Topoclimatic Zoning and Representative Areas as Determined by an Automatic Weather Station (AWS) Network in the Atacama Region, Chile
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Basic Climatic and Topographic Characteristics
2.3. Climatic and Topographic Zoning
2.3.1. PCA
2.3.2. CA
2.4. Topoclimatic Zoning
2.5. AWS Representation Area in the Atacama Region
3. Results
3.1. Climatic and Topographic Zoning
3.1.1. PCA of Climatic and Topographic Variables
3.1.2. CA
3.2. Topoclimatic Zoning
3.3. Regional AWS Representation Area
4. Discussion
4.1. PCA and CA Methodology for Topoclimatic Zoning
4.2. Climatic and Topographic Cartography of the Atacama
4.3. Topoclimatic Cartography of the Atacama Region
4.4. Representative Area of the AWSs Installed in the Atacama Region
5. Conclusions
6. Software
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Ferrer, F.; Cabrera, P.; García, P.; de Nicolás, J. Metodología sobre cartografía bioclimática. In Clima y Agua: La Gestión de un Recurso Climático; Dorta, P., Valladares, P., Eds.; Tabapress: Tenerife, Spain, 1996; pp. 365–378. [Google Scholar]
- OMM (Organización Meteorológica Mundial). Documento Técnico N° 100; Organización Meteorológica Mundial: Ginebra, Suiza, 2011. [Google Scholar]
- Uribe, J.M.; Cabrera, R.; de la Fuente, A.; Paneque, M. Atlas bioclimático de Chile; Universidad de Chile: Santiago, Chile, 2012. [Google Scholar]
- Meza, F.; Pszczólkowski, P.; Kosiel, K. Modelación topoclimática: Descubrir el terroir vitícola. Rev. Agron. For. UC 2006, 30, 22–25. [Google Scholar]
- Azorin-Molina, C.; Asin, J.; McVicar, T.R.; Minola, L.; Lopez-Moreno, J.L.; Vicente-Serrano, S.M.; Chen, D. Evaluating anemometer drift: A statistical approach to correct biases in wind speed measurement. Atmos. Res. 2018, 203, 175–188. [Google Scholar] [CrossRef]
- Yang, W.; Guo, X.; Wang, Y. Observational evidence of the combined influence of atmospheric circulations and local factors on near-surface meteorology in Dagze Co basin, inner Tibetan Plateau. Int. J. Climatol. 2018, 38, 2056–2066. [Google Scholar] [CrossRef]
- López, J. Propuesta metodológica para el rediseño de una red meteorológica en un sector de la región Andina Colombiana. Publ. Investig. 2014, 8, 55–76. [Google Scholar] [CrossRef]
- WMO (World Meteorological Organization). Instruments and Observing Methods (Doc, Tec. N° 589); World Meteorological Organization: Geneva, Switzerland, 1993. [Google Scholar]
- Novoa, J.; Tracol, Y.; López, D. Paisajes eco-geográficos de la región de Atacama. In Libro Rojo de la Flora Nativa y de Los Sitios Prioritarios Para su Conservación; Squeo, F., Arancio, G., Gutiérrez, J.R., Eds.; Ediciones Universidad de La Serena: La Serena, Chile, 2008; pp. 13–24. [Google Scholar]
- Caroca, C.; Santibáñez, P.; Santibáñez, F.; Ruiz, R.; Campos, C.; Bravo, R. Estudio de la Cobertura Actual y Futura de la Red Agroclimática Nacional. Serie de Estudios para la Innovación FIA; Fundación para la Innovación Agraria: Santiago, Chile, 2015. [Google Scholar]
- Romero, H.; Vinagre, J. Topoclimatología de la cuenca del Río Mapocho. Investig. Geográficas 1985, 3–30. [Google Scholar] [CrossRef] [Green Version]
- Antonioletti, R.; Schneider, H.; Borcosque, J.L.; Zarate, E. Características climáticas del Norte Chico (26° a 33° latitud sur); Instituto de Investigación de Recursos Naturales: Santiago, Chile, 1972. [Google Scholar]
- Juliá, C.; Montecinos, S.; Maldonado, A. Características climáticas de la región de Atacama. In Libro rojo de la Flora Nativa y de los Sitios Prioritarios Para su Conservación: Región de Atacama; Squeo, F., Arancio, G., Gutiérrez, J.R., Eds.; Ediciones Universidad de La Serena: La Serena, Chile, 2008; pp. 25–42. [Google Scholar]
- Gómez, F.; Afonso, A. The Social Capital, Institutions and Economic Development: The revisited experience of EMPRENDE Chile. In Planning and Community Development: Case Studies; Migdely, J., Cazorla, A., Eds.; ETSI Agrónomos: Madrid, Spain, 2012; pp. 249–284. [Google Scholar]
- Agroclima. Available online: www.agroclima.cl (accessed on 15 April 2020).
