear-chloroplast incompatibility. Pisum Genet. 2007, 39, 8–9. [Google Scholar]
- Bogdanova, V.S.; Galieva, E.R.; Kosterin, O.E. Genetic analysis of nuclear-cytoplasmic incompatibility in pea associated with cytoplasm of an accession of wild subspecies Pisum sativum subsp. elatius (Bieb.) Schmahl. Theor. Appl. Genet. 2009, 118, 801–809. [Google Scholar] [CrossRef]
- Bogdanova, V.S.; Galieva, E.R.; Yadrikhinskiy, A.K.; Kosterin, O.E. Inheritance and genetic mapping of two nuclear genes involved in nuclear–cytoplasmic incompatibility in peas (Pisum sativum L.). Theor. Appl. Genet. 2012, 124, 1503–1512. [Google Scholar] [CrossRef] [PubMed]
- Bogdanova, V.S.; Zaytseva, O.O.; Mglinets, A.V.; Shatskaya, N.V.; Kosterin, O.E.; Vasiliev, G.V. Nuclear-cytoplasmic conflict in pea (Pisum sativum L.) is associated with nuclear and plastidic candidate genes encoding Acetyl-CoA carboxylase subunits. PLoS ONE 2015, 10, e0119835. [Google Scholar] [CrossRef] [Green Version]
- Hardie, D.C.; Baker, G.J.; Marshall, D.R. Field screening of Pisum accessions to evaluate their susceptibility to the pea weevil (Coleoptera: Bruchidae). Euphytica 1995, 84, 155–161. [Google Scholar] [CrossRef]
- Johnson, R. Practical breeding for durable resistance to rust diseases in self-pollinating cereals. Euphytica 1978, 27, 529–540. [Google Scholar] [CrossRef]
- Prasanna, H.C.; Sinha, D.P.; Rai, G.K.; Krishna, R.; Kashyap, S.P.; Singh, N.K.; Singh, M.; Malathi, V.G. Pyramiding Ty-2 and Ty-3 genes for resistance to monopartite and bipartite tomato leaf curl viruses of India. Plant Pathol. 2015, 64, 256–264. [Google Scholar] [CrossRef]
- Sagar, V.; Dhawan, G.; Gopala Krishnan, S.; Vinod, K.K.; Ellur, R.K.; Mondal, K.K.; Rathour, R.; Prakash, G.; Nagarajan, M.; Bhowmick, P.K.; et al. Marker assisted introgression of genes governing resistance to bacterial blight and blast diseases into an elite Basmati rice variety, ‘Pusa Basmati 1509’. Euphytica 2020, 216, 16. [Google Scholar] [CrossRef]
- Villegas-Fernández, Á.M.; Amarna, A.A.; Moral, J.; Rubiales, D. Crop diversification to control powdery mildew in pea. Agronomy 2021, 11, 690. [Google Scholar] [CrossRef]
- Pavan, S.; Jacobsen, E.; Visser, R.G.F.; Bai, Y. Loss of susceptibility as a novel breeding strategy for durable and broad-spectrum resistance. Mol. Breed. 2010, 25, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Kieu, N.P.; Lenman, M.; Wang, E.S.; Petersen, B.L.; Andreasson, E. Mutations introduced in susceptibility genes through CRISPR/Cas9 genome editing confer increased late blight resistance in potatoes. Sci. Rep. 2021, 11, 4487. [Google Scholar] [CrossRef]
- Langner, T.; Kamoun, S.; Belhaj, K. CRISPR Crops: Plant genome editing toward disease resistance. Annu. Rev. Phytopathol. 2018, 56, 479–512. [Google Scholar] [CrossRef] [Green Version]
