Cold Waves in East China and Their Response to Two Types of Arctic Amplification
Abstract
:1. Introduction
2. Data and Methods
2.1. Criteria for a Cold Wave
- 1.
- The daily minimum temperature decreases by 8 K in one day or by 10 K in two days, and the minimum temperature is lower than 277.15 K.
- 2.
- The daily mean temperature decreases by 8 K in one day or 10 K in two days, and the minimum temperature is lower than 277.15 K.
2.2. Arctic Circulation Index
3. Results
3.1. Climatology Background of East China
3.2. Cold Waves in East China
3.3. The Impact of Arctic Amplification
4. Summary and Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ma, S.; Zhu, B.C.; Liu, T.; Zhou, Y.; Ding, Y.; Orsolini, J. Polarized response of East Asian winter temperature extremes in the era of Arctic warming. J. Clim. 2018, 31, 5543–5557. [Google Scholar] [CrossRef]
- Peterson, T.C.; Stott, P.A.; Herring, S. Explaining extreme events of 2011 from a climate perspective. Bull. Am. Meteorol. Soc. 2012, 93, 1041–1067. [Google Scholar] [CrossRef] [Green Version]
- Herring, S.C.; Hoell, A.; Hoerling, M.P.; Kossin, J.P.; Schreck, C.J., III; Stott, P.A. Explaining extreme events of 2015 from a climate perspective. Bull. Am. Meteorol. Soc. 2016, 97, S1–S145. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Wang, Z.; Song, Y.; Zhang, J. The unprecedented freezing disaster in January 2008 in southern China and its possible association with the global warming. Acta Meteorol. Sin. 2008, 22, 538–558. [Google Scholar]
- Gong, Z.; Feng, G.; Ren, F.; Li, J. A regional extreme low temperature event and its main atmospheric contributing factors. Theor. Appl. Climatol. 2014, 117, 195–206. [Google Scholar] [CrossRef]
- Ma, S.; Zhu, C. Extreme cold wave over east asia in january 2016: A possible response to the larger internal atmospheric variability induced by Arctic warming. J. Clim. 2019, 32, 1203–1216. [Google Scholar] [CrossRef]
- Roy, I. Solar cyclic variability can modulate winter Arctic climate. Sci. Rep. 2018, 8, 4864. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.; Zhang, X.; Francis, J.; Jung, T.; Kwok, R.; Overland, J.; Ballinger, T.J.; Bhatt, U.S.; Chen, H.W.; Coumou, D.; et al. Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather. Nat. Clim. Chang. 2020, 10, 20–29. [Google Scholar] [CrossRef]
- Francis, J.A. Why Are Arctic Linkages to Extreme Weather Still up in the Air? Bull. Am. Meteorol. Soc. 2017, 98, 2551–2557. [Google Scholar] [CrossRef]
- Petty, A.A. A possible link between winter Arctic sea ice decline and a collapse of the Beaufort High? Geophys. Res. Lett. 2018, 45, 2879–2882. [Google Scholar] [CrossRef]
- Li, J.; Zheng, F.; Sun, C.; Feng, J.; Wang, J. Pathways of influence of the northern hemisphere mid-high latitudes on east asian climate: A review. Adv. Atmos. Sci. 2019, 36, 902–921. [Google Scholar] [CrossRef]
- Wu, Z.W.; Li, J.P.; Jiang, Z.H.; He, J.H. Predictable climate dynamics of abnormal East Asian winter monsoon: Once-in-a-century snowstorms in 2007/2008 winter. Clim. Dyn. 2011, 37, 1661–1669. [Google Scholar] [CrossRef]
- Screen, J.A.; Simmonds, I. Exploring links between Arctic amplification and mid-latitude weather. Geophys. Res. Lett. 2013, 40, 959–964. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J.; Screen, J.A.; Furtado, J.C.; Barlow, M.; Whittleston, D.; Coumou, D.; Francis, J.; Dethloff, K.; Entekhabi, D.; Overland, J.; et al. Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci. 2014, 7, 627–637. [Google Scholar] [CrossRef] [Green Version]
- Mori, M.; Watanabe, M.; Shiogama, H.; Inoue, J.; Kimoto, M. Robust Arctic sea-ice infuence on the frequent Eurasian cold winters in past decades. Nat. Geosci. 2014, 7, 869–873. [Google Scholar] [CrossRef]
- Honda, M.; Inoue, J.; Yamane, S. Infuence of low Arctic sea-ice minima on anomalously cold Eurasian winters. Geophys. Res. Lett. 2009, 36, L08707. [Google Scholar] [CrossRef]
- Tang, Q.; Zhang, X.; Yang, X.; Francis, J.A. Cold winter extremes in northern continents linked to Arctic sea ice loss. Environ. Res. Lett. 2013, 8, 014036. [Google Scholar] [CrossRef]
- Goosse, H.; Kay, J.E.; Armour, K.C.; Bodas-Salcedo, A.; Chepfer, H.; Docquier, D.; Jonko, A.; Kushner, P.J.; Lecomte, O.; Massonnet, F.; et al. Quantifying climate feedbacks in polar regions. Nat. Commun. 2018, 9, 1919. [Google Scholar] [CrossRef]