- INE (Instituto Nacional de Estadística). División Político Administrativa y Censal; Región de Atacama, Ministerio de Economía, Fomento y Turismo: Santiago, Chile, 2007. [Google Scholar]
- WMO (World Meteorological Organization). Guide to Hidrological Practices (Doc, Tec. N° 168); World Meteorological Organization: Geneva, Switzerland, 2008. [Google Scholar]
- Milewska, E.; Hogg, W.D. Spatial representativeness of a long-term climate network in Canada. Atmos Ocean. 2001, 39, 145–161. [Google Scholar] [CrossRef]
- Orlowsky, B.; Seneviratne, S.I. On the spatial representativeness of temporal dynamics at European weather stations. Int. J. Climatol. 2014, 34, 3154–3160. [Google Scholar] [CrossRef]
- Köppen, W. Climatología; Fondo de Cultura Económica: Mexico City, México, 1948. [Google Scholar]
- Thornthwaite, C.W. An approach toward a rational classification of climate. Geogr. Rev. 1948, 38, 55–94. [Google Scholar] [CrossRef]
- Bagnouls, F.; Gaussen, H. Les climats biologiques et leur classification. Ann. Georgr. 1957, 66, 193–220. [Google Scholar] [CrossRef]
- Bunkers, M.J.; Miller, J.R.; DeGaetano, A.T. Definition of climate regions in the Northern Plains using an objective cluster modification technique. J. Clim. 1996, 9, 130–146. [Google Scholar] [CrossRef] [Green Version]
- DeGaetano, A.T. Delineation of mesoscale climate zones in the Northeastern United States using a novel approach to cluster analysis. J. Clim. 1996, 9, 1765–1782. [Google Scholar] [CrossRef] [Green Version]
- Unal, Y.; Kindap, T.; Karaca, M. Redefining the climate zones of Turkey using cluster analysis. Inter. J. Climatol. 2003, 23, 1045–1055. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; Mcmahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- Rubel, F.; Kottek, M. Observed and projected climate shifts 1901–2100 depicted by world maps of the Köppen-Geiger climate classification. Meteorol. Z. 2010, 19, 135–141. [Google Scholar] [CrossRef] [Green Version]
- Yunus, F.; Shafie, A.; Jaafar, J.; Mahmud, Z. Homogeneous climate divisions for Peninsular Malaysia. Geodin. Acta. 2011, 24, 89–94. [Google Scholar] [CrossRef]
- Iyigun, C.; Türkeş, M.; Batmaz, İ.; Yozgatligil, C.; Purutçuoğlu, V.; Koç, E.K.; Öztürk, M.Z. Clustering current climate regions of Turkey by using a multivariate statistical method. Theor. Appl. Climatol. 2013, 114, 95–106. [Google Scholar] [CrossRef]
- Vondráková, A.; Vávra, A.; Voženílek, V. Climatic regions of the Czech Republic. J. Maps. 2013, 9, 425–430. [Google Scholar] [CrossRef] [Green Version]
- Belda, M.; Holtanová, E.; Halenka, T.; Kalvová, J. Climate classification revisited: From Koppen to Trewartha. Clim Res. 2014, 59, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Di Castri, F.; Hajek, E.R. Bioclimatología de Chile; Vicerrectoría Académica de la Universidad Católica de Chile: Santiago, Chile, 1976. [Google Scholar]
- Novoa, R.; Villaseca, S.; Del Canto, P.; Rouanet, J.; Sierra, C.; Del Pozo, A. Mapa Agroclimático de Chile; Instituto de Investigaciones Agropecuarias: Santiago, Chile, 1989. [Google Scholar]