- Speulman, E.; Metz, P.L.J.; van Arkel, G.; te Hekkert, B.L.; Stiekema, W.J.; Pereira, A. A Two-component enhancer-inhibitor transposon mutagenesis system for functional analysis of the Arabidopsis genome. Plant Cell 1999, 11, 1853–1866. [Google Scholar] [CrossRef] [Green Version]
- Colbert, T.; Till, B.J.; Tompa, R.; Reynolds, S.; Steine, M.N.; Yeung, A.T.; McCallum, C.M.; Comai, L.; Henikoff, S. High-throughput screening for induced point mutations. Plant Physiol. 2001, 126, 480–484. [Google Scholar] [CrossRef]
- Schenke, D.; Cai, D. Applications of CRISPR/Cas to improve crop disease resistance: Beyond inactivation of susceptibility factors. iScience 2020, 23, 101478. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Bai, Y.; Wu, G.; Zou, S.; Chen, Y.; Gao, C.; Tang, D. Simultaneous modification of three homoeologs of TaEDR1 by genome editing enhances powdery mildew resistance in wheat. Plant J. 2017, 91, 714–724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wan, D.-Y.; Guo, Y.; Cheng, Y.; Hu, Y.; Xiao, S.; Wang, Y.; Wen, Y.-Q. CRISPR/Cas9-mediated mutagenesis of VvMLO3 results in enhanced resistance to powdery mildew in grapevine (Vitis vinifera). Hortic. Res. 2020, 7, 116. [Google Scholar] [CrossRef] [PubMed]
- Santillán Martínez, M.I.; Bracuto, V.; Koseoglou, E.; Appiano, M.; Jacobsen, E.; Visser, R.G.F.; Wolters, A.-M.A.; Bai, Y. CRISPR/Cas9-targeted mutagenesis of the tomato susceptibility gene PMR4 for resistance against powdery mildew. BMC Plant Biol. 2020, 20, 284. [Google Scholar] [CrossRef]
- Hasley, J.A.R.; Navet, N.; Tian, M. CRISPR/Cas9-mediated mutagenesis of sweet basil candidate susceptibility gene ObDMR6 enhances downy mildew resistance. PLoS ONE 2021, 16, e0253245. [Google Scholar] [CrossRef] [PubMed]
- Boller, T.; He, S.Y. Innate Immunity in Plants: An arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science 2009, 324, 742–744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Hoorn, R.A.L.; Kamoun, S. From Guard to Decoy: A new model for perception of plant pathogen effectors. Plant Cell 2008, 20, 2009–2017. [Google Scholar] [CrossRef] [Green Version]
- Hoefle, C.; Hückelhoven, R. Enemy at the gates: Traffic at the plant cell pathogen interface. Cell. Microbiol. 2008, 10, 2400–2407. [Google Scholar] [CrossRef]
- Mackey, D.; Belkhadir, Y.; Alonso, J.M.; Ecker, J.R.; Dangl, J.L. Arabidopsis RIN4 is a target of the type III virulence effector AvrRpt2 and modulates RPS2-Mediated resistance. Cell 2003, 112, 379–389. [Google Scholar] [CrossRef] [Green Version]
Scale | Description (% Infection) | Marked as Resistant | Reference |
---|---|---|---|