- Tachibana, Y.; Komatsu, K.K.; Alexeev, V.A.; Cai, L.; Ando, Y. Warm hole in Pacific Arctic sea ice cover forced mid-latitude Northern Hemisphere cooling during winter 2017–2018. Sci. Rep. 2019, 9, 5567. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.; Li, J.P.; Zhao, S. Remote influence of Atlantic multidecadal variability on Siberian warm season precipitation. Sci. Rep. 2015, 5, 16853. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Li, X.; Li, Y.; Li, Y. Potential influence of Arctic sea ice to the interannual variations of East Asian spring precipitation. J. Clim. 2016, 29, 2797–2813. [Google Scholar] [CrossRef]
- Wu, J.J.; Wu, Z.W. Interdecadal change of the spring NAO impact on the summer Pamir-Tienshan snow cover. Int. J. Climatol. 2019, 39, 629–642. [Google Scholar] [CrossRef]
- Overland, J.E.; Dethloff, K.; Francis, J.A.; Hall, R.J.; Hanna, E.; Kim, S.J.; Screen, J.A.; Shepherd, T.G.; Vihma, T. Nonlinear response of mid-latitude weather to the changing Arctic. Nat. Clim. Chang. 2016, 6, 992–999. [Google Scholar] [CrossRef] [Green Version]
- Shepherd, T.G. Effects of a warming Arctic. Science 2016, 353, 989–990. [Google Scholar] [CrossRef]
- Tompson, D.W.J.; Wallace, J.M. Regional climate impacts of the Northern Hemisphere annular mode. Science 2001, 293, 85–89. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, H.; Fukamachi, T. Evolution and dynamics of summertime blocking over the Far East and the associated surface Okhotsk high. Q. J. R. Meteorol. Soc. 2004, 130, 1213–1233. [Google Scholar] [CrossRef]
- Hassanzadeh, P.; Kuang, Z. Blocking variability: Arctic Amplification versus Arctic Oscillation. Geophys. Res. Lett. 2015, 42, 8586–8595. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.D.; Sorteberg, A.; Zhang, J.; Gerdes, R.; Comiso, J.C. Recent radical shifts of atmospheric circulations and rapid changes in Arctic climate system. Geophys. Res. Lett. 2008, 35, L22701. [Google Scholar] [CrossRef] [Green Version]
- Kug, J.-S.; Jeong, J.-H.; Jang, Y.-S.; Kim, B.-M.; Folland, C.K.; Min, S.-K.; Son, S.-W. Two distinct influences of Arctic warming on cold winters over North America and East Asia. Nat. Geosci. 2015, 8, 759–762. [Google Scholar] [CrossRef]
- Lu, C.; Xie, S.; Qin, Y.; Zhou, J. Recent Intensified Winter Coldness in the Mid-High Latitudes of Eurasia and Its Relationship with Daily Extreme Low Temperature Variability. Adv. Meteorol. 2016, 2016, 3679291. [Google Scholar] [CrossRef] [Green Version]
- Francis, J.A.; Vavrus, S.J. Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys. Res. Lett. 2012, 39, L06801. [Google Scholar] [CrossRef]
- Hassanzadeh, P.; Kuang, Z.; Farrell, B.F. Responses of midlatitude blocks and wave amplitude to changes in the meridional temperature gradient in an idealized dry GCM. Geophys. Res. Lett. 2014, 41, 5223–5232. [Google Scholar] [CrossRef]
- Blackport, R.; Screen, J.A. Insignificant effect of Arctic amplification on the amplitude of midlatitude atmospheric waves. Sci. Adv. 2020, 6, eaay2880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Walsh, J.E.; Zhang, J.; Bhatt, U.S.; Ikeda, M. Climatology and interannual variability of Arctic cyclone activity: 1948–2002. J. Clim. 2004, 17, 2300–2317. [Google Scholar] [CrossRef]
- Kim, B.M.; Hong, J.Y.; Jun, S.Y.; Zhang, X.; Kwon, H.; Kim, S.J.; Kim, J.H.; Kim, S.W.; Kim, H.K. Major cause of unprecedented Arctic warming in january 2016: Critical role of an atlantic windstorm. Sci. Rep. 2017, 7, 40051. [Google Scholar] [CrossRef] [PubMed]
- Rinke, A.; Maturilli, M.; Graham, R.M.; Matthes, H.; Handorf, D.; Cohen, L.; Hudson, S.R.; Moore, J.C. Extreme cyclone events in the Arctic: Wintertime variability and trends. Environ. Res. Lett. 2017, 12, 094006. [Google Scholar] [CrossRef]
- Villamil-Otero, G.A.; Zhang, J.; He, J.; Zhang, X. Role of extratropical cyclones in the recently observed increase in poleward moisture transport into the Arctic ocean. Adv. Atmos. Sci. 2018, 35, 85–94. [Google Scholar] [CrossRef]
- Daily Observation from NMIC. Available online: http://data.cma.cn/data/cdcdetail/dataCode/SURF_CLI_CHN_MUL_DAY_V3.0.html (accessed on 1 January 2020).