- Santibáñez, F.; Uribe, J.M. Atlas agroclimático de Chile: Regiones IV a IX; Universidad de Chile: Santiago, Chile, 1993. [Google Scholar]
- Amigo, J.; Ramírez, C. A bioclimatic classification of Chile: Woodland communities in the temperate zone. Plant Ecol. 1998, 136, 9–26. [Google Scholar] [CrossRef]
- Morales, L.; Canessa, F.; Mattar, C.; Orrego, R.; Matus, F. Caracterización y zonificación edáfica y climática de la Región de Coquimbo, Chile. Rev. Cienc. Suelo Nutr. Veg. 2006, 6, 52–74. [Google Scholar]
- Santibáñez, F.; Santibáñez, P.; Caroca, C.; González, P. Atlas agroclimático de Chile. Tomo II: Regiones de Atacama y Coquimbo; Universidad de Chile: Santiago, Chile, 2017. [Google Scholar]
- Sarricolea, P.; Herrera-Ossandon, M.; Meseguer-Ruiz, Ó. Climatic regionalisation of continental Chile. J. Maps. 2017, 13, 66–73. [Google Scholar] [CrossRef]
- Fovell, R.G.; Fovell, M.Y.C. Climate zones of the conterminous United States defined using cluster analysis. J. Clim. 1993, 6, 2103–2135. [Google Scholar] [CrossRef] [Green Version]
- Sahin, S.; Cigizoglu, H.K. The effect of the relative humidity and the specific humidity on the determination of the climate regions in Turkey. Theor. Appl. Climatol. 2013, 112, 469–481. [Google Scholar] [CrossRef]
- Sarmadi, F.; Azmi, M. Regionalizing mean air temperature in Iran by multivariate analysis and L-moment methods. J. Hydrol. Eng. 2016, 21, 05015018. [Google Scholar] [CrossRef]
- Gómez-Zotano, J.; Alcántara-Manzanares, J.; Olmedo-Cobo, J.A.; Martínez-Ibarra, E. La sistematización del clima mediterráneo: Identificación, clasificación y caracterización climática de Andalucía (España). Rev. Geogr. Norte Gd. 2015, 161–180. [Google Scholar] [CrossRef] [Green Version]
- SUBDERE (Subsecretaría de Desarrollo Regional y Adinistrativo). División Político Administrativa de Chile; SUBDERE: Santiago, Chile, 2016. [Google Scholar]
- Maldonado, A.; Rozas, E. Clima y paleoambientes durante el cuaternario tardío en la región de Atacama. In Libro Rojo de la flora Nativa y de Los Sitios Prioritarios Para su Conservación: Región de Atacama; Squeo, F., Arancio, G., Gutiérrez, J.R., Eds.; Ediciones Universidad de La Serena: La Serena, Chile, 2008; pp. 293–304. [Google Scholar]
- Ulloa, R.; De Zárate, P.O. Geografía III Región de Atacama. Colección Geografía de Chile; Ediciones Instituto Geográfico Militar: Santiago, Chile, 1989. [Google Scholar]
- Allaby, M. Encyclopedia of Weather and Climate; Facts on File: New York, NY, USA, 2002. [Google Scholar]
- Google Earth Engine. Available online: https://explorer.earthengine.google.com (accessed on 15 April 2020).
- Böhner, J.; Antonić, O. Land-surface parameters specific to topo-climatology. In Geomorphometry: Concepts, Software, Applications; Hengl, T., Reuter, H.I., Eds.; Elsevier: Amsterdam, The Netherlands, 2009; pp. 195–226. [Google Scholar]
- Vicente-Serrano, S.M.; El Kenawy, A.; Azorin-Molina, C.; Chura, O.; Trujillo, F.; Aguilar, E.; Martín-Hernández, N.; López-Moreno, J.I.; Sánchez-Lorenzo, A.; Moran-Tejeda, E.; et al. Average monthly and annual climate maps for Bolivia. J. Maps 2016, 12, 295–310. [Google Scholar] [CrossRef] [Green Version]