0–9 | 0 = No infection 1 = 0.1–5%; 2 = 5.1–10%; 3 = 10.1–17%; 4 = 17.1–25%; 5 = 25.1–50%; 6 = 50.1–75%; 7 = 75.1–90%; 8 = 90.1–95%; 9 = 95.1–100% | 0.1–10% = R; 10.1–30% = MR | [32] |
0–10 | 0 = No infection; 1 = 5%; 2 = 10%; 3 = 15%; 4 = 40%; 5 = 33%; 6 = 46%; 7 = 60%; 8 = 73%; 9 = 86%; 10 = 100% | Not mentioned | [33] |
0–9 | 1 = < 1%; 2 = 1–5%; 3 = 5–10%; 4 = 10–20%; 5 = 20–40%; 6 = 40–60%; 7 = 60–80%; 8 = 80–90%; 9 = > 90% | 0–4 = R | [34] |
1–5 | 1 = 1–5%; 2 = 6–20%; 3 = 21–30%; 4 = 31–75%; 5 = 76–100% | 1–2 = R | [20] |
0–4 | 0 = No mycelium growth; 1 = Sparse mycelium growth with little sporulation; 2 = Macroscopically: Slight mycelium growth; Microscopically: Slight to moderate mycelium growth with conidiophores; 3 = Macroscopically: Moderate mycelium growth; Microscopically: Moderate mycelium growth with moderate to heavy sporulation, 4 = Abundant mycelium growth and sporulation both micro- and macroscopically | 0–2 = R | [23] |
0–5 | 0 = No infection; 0.5 = < 10%; 1 = 11–20%; 1.5 = 21–30%; 2 = 31–40%; 2.5 = 41–50%; 3 = 51–60%; 3.5 = 61–70%; 4 = 71–80%; 4.5 = 81–90%; 5 = 91–100% | ≤ 20% = R | [35] |
Cross | Generations | Genetics | Country | Reference |
---|---|---|---|---|
Unknown | F2 | Cumulative factors for susceptibility | Sweden | [19] |
Huancabamba × First of All | F2, F3 | Single recessive gene | Peru | [36] |
(B5115, B5243, B5064, B5806, PI2106613, PI280064, 46C, R300, NF, 477, 245, Early December, Satha, Bonneville, 31) × S-14 | F2 and F3 | Single recessive gene; duplicate recessive genes | India | [39] |
Lincoln × (Wisconsin-7104, HPPC-63, HPPC-95, DPP-54, DPP-26 and S-143) | F2 and BCs, BCR | Single recessive gene | India | [43] |
Radley × (JI 1559, JI 2480), JI 1758 × JI 2302, JI 1951 × JI 1648, JI 82 × JI 1648, Highlight × (JI 2302, JI 1559, JI 1210, JI 2480), JI 210 × JI 2302, JI 2480 × JI 1559 | F2, F3 | Single recessive gene | Canada | [30,42] |
P 1746 × MD 1-24, P 1744 × P 1760, P 1743 × HFP 4, HFP 4 × P1881, P 1744 × P1757, P 1742 × PG3, P 1746-8-1 × Pusa 10, P 1760 × Pusa 10, P 1746 × P 1746-1-1, P 1773-4 × P 1760 | F2 | Single recessive gene | India | [51] |
M275-5-1 × Bohatyr, M275-5-1 × Jupiter, Green feast × M275-5-1, Traper × ATC1121, M275-5-1 × ATC1121 | F2, F3 | Single recessive gene | Australia | [52] |
C2 (P. fulvum line) × Messire | F2, F3 | Single dominant gene | Spain | [9] |
Qizhen 76 × Xucai 1, Bawan 6 × Xucai 1, and Xucai 1 × Bawan 6 | F2, and F2:3 | Single recessive gene | China | [53] |
Faloon × 11760-3ER | F2 | Single recessive gene | Pakistan | [54] |
Andina × ILS6527, San Isidro × ILS6527, Andina × UN6651, San Isidro × UN6651 | F2, BCr, and BCs | Single recessive gene | Colombia | [35] |
Stabil × i-6098881 | F2 | Single dominant gene | Russia | [37] |
Species | Response | Gene | ||
