Physio-Biochemical Integrators and Transcriptome Analysis Reveal Nano-Elicitation Associated Response during Dendrocalamus asper (Schult. and Schult. F.) Backer ex K. Heyne Micropropagation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material, Treatment Conditions and Morphological Analysis
2.2. Estimation of Total Chlorophyll, Soluble Sugar, Malondialdehyde Content, Phenolics Contents and Antioxidant Enzyme Assay
2.3. RNA Isolation, Library Construction, Illumina Sequencing, Transcriptome Assembly and Annotation
2.4. Differential Expression Analysis
2.5. Functional Annotation and Pathway Analysis
2.6. Statistical Analysis
3. Results
3.1. Shoot Length and Total Biomass Increased in Plants Treated with Citrate and CTAB-AuNPs
3.2. Photosynthetic Pigment and Total Soluble Sugar Contents Increased after AuNPs-Treatment
3.3. Total Phenolics, MDA and SOD Activity Increased after AuNPs Treatment
3.4. Transcriptome Analysis
3.5. Differentially Expressed Genes after Nano-Elicitation
3.6. Functional Annotation and GO Analysis of Growth Responsive DEGs
3.7. Analysis of Metabolic Pathways Triggered by AuNP Treatments
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liese, W.; Köhl, M. Bamboo. The Plant and Its Uses; Springer: Cham, Switzerland, 2015. [Google Scholar] [CrossRef]
- Sun, C.; Song, R.; Zhou, J.; Jia, Y.; Lu, J. Fermented bamboo fiber improves productive performance by regulating gut microbiota and inhibiting chronic inflammation of sows and piglets during late gestation and lactation. Microbiol. Spectr. 2023, 11, e04084-22. [Google Scholar] [CrossRef] [PubMed]
- Gusmiaty, R.M.; Larekeng, S.H.; Setiawan, E. The optimization of in vitro micropropagation of betung bamboo (Dendrocalamus asper backer) by medium concentrations and plant growth regulators. IOP Conf. Ser. Earth Environ. Sci. 2020, 575, 12024. [Google Scholar] [CrossRef]
- Zang, Q.; Liu, Q.; Zhuge, F.; Wang, X.; Lin, X. In vitro regeneration via callus induction in Dendrocalamus asper (Schult.) Backer. Propag. Ornam. Plants 2019, 19, 66–71. Available online: http://www.journal-pop.org/2019_19_3_ (accessed on 16 June 2022).
- Gonçalves, D.S.; Souza, D.M.S.C.; Molinari, L.V.; Avelar, M.L.M.; de Carvalho, D.; Teixeira, G.L.; Brondani, G.E. Clonal microplant production, morphological evaluation and genetic stability of Dendrocalamus asper (Schult. & Schult.) Backer ex. K. Heyneke. Nativa 2023, 11, 01–09. [Google Scholar] [CrossRef]
- Karimi, J.; Mohsenzadeh, S. Effects of silicon oxide nanoparticles on growth and physiology of wheat seedlings. Russ. J. Plant Physiol. 2016, 63, 119–123. [Google Scholar] [CrossRef]
- Emamverdian, A.; Ding, Y.; Mokhberdoran, F.; Ahmad, Z.; Xie, Y. The effect of silicon nanoparticles on the seed germination and seedling growth of moso bamboo (Phyllostachys edulis) under cadmium Stress. Pol. J. Environ. Stud. 2021, 30, 3033–3042. [Google Scholar] [CrossRef]
- Banerjee, J.; Kole, C. Plant nanotechnology: An overview on concepts, strategies, and tools. In Plant Nanotechnology; Kole, C., Kumar, D., Khodakovskaya, M., Eds.; Springer: Cham, Switzerland, 2016; pp. 1–14. [Google Scholar] [CrossRef]