- OMM (Organización Meteorológica Mundial). Manual del Sistema Mundial Integrado de Sistemas de Observación de la OMM; Anexo VIII del reglamento técnico de la OMM; Organización Meteorológica Mundial: Ginebra, Suiza, 2015. [Google Scholar]
- Felicísimo, Á.M. Modelos Digitales del Terreno: Introducción y Aplicaciones en las Ciencias Ambientales; Pentalfa: Oviedo, Spain, 1994. [Google Scholar]
- Beguería, S.; Lorente, A. Distribución espacial del riesgo de precipitaciones extremas en el Pirineo aragonés occidental. Geographicalia 1999, 37, 17–36. [Google Scholar] [CrossRef] [Green Version]
- Mazzoleni, S.; Porto, A.L.; Blasi, C. Multivariate analysis of climatic patterns of the Mediterranean basin. Vegetatio 1992, 98, 1–12. [Google Scholar] [CrossRef]
- Bholowalia, P.; Kumar, A. EBK-means: A clustering technique based on elbow method and k-means in WSN. Int. J. Comput Appl. 2014, 105, 17–24. [Google Scholar]
- Bro, R.; Smilde, A.K. Principal component analysis. Anal. Methods 2014, 6, 2812–2831. [Google Scholar] [CrossRef] [Green Version]
- Kendall, M. A new measure of rank correlation. Biometrika 1938, 30, 81–93. [Google Scholar] [CrossRef]
- Carvajal, E.Y.; Marco, S.J.B. Análisis de variabilidad de datos medioambientales aplicando funciones ortogonales empíricas o componentes principales. Ing. Recur. Nat. Ambiente 2004, 1, 4–12. [Google Scholar]
- Pino, M.; Mulsow, S. Distribución de faces granulométricas en el estuario del Río Queule, IX región: Un análisis de componentes principales. Rev. Geológica Chile 2010, 18, 77–85. [Google Scholar]
- Vyas, S.; Kumaranayake, L. Constructing socio-economic status indices: How to use principal components analysis. Health Policy Plan. 2006, 21, 459–468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peña, D. Análisis de Datos Multivariantes; McGraw-Hill: Madrid, Spain, 2002. [Google Scholar]
- Jolliffe, I.T. Principal component analysis and factor analysis. In Principal Component Analysis; Jolliffe, I.T., Ed.; Springer: New York, NY, USA, 1986; pp. 115–128. [Google Scholar]
- Mardia, K.; Kent, J.; Bibby, J.M. Multivariate Analysis; Academic Press: London, UK, 1979. [Google Scholar]
- Cattell, R.B. The scree test for the number of factors. Multivar. Behav. Res. 1966, 1, 245–276. [Google Scholar] [CrossRef]
- Rodríguez-Jaume, M.; Mora, C.R. Análisis de varianza simple (o con un factor), factorial y multivariable. In Estadística Informática: Casos y Ejemplos con el SPSS; Rodríguez-Jaume, M., Mora, C.R., Eds.; Universidad de Alicante: Alicante, Spain, 2001; pp. 179–211. [Google Scholar]
- Osborne, J.W. What is rotating in exploratory factor analysis. Pract. Assess. Res. Eval. 2015, 20, 2. [Google Scholar]
- Lozares, C.C.; López, R.P. El análisis de componentes principales: Aplicación al análisis de datos secundarios. Rev. Sociol. 1991, 37, 31–63. [Google Scholar] [CrossRef]
- Steiger, J.H.; Lind, J.C. Statistically Based Tests for the Number of Common Factors; Annual Meeting of the Psychometric Society: Iowa City, IA, USA, 1980. [Google Scholar]
- Ferrando, P.J.; Anguiano-Carrasco, C. El análisis factorial como técnica de investigación en psicología. Pap. Psicol. 2010, 31, 18–33. [Google Scholar]