---|---|---|---|---|
er1 | er2 | Er3 | ||
E. pisi | Temperature response | Temp Independent [27] | Temp Dependent [27] | Temp Independent [9] |
Breakdown | Yes [22,42,56] | Yes [28] | Not Reported | |
E. baeumleri | Temperature response | Not Reported | Not Reported | Not Reported |
Breakdown | Yes [20] | Not Reported | Not Reported | |
E. trifolii | Temperature response | Temp Independent [22] | Temp independent [22] | Temperature dependent [22] |
Breakdown | Yes [20,21,22] | High resistant response [22] | Yes [22] |
er1 Gene/Allele | Accession/Genotype | Mutational Event at PsMLO1 | Reference |
---|---|---|---|
er1-1 | JI 1559 (Mexique 4), Yunwan 8 | C680G | [30,58,84] |
er1-1 | Tara and Cooper | - | [58,95] |
er1-1 (er1 mut1) | Induced mutation (Solara) | C/G transversion in exon 6 | [47,89] |
er1-2 | JI 2302 (Stratagem) | Insertion of unknown size and identity | [30,84] |
er1-2 | G0006273 (X9002) | Insertion of unknown size and identity | [91,96] |
er1-2 | Xucai 1 | 129-bp deletion and 155-& 220-bp insertions | [94] |
er1-2 | Yunwan 21, Yunwan 23 | -do- | [94] |
er1-2 | G0005576 (Wandou) | -do- | [59] |
er1-3 | JI210 | ΔG at position 862 (exon 8) | [84] |
er1-4 | JI 1951/YI (landrace) | ΔA91 (frameshift) | [30,84] |
er1-5 | ROI3/02 | G→A at position 570 (exon 5) | [85,92] |
er1-6 | G0001778 (landrace) | Point mutation (T→ C) at position 1121 (exon 11) | [59] |
er1-6 | G0002235 | -do- | [91] |
er1-6 | G0002848 | -do- | [91] |
er1-7 | DDR-11 | 10-bp deletion (TCATGTTATT) at exon 1 (111-120) of PsMLO1 | [94] |
er1-7 | G0003895, G0003974 | 10-bp deletion (TCATGTTATT) at exon 1 of PsMLO1(111-120) and16-bp (CTCATCTTCCTCCAGG) deletion at position 776–792; and 16-bp (AATTTTTCTGTTTCAG) insertion at position 1171 | [58] |
er1-7 | G0003931 | 10-bp deletion (TCATGTTATT) at exon 1 of PsMLO1(111-120) and 5-bp (GTTAG) deletion at position 700–704 | [58] |
er1-7 | G0003936 | - | [91] |
er1-7 | G0003899; G0003958 (DMR-26); G0003967 | - | [91] |
er1-7 | G0004394 | - | [91] |
er1-7 | G0003975 | - | [91] |
er1-8 | G0004389 | 3-bp (GTG) deletion to positions 1339–1341 in exon 15 | [91] |
er1-9 | G0004400 | 1-bp (T) deletion | [91] |
er1-10 (er1mut2) | Induced mutation Frilene | G/A transition in exon 10 | [47,89] |
er1 ** (er1-11) | Yarrum and ps1771 | 2-bp insertion in intron 14 | [93] |
Gene | Location | Reference |
---|---|---|
er1 | LGVI | [45,46,84,94,96,99,100,103] |
er2 | LGIII | [28,104] |
Er3 | LGIV | [102] |
Immune/Resistant Accessions | Gene | Controlled Screening | Field Screening | Reference |
---|---|---|---|---|
SVP951, SVP952 | er2 | - | - | [55] |
JI2480 | er2 | Yes | Yes | [28,40,62] |
Highlight, AC Tamor, Tara, JI210, JI1951, JI82, JI1210, JI 2302 | er1 | Yes | Yes | [30,42] |