- Najafi Disfani, M.; Mikhak, A.; Kassaee, M.Z.; Maghari, A. Effects of nano Fe/SiO2 fertilizers on germination and growth of barley and maize. Arch. Agron. Soil Sci. 2017, 63, 817–826. [Google Scholar] [CrossRef]
- Alkhatib, R.; Alkhatib, B.; Abdo, N. Effect of Fe3O4 nanoparticles on seed germination in tobacco. Environ. Sci. Pollut. Res. 2021, 28, 53568–53577. [Google Scholar] [CrossRef]
- Kulus, D.; Tymoszuk, A.; Jedrzejczyk, I.; Winiecki, J. Gold nanoparticles and electromagnetic irradiation in tissue culture systems of bleeding heart: Biochemical, physiological, and (cyto) genetic effects. Plant Cell Tiss. Org. Cult. 2022, 149, 715–734. [Google Scholar] [CrossRef]
- Emamverdian, A.; Ding, Y.; Mokhberdoran, F.; Xie, Y.; Zheng, X.; Wang, Y. Silicon dioxide nanoparticles improve plant growth by enhancing antioxidant enzyme capacity in bamboo (Pleioblastus pygmaeus) under lead toxicity. Trees 2020, 36, 469–481. [Google Scholar] [CrossRef]
- Lan, Y.; Wu, L.; Wu, M.; Liu, H.; Gao, Y.; Zhang, K.; Xiang, Y. Transcriptome analysis reveals key genes regulating signaling and metabolic pathways during the growth of moso bamboo (Phyllostachys edulis) shoots. Physiol. Plant. 2021, 172, 91–105. [Google Scholar] [CrossRef] [PubMed]
- Thapa, P.; Sareen, B.; Swarnkar, M.K.; Sood, A.; Bhattacharya, A. De novo transcriptome analysis of bamboo in vitro shoots for identification of genes differentiating juvenile and aged plants. Ind. Crops. Prod. 2022, 176, 114353. [Google Scholar] [CrossRef]
- Joshi, S.; Dar, A.I.; Acharya, A.; Joshi, R. Charged Gold Nanoparticles Promote In Vitro Proliferation in Nardostachys jatamansi by Differentially Regulating Chlorophyll Content, Hormone Concentration, and Antioxidant Activity. Antioxidants 2022, 11, 1962. [Google Scholar] [CrossRef] [PubMed]
- Arnon, D.I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949, 24, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Fazal, T.; Ismail, B.; Khan, A.M.; Khan, R.A.; Naqvi, A.A.S.; Hamid, F.S.; Sabir, M.A.; Faridullah Khan, A.R. Comparative studies on the use of binary and ternary combinations of various acidifying agents for the reduction of soil pH. Commun. Soil Sci. Plant Anal. 2016, 47, 11–18. [Google Scholar] [CrossRef]
- Heath, R.L.; Packer, L. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 1968, 125, 189–198. [Google Scholar] [CrossRef]
- Ahmed, A.F.; Attia, F.A.; Liu, Z.; Li, C.; Wei, J.; Kang, W. Antioxidant activity and total phenolic content of essential oils and extracts of sweet basil (Ocimum basilicum L.) plants. Food Sci. Hum. Wellness. 2019, 8, 299–305. [Google Scholar] [CrossRef]
- Dhindsa, R.S.; Plumb-Dhindsa, P.A.; Thorpe, T.A. Leaf senescence: Correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J. Exp. Bot. 1981, 32, 93–101. [Google Scholar] [CrossRef]
- Ghawana, S.; Paul, A.; Kumar, H.; Kumar, A.; Singh, H.; Bhardwaj, P.K.; Rani, A.; Singh, R.S.; Raizada, J.; Singh, K.; et al. An RNA isolation system for plant tissues rich in secondary metabolites. BMC Res. Notes 2011, 4, 85. [Google Scholar] [CrossRef]