- Núñez-Colín, C.A.; Escobedo-López, D. Uso correcto del análisis clúster en la caracterización de germoplasma vegetal. Agron. Mesoam. 2011, 22, 415–427. [Google Scholar] [CrossRef] [Green Version]
- De la Fuente, S. Análisis Conglomerados; UAM, Facultad de Ciencias Económicas y Empresariales: Madrid, Spain, 2011. [Google Scholar]
- Della-Nave, M.; Donadio, I. Classificazione del Clima di Varese e Milano Mediante Cluster Analysis, Persistenza e Ariabilità; Politecnico de Milano: Milano, Italy, 2014. [Google Scholar]
- Hartigan, J.A.; Wong, M.A. Algorithm AS 136: A k-means clustering algorithm. J. R. Stat. Soc. C-Appl. 1979, 28, 100–108. [Google Scholar] [CrossRef]
- Wagstaff, K.; Cardie, C.; Rogers, S.; Schrödl, S. Constrained k-means Clustering with Background Knowledge. In Proceedings of the eighteenth international conference on machine learning, ICML, Williamstown, MA, USA, 28 June–1 July 2001. [Google Scholar]
- Kodinariya, T.M.; Makwana, P.R. Review on determining number of cluster in k-means clustering. Int. J. Adv. Res. Comput. Sci. Manag. Stud. 2013, 1, 90–95. [Google Scholar]
- Ureña-Elizondo, F. Utilización de estaciones meteorológicas automáticas como nueva alternativa para el registro de transmisión de datos. Rev. Electrónica Sist. Estud. Posgrado 2011, 11, 33–49. [Google Scholar] [CrossRef] [Green Version]
- Wolter, K. The Southern Oscillation in surface circulation and climate over the tropical Atlantic, Eastern Pacific, and Indian Oceans as captured by cluster analysis. J. Clim. Appl. Metereol. 1987, 26, 540–558. [Google Scholar] [CrossRef] [Green Version]
- Rosini, E.; Menenti, M.; Trevisan, V. Concetti e metodi della mesoclimatologia per un contributo alia conoscenza ambientale. Inf. Bot. Ital. 1974, 6, 163–207. [Google Scholar]
- Galliani, G.; Filippini, F. Climatic clusters in a small area. Int. J. Climatol. 1985, 5, 487–501. [Google Scholar] [CrossRef]
- Hubálek, Z.; Horáková, M. Evaluation of climatic similarity between areas in biogeography. J. Biogeogr. 1998, 15, 409–418. [Google Scholar] [CrossRef]
- Sharma, R.; Alam, M.; Rani, A. K-means clustering in spatial data mining using weka interface. In Proceedings of the International Conference on Advances in Communication and Computing Technologies (ICACACT’12), Mumbai, India, 11 August 2012; Volume 1, pp. 26–30. [Google Scholar]
- Baswade, A.M.; Nalwade, P.S. Selection of initial centroids for k-means algorithm. Int. J. Comput. Sci. Mob. Comput. 2013, 2, 161–164. [Google Scholar]
- Bonfils, C.; de Noblet-Ducoudré, N.; Guiot, J.; Bartlein, P. Some mechanisms of mid-Holocene climate change in Europe, inferred from comparing PMIP models to data. Clim. Dyn. 2004, 23, 79–98. [Google Scholar] [CrossRef]
- Brewer, S.; Alleaume, S.; Guiot, J.; Nicault, A. Historical droughts in Mediterranean regions during the last 500 years: A data/model approach. Clim. Past. 2007, 3, 355–366. [Google Scholar] [CrossRef]
- Brewer, S.; Guiot, J.; Torre, F. Mid-Holocene climate change in Europe: A data-model comparison. Clim. Past. 2007, 3, 499–512. [Google Scholar] [CrossRef] [Green Version]