Wisconsin-7104, HPPC-63, HPPC-95, DPP-26, DPP-54, S-143, Mexique-4, SVP-950, P6588 | - | Yes | No | [43] |
JP501A/2, NDVP-8, PMR-20 | - | - | Yes | [110] |
P1746, P1760, HFP4, P1442 (IC37255), P1746-8-1, P1779-4, P1746-24-1 | er * | No | Yes | [51] |
Glenroy, Kiley, Mukta, M257-3-6, M257-5-1, PSI11, ATC1181 | - | No | Yes | [52] |
Fallon, PS99102238, PS0010128 | - | No | Yes | [31] |
er1mut1 (mutant from Solara), er1mut2 (mutant from Frilene) | er1 | Yes | Yes | [47] |
Highlight, Mozart, AC Melfort, Fallon, Joell, Lifter, Franklin, Cebeco 1171, Tudor (Cebeco 4119), Cooper (Cebeco 1081), Lu 390—R2, SGL 1977, SGL 2024, SGL 444/2185, Carneval R, Consort R | er1 | Yes | Yes | [20] |
9057, 9370, 9375, 10609, 10612, 18293, 18412, 19598, 19611, 19616, 19727, 19750, 19782, 20126, 20152, 20171, It-96, No. 267, No. 380 | - | - | - | [111] |
IC208366, IC208378, IC218988, IC267142, IC278261 | - | Yes | Yes | [23] |
It-96, No. 267, JI2302 | er1 | Yes | Yes | [112] |
Alaska, AC Tomour, Arka Ajit, Angoori, CHP-1 C-96, C-778, DAP-2, HUVP-3, JP-15, JP-20, JP-141, JP-625, Punjab -89, PMR-4, PMR-62, PMVAR-1, VRP-22, VRPMR-9, VRPMR-11, KTP-8; VP-233, JM-5, JP-501A/2, E-4, Vasundhra, JP-825 | - | Yes | Yes | [29] |
Arka Priya, Arka Pramod, Arka Ajit, IIHR 2-1, IPS-3 | er1 | No | Yes | [24] |
KPMR-642, KPMR-516, KPMR-497, KPMR-557, VRPMR- 11 | er1 | Yes | Yes | [68] |
HFPU, P-1797, P-1783, P-1052, HFP-7, HFP-8, P-1808, P-1820, P-1813, P-1377, P-1422-1, P-1811, IPF-99-25, KMNR-400, LFP-566, LFP-569, LFP-552, LFP-573, JP-501-A/2, PMR-21, KMNR-894, P-1280-4, P-1436-9, P-200-11, IPFD-99-13, HVDP-15, DPP-43-2, LFP-517, LFP-570, JP Ajjila, JP-15 | - | Yes | Yes | [113] |
Kashi Samridhi, VRPMR-10 | er1 | No | Yes | [2] |
ILS6527, UN6651 | er1 | No | Yes | [35] |
P660-4 (IFPI3261) | Er3 | Yes | Yes | [9] |
i-609881 | ** Er3? | Yes | - | [37] |
Primer/Locus | Sequence | Distance (cM) | Marker | Gene | MP | Approach | References |
---|---|---|---|---|---|---|---|
p236 | RFLP is restriction enzyme-based marker system | 9.8 | RFLP | Er | F2 | - | [100] |
pI49 | RFLP is restriction enzyme-based marker system | 18.0 | RFLP | er1 | RILS | BSA | [99] |
pID18 | RFLP is restriction enzyme-based marker system | 8.7 | RFLP | er1 | RILS | BSA | [99] |
PD 10 | 5′-GGTCTACACC-3′ | 2.1 | RAPD | er1 | RILS | BSA | [99] |
ScOPD10650 a | (F) 5′-GGTCTACACCTCATATCTTGATGA-3′ (R) 5′-GGTCTACACCTAAACAGTGTCCGT-3′ | 2.1 | SCAR | er1 | RILS | BSA | [99] |
OPL-6 | 5′-GAGGGAAGAG-3′ | 2.0 | RAPD | er1 | F3 | BSA | [114] |
OPE-16 | 5′-GGTGACTGTG-3′ | 4.0 | RAPD | er1 | F3 | BSA | [114] |
Sc-OPE-161600 b | (F) 5′-GGTGACTGTGGAATGACAAA-3′ (R) 5′-GGTGACTGTGACAATTCCAG-3′ | 4.0 | SCAR | er1 | F3 | BSA | [114] |
@Sc-OPO-181200 | (F) 5′-CCCTCTCGCTATCCAATCC-3′ (R) 5′-CCTCTCGCTATCCGGTGTG-3′ | - | SCAR | er1 | F3 | BSA | [114] |