- Patel, R.K.; Jain, M. NGS QC Toolkit: A toolkit for quality control of next generation sequencing data. PLoS ONE 2012, 7, e30619. [Google Scholar] [CrossRef]
- Li, B.; Dewey, C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011, 12, 323. [Google Scholar] [CrossRef] [PubMed]
- Milewska-Hendel, A.; Gepfert, W.; Zubko, M.; Kurczyńska, E. Morphological, Histological and Ultrastructural Changes in Hordeum vulgare (L.) Roots That Have Been Exposed to Negatively Charged Gold Nanoparticles. Appl. Sci. 2022, 12, 3265. [Google Scholar] [CrossRef]
- Mahakham, W.; Theerakulpisut, P.; Maensiri, S.; Phumying, S.; Sarmah, A.K. Environmentally benign synthesis of phytochemicals-capped gold nanoparticles as nanopriming agent for promoting maize seed germination. Sci. Total Environ. 2016, 573, 1089–1102. [Google Scholar] [CrossRef]
- Rastogi, A.; Zivcak, M.; Sytar, O.; Kalaji, H.M.; He, X.; Mbarki, S.; Brestic, M. Impact of Metal and Metal Oxide Nanoparticles on Plant: A Critical Review. Front Chem. 2017, 5, 78. [Google Scholar] [CrossRef] [PubMed]
- Acharya, P.; Jayaprakasha, G.K.; Crosby, K.M.; Jifon, J.L.; Patil, B.S. Green-synthesized nanoparticles enhanced seedling growth, yield, and quality of onion (Allium cepa L.). ACS Sustain. Chem. Eng. 2019, 7, 14580–14590. [Google Scholar] [CrossRef]
- Venzhik, Y.; Deryabin, A.; Popov, V.; Dykman, L.; Moshkov, I. Priming with gold nanoparticles leads to changes in the photosynthetic apparatus and improves the cold tolerance of wheat. Plant Physiol. Biochem. 2022, 190, 145–155. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Mehta, S.; Yadav, S.; Nagar, G.; Ghosh, R.; Roy, A.; Chakraborty, A.; Singh, I.K. How to cope with the challenges of environmental stresses in the era of global climate change: An update on ROS stave off in plants. Int. J. Mol. Sci. 2022, 23, 1995. [Google Scholar] [CrossRef]
- Wang, Q.; Hu, J.; Lou, T.; Li, Y.; Shi, Y.; Hu, H. Integrated agronomic, physiological, microstructure, and whole-transcriptome analyses reveal the role of biomass accumulation and quality formation during Se biofortification in alfalfa. Front. Plant Sci. 2023, 14, 1198847. [Google Scholar] [CrossRef]
- Anwar, N.; Wahid, J.; Uddin, J.; Khan, A.; Shah, M.; Shah, S.A.; Subhan, F.; Khan, M.A.; Ali, K.; Rauf, M.; et al. Phytosynthesis of poly (ethylene glycol) methacrylate-hybridized gold nanoparticles from C. tuberculata: Their structural characterization and potential for in vitro growth in banana. Vitr. Cell. Dev. Biol. 2021, 57, 248–260. [Google Scholar] [CrossRef]
- Farooq, M.A.; Niazi, A.K.; Akhtar, J.; Farooq, M.; Souri, Z.; Karimi, N.; Rengel, Z. Acquiring control: The evolution of ROS-Induced oxidative stress and redox signaling pathways in plant stress responses. Plant Physiol. Biochem. 2019, 141, 353–369. [Google Scholar] [CrossRef]
- Golinejad, S.; Mirjalili, M.H.; Rezadoost, H.; Ghorbanpour, M. Molecular, biochemical, and metabolic changes induced by gold nanoparticles in Taxus baccata L. cell culture. Ind. Crops Prod. 2023, 192, 115988. [Google Scholar] [CrossRef]