- Mahlstein, I.; Knutt, R. Regional climate change patterns identified by cluster analysis. Clim. Dyn. 2010, 35, 587–600. [Google Scholar] [CrossRef] [Green Version]
- Henríquez, G. Caracterización de Humedales Altoandinos Para una Gestión Sustentable de las Actividades Productivas del Sector Norte del País: Antecedentes Climáticos III Región de Atacama; Centro de Información de Recursos Naturales (CIREN): Santiago, Chile, 2013. [Google Scholar]
- Janis, M.; Robeson, S. Determining the spatial representativeness of air-temperature records using variogram-nugget time series. Phys. Geogr. 2004, 25, 513–530. [Google Scholar] [CrossRef] [Green Version]
- Ciulache, S.; Ionac, N. Topoclimatic and microclimatic diferences in the Piteşti Town-Area. Present Environ. Sustain. Environ. 2008, 2, 117–124. [Google Scholar]
- Martin, F.; Fileni, L.; Palomino, M.G.; Vivanco, M.G.; Garrido, J.L. Analysis of the spatial representativeness of rural background monitoring stations in Spain. Atmos. Pollut. Res. 2014, 5, 779–788. [Google Scholar] [CrossRef] [Green Version]
- Araya-Osses, D.; Casanueva, A.; Román-Figueroa, C.; Uribe, J.M.; Paneque, M. Climate change projections of temperatura and precipitation in Chile based on statistical downscaling. Clim. Dyn. 2020, 54, 4309–4330. [Google Scholar] [CrossRef]
Variable | Acronym |
---|---|
(A) Climatic Variables | |
Water deficit | DEFH |
Degree days | DGAG |
Annual degree days | DGAN |
Evapotranspiration in January | ETP_E |
Evapotranspiration in July | ETP_J |
Water surplus | EXCH |
Relative humidity in January | HR_E |
Relative humidity in July | HR_J |
Cold hours | HRSF |
Aridity index | IARI |
Humidity index in January | IH_E |
Humidity index in July | IH_J |
Humid period | PERH |
Dry period | PERS |
Frost-free period | PLH |
Annual precipitation | PPA |
Solar radiation in January | RS_E |
Solar radiation in July | RS_J |
Summer severity | SEV_EST |
Winter severity | SEV_INV |
Average temperature in January | TMA_E |
Average temperature in July | TMA_J |
Maximum temperature in January | TMAX_E |
Maximum temperature in July | TMAX_J |
Minimum temperature in January | TMIN_E |
Minimum temperature in July | TMIN_J |
(B) Topographic Variables | |
Elevation | |
Slope | |
Convexity | |
Rugosity |
AWS | District | Latitude | Longitude | Altitude (m) |
---|---|---|---|---|
Copiapó | Copiapó | −27.35 | −70.41 | 342 |
Bodega | Copiapó | −27.34 | −70.37 | 347 |
Jotabeche | Tierra Amarilla | −27.59 | −70.24 | 599 |
Hornitos | Tierra Amarilla | −27.73 | −70.20 | 769 |
Tranque Lautaro | Tierra Amarilla | −27.98 | −70.00 | 1132 |
Amolana Copiapó 2 | Tierra Amarilla | −27.96 | −70.01 | 1091 |
Iglesia Colorada | Tierra Amarilla | −28.15 | −69.89 | 1517 |
Altar de la Virgen | Tierra Amarilla | −27.99 | −69.98 | 1115 |
CE Huasco | Vallenar | −28.58 | −70.80 | 465 |
Cachiyuyo | Vallenar | −29.06 | −70.90 | 950 |
Alto del Carmen | Alto del Carmen | −28.77 | −70.45 | 822 |
La Copa | Caldera | −27.35 | −70.62 | 188 |
Falda Verde | Chañaral | −26.3 | −70.62 | 127 |
Vallenar | Freirina | −28.53 | −70.94 | 230 |
Freirina | Freirina | −28.51 | −70.94 | 92 |
Vallenar | Freirina | −28.53 | −70.94 | 226 |