- AO Index from NCEP. Available online: https://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/ao_index.html (accessed on 1 January 2020).
- Zhang, X.; Lu, C.; Guan, Z. Weakened cyclones, intensified anticyclones and recent extreme cold winter weather events in eurasia. Environ. Res. Lett. 2012, 7, 044044. [Google Scholar] [CrossRef]
- Chen, S.F.; Chen, W.; Wei, K. Recent trends in winter temperature extremes in eastern China and their relationship with the Arctic Oscillation and ENSO. Adv. Atmos. Sci. 2013, 30, 1712–1724. [Google Scholar] [CrossRef]
- Vihma, T. Effects of Arctic sea ice decline on weather and climate: A review. Surv. Geophys. 2014, 35, 1175–1214. [Google Scholar] [CrossRef] [Green Version]
- Tao, W.; Zhang, J.; Fu, Y.; Zhang, X. Driving roles of tropospheric and tratospheric thermal anomalies in intensification and persistence of the Arctic Superstorm in 2012. Geophys. Res. Lett. 2017, 44, 10017–10025. [Google Scholar] [CrossRef]
Index Phase | Months |
---|---|
+AO-Early Winter | 198310, 198812, 199012, 199411, 200612, 200810, 200111, 201112, 201311, 201511 |
−AO-Early Winter | 198011, 198112, 199512, 199612, 200012, 200211, 200212, 200512, 200912, 201012, 201212 |
+DET_CAI-Early Winter | 198011, 198311, 198512, 198910, 199011, 199710, 199911, 200912, 201212, 201411 |
−DET_CAI-Early Winter | 198111, 198612, 199311, 199811, 200311, 200810, 201012, 201112, 201211, 201312, 201412, 201512, 201611 |
+AO-Late Winter | 198301, 198901, 198902, 199002, 199003, 199202, 199301, 199403, 200202, 200703, 201102, 201503 |
−AO-Late Winter | 198403, 198501, 198701, 198702, 200103, 200401, 201001, 201002, 201101 |
+DET_CAI-Late Winter | 198103, 198503, 198801, 199203, 199501, 200003, 200202, 200603, 201403, 201503, 201703 |
−DET_CAI-Late Winter | 198102, 198802, 199103, 199901, 200102, 200502, 200601, 200703, 201201, 201802 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, W.; Ni, Y.; Lu, C. Cold Waves in East China and Their Response to Two Types of Arctic Amplification. Atmosphere 2020, 11, 612. https://doi.org/10.3390/atmos11060612
Tao W, Ni Y, Lu C. Cold Waves in East China and Their Response to Two Types of Arctic Amplification. Atmosphere. 2020; 11(6):612. https://doi.org/10.3390/atmos11060612
Chicago/Turabian StyleTao, Wei, Yuman Ni, and Chuhan Lu. 2020. "Cold Waves in East China and Their Response to Two Types of Arctic Amplification" Atmosphere 11, no. 6: 612. https://doi.org/10.3390/atmos11060612
APA StyleTao, W., Ni, Y., & Lu, C. (2020). Cold Waves in East China and Their Response to Two Types of Arctic Amplification. Atmosphere, 11(6), 612. https://doi.org/10.3390/atmos11060612