OPO-02 | 5′-ACGTAGCGTC-3′ | 4.5 | RAPD | er1 | NILs | - | [45] |
OPU-17 | 5′-ACCTGGGGAG-3′ | 10.3 | RAPD | er1 | NILs | - | [45] |
ScOPD 10650 a | (F) 5′-GGTCTACACCTCATATCTTGATGA-3′ (R) 5′-GGTCTACACCTAAACAGTGTCCGT-3′ | 3.4 | SCAR | er1 | NILs | - | [45] |
A5 c | (F) 5′-GTAAAGCATAAGGGGATTCTCAT-3′ (R) 5′-CAGCTTTTAACTCATCTGACACA-3′ | 20.9 | SSR | er1 | F2 | NA | [115] |
PSMPSAD60 d | (F) 5′-CTGAAGCACTTTTGACAACTAC-3′ (R) 5′-ATCATATAGCGACGAATACACC-3′ | 10.4 | SSR | er1 | F2 | BSA | [46] |
PSMPSAA374e | (F) 5′-GTCAATATCTCCAATGGTAACG-3′ (R) 5′-GCATTTGTGTAGTTGTAATTTCAT-3′ | 11.6 | SSR | er1 | F2 | BSA | [46] |
PSMPA5 c | (F) 5′-GTAAAGCATAAGGGGATTCTCAT-3′ (R) 5′-CAGCTTTTAACTCATCTGACACA-3′ | 14.9 | SSR | er1 | F2 | BSA | [46] |
PSMPSAA369 | (F) 5′-CCCTTCGCACACCATTCTA-3′ (R) 5′-AGTCGTTTTGGAGATCTGTTCA-3′ | 24.1 | SSR | er1 | F2 | BSA | [46] |
PSMPSAD51 | (F) 5′-ATGAAGTAGGCATAGCGAAGAT-3′ (R) 5′-GATTAAATAAAGTTCGATGGCG-3′ | 25.8 | SSR | er1 | F2 | BSA | [46] |
OPWO4_637 | 5′-CAGAAGCGGA-3′ | - | RAPD | Er3 | F2 | BSA | [101] |
OPAB01_874 | 5′-CCGTCGGTAGT-3′ | 2.8 | RAPD | Er3 | F2 | BSA | [101] |
SCAB1 874 | (F) 5′-CCGTCGGTAGTAAAAAAAACTA-3′ (R) 5′-CCGTCGGTAGCCACACCA-3′ | 2.8 | SCAR | Er3 | F2 | BSA | [101] |
ScW4637 | (F) 5′-CAGAAGCGGATGAGGCGGA-3′ (R) 5′-CAGAAGCGGATACAGTACTAAC-3′ | - | SCAR | Er3 | F2 | BSA | [101] |
ScX171400 | (F) 5′-GGACCAAGCTCG GATCTTTC-3′ (R) 5′-GACACG GACCCAATGACATC-3′ | 2.6 | SCAR | er2 | F2 | BSA | [28] |
ScOPO061100y | (F) 5′-CCCCATGTTAGAACCTTGCA-3′ (R) 5′-ACGGGAAGGTCTGACAGTAT-3′ | 0.5 | SCAR | er1 | NILs | BSA | [116] |
ScOPT16480 | (F) 5′-GGGCAGAATCAGCTGAGCTC-3′ (R) 5′-GAACAAGGAGAAGAAGAGG-3′ | 3.3 | SCAR | er1 | NILs | BSA | [116] |
ScAGG/CAA125 | (F) 5′-GAATTCAGGAACATAGCTTC-3′ (R) 5′-CAAGCTAAAAGTCAGAAGAT-3′ | 5.5 | SCAR | er1 | NILs | BSA | [116] |
ScOPE16 b | (F) 5′-GGTGACTGTGGAATGACAAA-3′ (R) 5′-GGTGACTGTGACAATTCCAG-3′ | 9.2 | SCAR | er1 | NILs | BSA | [116] |
A5 c | (F) 5′-GTAAAGCATAAGGGGATTCTCAT-3′ (R) 5′-CAGCTTTTAACTCATCTGACACA-3′ | 23.0 | SSR | er1 | NILs | BSA | [116] |
BC210 | - | 8.2 | RAPD/SCAR | er1 | - | - | [103] |
OPB18430 | 5′-CCACAGCAGT-3′ | 11.2 | RAPD | er1 | F2 | - | [54] |
ScOPX04880 | (F) 5′-CCGCTACCGATGTTATGTTTG-3′ (R) 5′-CCGCTACCGAACTGGTT GGA-3′ | 0.6 | SCAR | er1 | NILs | BSA | [117] |
ScOPD 10650 a | (F) 5′-GGTCTACACCTCATATCTTGATGA-3′ (R) 5′-GGTCTACACCTAAACAGTGTCCGT-3′ | 2.2 | SCAR | er1 | NILs | BSA | [117] |
AD60 d | (F) 5′-CTGAAGCACTTTTGACAACTAC-3′ (R) 5′-ATCATATAGCGACGAATACACC-3′ | 9.9 *, 8.7 ** | SSR | er1 | F2 | BSA | [53] |
c5DNAmet | (F) 5′-TTCTTACTGTTCGTGAATGCGCC-3′ (R) 5′-GCCCTAATCCTCTAATTGGCGCTC-3′ | 15.4 *, 8.1 ** | SSR | er1 | F2 | BSA | [53] |