Punta Lobos | Huasco | −28.30 | −71.18 | 30 |
Principal Component | Standard Deviation | Explained Variance | Explained Variance (%) | Accumulated Explained Variance (%) |
---|---|---|---|---|
Climatic variables | ||||
PC1 | 4.09750 | 16.78951 | 64.570 | 64.570 |
PC2 | 2.11840 | 4.48762 | 17.260 | 81.830 |
PC3 | 1.45317 | 2.11170 | 8.122 | 89.956 |
PC4 | 0.91295 | 0.83348 | 3.206 | 93.162 |
Topographic variables | ||||
PC1 | 1.48500 | 2.20523 | 55.130 | 55.130 |
PC2 | 1.06820 | 1.14105 | 28.530 | 83.660 |
PC3 | 0.75670 | 0.57259 | 14.310 | 97.970 |
PC4 | 0.28505 | 0.08125 | 2.031 | 100.000 |
Homogeneus Area | Macrozone | Area (km2) | Altitude (m) | TMAX_E | TMIN_J | PLH | ETP_E | ETP_J | DEFH |
---|---|---|---|---|---|---|---|---|---|
1 | MZ | 2325.6 | 4770.6 | 13.5 | 0.0 | 0.0 | 54.2 | 29.7 | −436.4 |
2 | MZ | 1967.4 | 4180.7 | 16.2 | 2.2 | 0.0 | 64.7 | 37.3 | −574.5 |
3 | MZ | 3546.3 | 4348.7 | 16.3 | 2.3 | 0.0 | 65.3 | 38.0 | −577.6 |
4 | MZ | 2308.0 | 4315.3 | 16.8 | 1.6 | 0.0 | 70.4 | 35.7 | −576.5 |
5 | MZ | 832.7 | 4412.7 | 15.7 | 0.9 | 0.0 | 64.4 | 35.3 | −530.3 |
6 | PV | 413.1 | 3973.4 | 17.8 | 3.2 | 0.0 | 72.5 | 37.1 | −615.4 |
7 | MZ | 1470.2 | 4514.7 | 13.1 | −0.1 | 0.0 | 52.1 | 29.2 | −420.4 |
8 | PV | 2464.3 | 3727.9 | 18.4 | 4.1 | 3.1 | 74.3 | 50.3 | −712.5 |
9 | HPV | 1304.3 | 3820.3 | 18.2 | 2.4 | 0.0 | 77.2 | 39.5 | −647.3 |
10 | MZ | 218.4 | 4543.8 | 15.1 | −0.1 | 0.0 | 63.1 | 30.7 | −495.9 |
11 | PV | 2546.7 | 3843.1 | 19.0 | 4.1 | 8.9 | 78.9 | 45.7 | −711.1 |
12 | MZ | 642.2 | 4748.0 | 10.6 | −1.2 | 0.0 | 42.0 | 25.1 | −316.4 |
13 | IPV | 366.3 | 2796.8 | 24.7 | 8.4 | 166.9 | 115.7 | 53.9 | −980.3 |
14 | IPV | 540.2 | 2979.5 | 24.9 | 7.7 | 143.0 | 120.8 | 52.4 | −991.2 |
15 | PV | 443.3 | 3339.3 | 23.7 | 5.3 | 69.2 | 115.4 | 46.6 | −906.7 |
16 | MZ | 1028.1 | 4930.8 | 11.5 | −1.3 | 0.0 | 47.2 | 26.2 | −354.7 |
17 | PV | 2742.1 | 3472.1 | 20.1 | 3.9 | 7.5 | 88.2 | 44.7 | −755.6 |
18 | IZ | 2192.7 | 605.2 | 27.8 | 12.6 | 350.5 | 135.0 | 79.3 | −1261.0 |
19 | IZ | 960.7 | 797.9 | 28.4 | 12.3 | 332.8 | 143.3 | 80.8 | −1319.8 |
20 | IZ | 2995.7 | 1572.1 | 28.4 | 10.6 | 233.0 | 150.6 | 65.7 | −1253.3 |
21 | IZ | 2987.0 | 1122.4 | 28.5 | 11.7 | 298.7 | 147.9 | 69.9 | −1263.8 |
22 | IZ | 2304.8 | 1049.3 | 28.9 | 11.6 | 278.1 | 152.6 | 81.4 | −1376.8 |
23 | IPV | 1766.5 | 2855.3 | 25.6 | 6.5 | 95.0 | 131.4 | 51.0 | −1030.0 |
24 | PV | 3535.7 | 3095.7 | 24.0 | 5.1 | 45.1 | 119.1 | 48.1 | −938.3 |
25 | IZC | 1414.2 | 514.2 | 26.9 | 13.1 | 356.7 | 121.2 | 75.1 | −1160.4 |
26 | IZ | 2010.8 | 832.2 | 27.7 | 12.5 | 341.0 | 133.2 | 76.6 | −1236.9 |
27 | IZ | 2390.9 | 1240.0 | 29.4 | 11.9 | 274.2 | 159.3 | 74.5 | −1359.3 |
28 | IZ | 386.1 | 1660.3 | 28.3 | 10.4 | 221.2 | 149.5 | 62.9 | −1221.5 |
29 | IPV | 594.5 | 2308.4 | 25.7 | 7.8 | 150.7 | 128.5 | 54.7 | −1049.3 |
30 | IZ | 649.3 | 1741.3 | 28.7 | 10.6 | 229.0 | 155.2 | 64.7 | −1266.6 |
31 | IPV | 711.7 | 2227.8 | 26.1 | 9.6 | 201.3 | 126.7 | 57.4 | −1065.1 |
32 | IZC | 1216.1 | 408.7 | 26.0 | 13.8 | 364.7 | 107.5 | 69.2 | −1049.4 |
33 | IZC | 1603.6 | 676.5 | 26.0 | 13.0 | 363.2 | 111.3 | 63.4 | −1028.5 |
34 | CZ | 1835.5 | 637.6 | 25.2 | 13.4 | 365.0 | 100.8 | 54.7 | −911.5 |