- Shen, Y.; Guan, Y.; Song, X.; He, J.; Xie, Z.; Zhang, Y.; Zhang, H.; Tang, D. Polyphenols extract from lotus seedpod (Nelumbo nucifera Gaertn.): Phenolic compositions, antioxidant, and antiproliferative activities. Food Sci. Nutr. 2019, 7, 3062–3070. [Google Scholar] [CrossRef] [PubMed]
- Afzal, S.; Aftab, T.; Singh, N.K. Impact of zinc oxide and iron oxide nanoparticles on uptake, translocation, and physiological effects in Oryza sativa L. J. Plant Growth Regul. 2022, 41, 1445–1461. [Google Scholar] [CrossRef]
- Joshi, S.; Chinnusamy, V.; Joshi, R. Root System Architecture and Omics Approaches for Belowground Abiotic Stress Tolerance in Plants. Agriculture 2022, 12, 1677. [Google Scholar] [CrossRef]
- Zhu, B.; Gan, C.; Gu, L.; Du, X.; Wang, H. Identification of NRAMP4 from Arabis paniculata enhance cadmium tolerance in transgenic Arabidopsis. J. Genet. 2021, 100, 89. [Google Scholar] [CrossRef]
- Suh, P.G.; Park, J.I.; Manzoli, L.; Cocco, L.I.; Peak, J.C.; Katan, M.; Fukami, K.; Kataoka, T.; Yun, S.; Ryu, S.H. Multiple roles of phosphoinositide-specific phospholipase C isozymes. BMB Rep. 2008, 41, 415–434. [Google Scholar] [CrossRef]
- Roychoudhury, A. (Ed.) Biology and Biotechnology of Environmental Stress Tolerance in Plants: Volume 2: Trace Elements in Environmental Stress Tolerance; CRC Press: Boca Raton, FL, USA, 2023. [Google Scholar]
- Wani, S.H.; Anand, S.; Singh, B.; Bohra, A.; Joshi, R. WRKY transcription factors and plant defense responses: Latest discoveries and future prospects. Plant Cell Rep. 2021, 40, 1071–1085. [Google Scholar] [CrossRef] [PubMed]
- Joshi, R.; Wani, S.H.; Singh, B.; Bohra, A.; Dar, Z.A.; Lone, A.A.; Pareek, A.; Singla-Pareek, S.L. Transcription factors and plants response to drought stress: Current understanding and future directions. Front. Plant Sci. 2016, 7, 1029. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumari, A.; Joshi, S.; Dar, A.I.; Joshi, R. Physio-Biochemical Integrators and Transcriptome Analysis Reveal Nano-Elicitation Associated Response during Dendrocalamus asper (Schult. and Schult. F.) Backer ex K. Heyne Micropropagation. Genes 2023, 14, 1725. https://doi.org/10.3390/genes14091725
Kumari A, Joshi S, Dar AI, Joshi R. Physio-Biochemical Integrators and Transcriptome Analysis Reveal Nano-Elicitation Associated Response during Dendrocalamus asper (Schult. and Schult. F.) Backer ex K. Heyne Micropropagation. Genes. 2023; 14(9):1725. https://doi.org/10.3390/genes14091725
Chicago/Turabian StyleKumari, Anita, Shubham Joshi, Aqib Iqbal Dar, and Rohit Joshi. 2023. "Physio-Biochemical Integrators and Transcriptome Analysis Reveal Nano-Elicitation Associated Response during Dendrocalamus asper (Schult. and Schult. F.) Backer ex K. Heyne Micropropagation" Genes 14, no. 9: 1725. https://doi.org/10.3390/genes14091725
APA StyleKumari, A., Joshi, S., Dar, A. I., & Joshi, R. (2023). Physio-Biochemical Integrators and Transcriptome Analysis Reveal Nano-Elicitation Associated Response during Dendrocalamus asper (Schult. and Schult. F.) Backer ex K. Heyne Micropropagation. Genes, 14(9), 1725. https://doi.org/10.3390/genes14091725