AD61 | (F) 5′-CTCATTCAATGATGATAATCCTA-3′ (R) 5′-ATGAGGTACTTGTGTGAGATAAA-3′ | 0.39 | SSR | Er3 | F2 | BSA | [102] |
Accessions | Disease Score | PM Isolate | Genetics (Gene) | Mapping Population (Generation) | Nearest Marker (Linkage Distance in cM) | Reference |
---|---|---|---|---|---|---|
C2 (P660-4, P. fulvum) | R* | CO-01 | SDG (Er3) | C2 × Messire (F2 & F2:3) | SCAB1874 (2.8 cM) | [9,101] |
Eritreo (breeding line C2) | R* | NP | SDG (Er3) | C2 × Messire (F2) | AD61 (0.39 cM) | [102] |
Xucai 1 | R* | EPBJ | SRG (er1-2) | Xucai1 × Bawan6 (F2); | AD60 (9.9 cM) and c5DNAmet (15.4) | [53] |
Xucai 1 | R* | EPBJ | SRG (er1-2) | Qizhen76 × Xucai1 (F2) | AD60 (8.7 cM) and c5DNAmet (8.1 cM) | [53] |
G0006273 (X9002) | I (0) | EPYN | SRG (er1-2) | Bawan 6 × X9002 (F2) | AD60 (11.9 cM), c5DNAmet (9.0 cM); PsMLO1-650 (FM) | [96] |
G0001778 (Dabaiwandou), G0001752, G0001763; G0001764; G0001767, G0001768; G0001777; G0001778; G0001780; G0003824; G0003825 and G0003826 | I (0) | EPYN | SRG (er1-6) | G0001778 × Bawan 6 (F2 and F2:3) | SNP1121 (FM); AD60 (8.8 cM) and c5DNAmet (22.8 cM) | [59] |
DDR-11 | I (0) | EPYN | SRG (er1-7) | DDR-11 × Bawan (F2 & F2:3) | ScOPD10-650 (8.3 cM) PSMPSAD60 (4.2 cM); ScOPE16-1600 (21.4 cM); PSMPSA5 (9.5 cM); c5DNAmet (26.2 cM) | [58] |
G0004389 | I (0) | EPYN | SRG (er1-8) | WSU 28 × G0004389 (F2 & F2:3) | c5DNAmet (9.6 cM); AA200 (3.5) | [91] |
G0004400 | I (0) | EPYN | SRG (er1-9) | Bawan6 × G0004400 (F2 & F2:3) | PSMPSAD51 (12.2 cM); ScOPX04-880 (4.2 cM) | [91] |
Yarrum and ps1771 | R* | NM | SRG (er1-11) | Kaspa × Yarrum; Kaspa × ps1771 (RIL) | AB71 (4.6 cM) and AD59 (4.3 cM) | [93,115] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Devi, J.; Mishra, G.P.; Sagar, V.; Kaswan, V.; Dubey, R.K.; Singh, P.M.; Sharma, S.K.; Behera, T.K. Gene-Based Resistance to Erysiphe Species Causing Powdery Mildew Disease in Peas (Pisum sativum L.). Genes 2022, 13, 316. https://doi.org/10.3390/genes13020316
Devi J, Mishra GP, Sagar V, Kaswan V, Dubey RK, Singh PM, Sharma SK, Behera TK. Gene-Based Resistance to Erysiphe Species Causing Powdery Mildew Disease in Peas (Pisum sativum L.). Genes. 2022; 13(2):316. https://doi.org/10.3390/genes13020316
Chicago/Turabian StyleDevi, Jyoti, Gyan P. Mishra, Vidya Sagar, Vineet Kaswan, Rakesh K. Dubey, Prabhakar M. Singh, Shyam K. Sharma, and Tusar K. Behera. 2022. "Gene-Based Resistance to Erysiphe Species Causing Powdery Mildew Disease in Peas (Pisum sativum L.)" Genes 13, no. 2: 316. https://doi.org/10.3390/genes13020316
APA StyleDevi, J., Mishra, G. P., Sagar, V., Kaswan, V., Dubey, R. K., Singh, P. M., Sharma, S. K., & Behera, T. K. (2022). Gene-Based Resistance to Erysiphe Species Causing Powdery Mildew Disease in Peas (Pisum sativum L.). Genes, 13(2), 316. https://doi.org/10.3390/genes13020316