35 | IZC | 1815.2 | 719.2 | 26.7 | 12.8 | 353.9 | 120.9 | 72.1 | −1139.9 |
36 | CZ | 576.8 | 657.4 | 24.4 | 13.4 | 365.0 | 92.0 | 47.0 | −807.4 |
37 | CZ | 1424.2 | 528.2 | 24.3 | 13.6 | 365.0 | 90.2 | 49.6 | −816.2 |
38 | IZ | 667.9 | 2317.2 | 25.8 | 8.7 | 177.4 | 127.2 | 56.5 | −1056.8 |
39 | CZ | 578.4 | 244.8 | 24.7 | 14.7 | 365.0 | 89.4 | 61.9 | −904.9 |
40 | CZ | 1076.5 | 178.9 | 24.0 | 15.2 | 365.0 | 79.3 | 49.3 | −763.4 |
41 | CZ | 364.4 | 776.5 | 25.2 | 12.7 | 365.0 | 104.2 | 52.3 | −911.7 |
42 | IZ | 324.1 | 1730.5 | 27.5 | 10.4 | 227.9 | 139.9 | 59.4 | −1146.0 |
43 | IZ | 2757.0 | 2030.9 | 28.1 | 9.7 | 220.7 | 150.0 | 54.1 | −1149.1 |
44 | IZ | 1811.8 | 1945.2 | 28.4 | 9.8 | 218.5 | 153.6 | 55.2 | −1181.2 |
45 | PV | 309.6 | 2434.2 | 24.8 | 5.9 | 69.4 | 125.1 | 49.9 | −974.5 |
46 | IZC | 50.9 | 892.9 | 26.3 | 13.4 | 356.8 | 113.2 | 78.1 | −1145.8 |
47 | IZC | 241.1 | 1049.6 | 26.3 | 12.1 | 364.5 | 118.9 | 55.4 | −1009.2 |
48 | IZ | 104.1 | 766.2 | 28.3 | 13.0 | 360.5 | 139.6 | 71.0 | −1228.4 |
49 | IZ | 1035.3 | 1523.8 | 28.7 | 11.7 | 315.3 | 150.3 | 56.0 | −1171.9 |
50 | CZ | 886.5 | 358.1 | 23.8 | 13.6 | 365.0 | 85.7 | 48.0 | −771.6 |
51 | IZ | 762.3 | 1315.9 | 30.0 | 12.3 | 297.3 | 164.8 | 64.7 | −1312.5 |
52 | CZ | 1070.3 | 142.1 | 23.7 | 14.6 | 365.0 | 79.3 | 42.9 | −700.1 |
53 | IZ | 672.5 | 2781.4 | 27.4 | 8.3 | 181.5 | 146.3 | 53.1 | −1117.4 |
54 | CZ | 215.5 | 419.1 | 23.8 | 13.6 | 365.0 | 85.6 | 47.0 | −760.8 |
55 | MZ | 640.7 | 4564.0 | 17.2 | −0.4 | 0.0 | 76.9 | 26.1 | −491.9 |
56 | HPV | 1117.7 | 4175.5 | 18.8 | 0.6 | 0.0 | 86.7 | 32.6 | −590.0 |
57 | HPV | 286.5 | 4080.2 | 19.1 | 1.0 | 0.0 | 88.0 | 34.2 | −605.0 |
58 | PV | 1349.3 | 3687.5 | 21.8 | 2.6 | 1.2 | 105.9 | 42.8 | −775.5 |
59 | PV | 124.5 | 3935.8 | 21.4 | 1.6 | 0.0 | 104.7 | 39.3 | −751.9 |
60 | MZ | 207.4 | 4751.2 | 15.9 | −1.0 | 0.0 | 69.7 | 24.4 | −446.1 |
61 | MZ | 465.2 | 4360.2 | 14.6 | −0.2 | 0.0 | 60.6 | 32.1 | −467.1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cortez, D.; Padilla, R.; Herrera, S.; Uribe, J.M.; Paneque, M. Topoclimatic Zoning and Representative Areas as Determined by an Automatic Weather Station (AWS) Network in the Atacama Region, Chile. Atmosphere 2020, 11, 611. https://doi.org/10.3390/atmos11060611
Cortez D, Padilla R, Herrera S, Uribe JM, Paneque M. Topoclimatic Zoning and Representative Areas as Determined by an Automatic Weather Station (AWS) Network in the Atacama Region, Chile. Atmosphere. 2020; 11(6):611. https://doi.org/10.3390/atmos11060611
Chicago/Turabian StyleCortez, Donna, Rodrigo Padilla, Sebastián Herrera, Juan Manuel Uribe, and Manuel Paneque. 2020. "Topoclimatic Zoning and Representative Areas as Determined by an Automatic Weather Station (AWS) Network in the Atacama Region, Chile" Atmosphere 11, no. 6: 611. https://doi.org/10.3390/atmos11060611
APA StyleCortez, D., Padilla, R., Herrera, S., Uribe, J. M., & Paneque, M. (2020). Topoclimatic Zoning and Representative Areas as Determined by an Automatic Weather Station (AWS) Network in the Atacama Region, Chile. Atmosphere, 11(6), 611. https://doi.org/10.3390/atmos11060611